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Some properties of band matrix and its application to
the numerical solution one-dimensional Bratu’s problem
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Abstract. A Class of new methods based on a septic non-polynomial spline function for
the numerical solution one-dimensional Bratu’s problem are presented. The local truncation
errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse
of some band matrixes are obtained which are required in proving the convergence analysis of
the presented method. Associated boundary formulas are developed. Convergence analysis of
these methods is discussed. Numerical results are given to illustrate the efficiency of methods.
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1. Introduction
Consider the Liouville-Bratu-Gelfand equation [8], [7], [23], [21], [22]

Au(z) + Xe™® =0, 2 € Q, (1)
u(z) =0, x € 01,

where A > 0, and () is a bounded domain. We consider the classical Bratu’s problem
given by the following boundary value problem

u(x) + Ae@ =0, w(0)=u(l)=0, 0<z<Ll (2)

*Corresponding author.
E-mail address: rezajalilian@iust.ac.ir (R. Jalilian).

Print ISSN: 2252-0201 (© 2013 TAUCTB. All rights reserved.
Online ISSN: 2345-5934 http://jlta.iauctb.ac.ir



170 R. Jalilian et al. / J. Linear. Topological. Algebra. 02(03) (2013) 169-183.

The Bratu’s problem in one-dimensional planar coordinates (2) has analytical solution
in the following form:
cosh((z — %)g

)
u(zr) = —2In
(=) 2ol cosh(%)

J 3)

where 0 is the solution of 6 = v/2X cosh($).

The Bratu’s problem has zero, one or two solutions when A > A., A = A, and A < A,
respectively, where the critical value A, satisfies the equation 1 = %msinh(g) and it
was evaluated in [7],[23], [4], [10]. Also the critical value A. is given by A = 3.513830719.
Bratu’s problem is also used in a large variety of applications such as the fuel ignition
model of the thermal combustion theory, the model of thermal reaction process, the
Chandrasekhar model of the expansion of the universe, questions in geometry and rela-
tivity about the Chandrasekhar model, chemical reaction theory, radiative heat transfer
and nanotechnology [7], [21], [22],[17], [29], [19], [36], [14], [20].

Many authors obtained analytical and numerical methods for the solution of (2). For
example Hikmet Caglar [8] have developed B-spline method, Buckmire and Mounim et
al. [7], [22] have used finite difference method, Deeba et al. [9] developed decomposition
method, Khuri [18] and Syam et al. [29] have been used Laplace transform decomposition
method, Li and S.J. Liao [19] developed homotopy analysis method, Wazwaz [36] have
been analyzed Adomian decomposition method, Aregbesola [3] used weighted residual
method, Hassan and Erturk [12] applied differential transformation method and J.H.
He [14] used He’s variational method to solve the Bratu’s problem. Rashidinia et al.
[24], [25] used non-polynomial spline methods for the solution of fourth and two-order
boundary-value problems. Some authors such as Van Daele et al. [35], Ramadan et al.
[27], Siraj-ul-Islam et al. [34] and Akram and Siddigi [2] have been analyzed and de-
veloped non-polynomial splines approach to the solution of boundary value problems.
Mohsen et al. [23] have been obtained new smoother to enhance multigrid-based meth-
ods for Bratu problem. Tirmizi and Twizell [31] have been developed higher-order finite-
difference methods for nonlinear second-order two-point boundary-value problems. Us-
mani and Sakai [33] obtained a connection between quartic spline and Numerov solution
of a boundary value problem. Boutayeb and Twizell [5], [30], [6] have been analyzed and
developed numerical methods for the solution of sixth-order and eighth-order boundary-
value problems. J.H. He [13] has been developed variational method to find the two
branch solutions and identify the bifurcation point of (2).

The basic motivation of this paper is discussed convergence analysis of the non-
polynomial spline for solutions one-dimensional Bratu problem. Ghazala Akram and
Shahid S. Siddiqi [1] used septic spline for interpolation at equally spaced knots along
with the end conditions and lead to uniform convergence of O(h®) and also Ramadan
et al. [26] used septic spline for the numerical solution of the sixth-order linear bound-
ary value problems and also discussed convergence analysis of the method. R. Jalilian
used non-polynomial quintic spline function to the approximate solutions of the one-
dimensional Bratus problem and obtained the method of order O(hS).

The paper is organized in four sections. We use the consistency relation of non-polynomial
septic spline for approximate the solution of (2). section 2 is devoted to the description
of the method and development of boundary conditions and also we obtain the methods
of order 2th, 4th, 6th, 8th, 10th, and 12th. The new approach for convergence analysis
is discussed in section 3. Finally, in section 4, numerical evidences are included to show
the practical applicability and superiority of our method and compare with the other



R. Jalilian et al. / J. Linear. Topological. Algebra. 02(03) (2013) 169-183. 171

methods.

2. Description of the method and development of boundary
conditions

Let us consider a mesh with nodal points x; on [a, b] such that:
Aia=29g< 21 <Tog < < Tp_1<Ty=>,
where h = b_T“ for i = 1(1)n. For each segment [z;, z;+1],7 = 0,1,2,...,n — 1 by using

non-polynomial spline [26] we have

a1 (Mi—g + Miy3) + ag(Mi—o + Mit2) + ag(Mi—1 + Miy1) + aaM; — [(wigs + ui—3)

1 .
+(51) (wigo + ui—2) + (B2) (wig1 + ui—1) + (53)%]?, i=3,.,n—3, (4)
where
— (1200—206°+6°—120Sin[0])
X1 = T3002(—66+0°+6Sm[0]) °
_ —2(2406+200% —1365+6(120—2062+6*)Cos[0] —360Sin[6])
a2 = 2002(—60+63+6Sin[0]) '
_ (8406+1000%+676°+ (96064800 —526°) Cos[f]—1800Sin[6)])
@z = 200 (—60+05+65in[0]) )
_ 4(2406+206° —136°+36(12042062+116*)Cos[6]—600Sin[6])
Qg = = 2002 (—66-+05+65n[0]) ;
B, = 4060%(—0(12+62)+6(—6+62)Cos[§]+18Sin[6])
1= 2002(—60+6516Sin[0)) )
B, = 2002 (420+56°+46(12+6%)Cos[6] —90Sin[6])
2= 2002 (—66+63+6Sin[0]) )
By = 8002 (1260463 +36(6+62)Cos[9] —30Sin[¢])
3= 2002 (—66+63+6Sin[0]) )

By expanding (4) in Taylor series about x;, we obtain the following local truncation
error:

ti=— (24201 +262+ B3) u; + h2u§2) (=9 + 201 + 202 + 203 + a4 — 461 — P2)

1
+oghtui (<81 4+ 1080y + 480z + 1205 — 1651 — o)

1
+%h6u§6) (—729 + 24300 + 4802 + 30a3 — 645, — o)

1
+mh8ugg> (—6561 + 40824 + 35840 + 5603 — 256581 — Ba)

th (10)

—_— — 4 4 2304 — 102451 —
—1—1814400% (—59049 + 5904901 + 23040cx2 + 90ax3 0245, — B2)



172 R. Jalilian et al. / J. Linear. Topological. Algebra. 02(03) (2013) 169-183.

h12 (12)
_ 2531441 + 77944680, + 13516802 + 13205 — 4096
539500800 ¢ + o1t @z + 1o2as B
h14u(-14)
_ M (4782969 4 967222620, + TABAT20s + 18205 — 163843, —
+ 13589145600 + a1t @z + 182as B = B2)

+O(h'). (5)
By using the above truncation error to eliminate the coefficients of various powers h we
can obtain classes of the methods. For different choices of parameters aq, aso, as, oy, 81, 5o

and (3, we get the class of methods such as:

(I) Second-order method. For ay = 50,0 = 10,3 = a4 = 0,01 = 24,05, = 15
and B3 = —80, we have

ti = 450n*ulY) + O(h?).

(IT) Fourth-order method. For a; = 50,9 = 10, a3 = —450, ey = 900, 51 = 24, By = 15,
and B3 = —80, we have

t; = 307h%u” + O(R).

(II) Sizth-order method. For oq = 5,00 = 2,03 = 29 oy = 1298 8 = 24, 8, = 15,
and B3 = —80, we have

h3u®
t; = ——— + O(h?).
T (")
(IV) Eighth—?;tizr method. For oy = 2L ay = 392 o5 = 18285 ) = 0,8, =
Tt B2 = 1imar, and B3 = 0, we have
656295100
p= o= WL (i,
27936090
(V) Tenth-order method. For oy = %,O@ = %,ag = 12508835339,Oé4 = 56225505392,51 =
%, 5 = —%, and f3 = 0, we have
3319h12u"?)
i = Soael— + O(h).
35390520

1857 110322 989739 __ 2175924
(VI) Twelve-order method. For oy = jgiss, a0 = Jgics’, 3 = Fgren, 4 = “gg1es,

112266 _ 112995 464660
7069+ 02 = “7069 » and B3 = — =55, we have

(14)
" _ 1146697 v, oM.
19812993200
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we assume that
Mi = —)\eui, (6)
where M; = S/(x;), u; is the approximation of the exact value u(z;) and S;(z) is non-

polynomial septic spline function [26]. By substituting (6) in the spline relation (4), we
obtain the nonlinear equations in the following form.

a1 (A€ =2 4+ Xe" ) + ag(Ne =2 + Ae"+2) 4+ ag(Ae™ it + Aeith) + ag e

1

+ﬁ((ui+3 +ui—3) + (B1)(wiv2 + ui—2) + (B2)(wit1 +ui—1) + (B3)u;) = 0,

i=3,...,n—3 (7)

To obtain unique solution for the nonlinear system (7) we need four more equations.
Following [15] we define the following identities:

Zi:o Velg + h2 21162:1 MUy, + t1h14u814) =0, i=1,
22:0 prug + h? Z,lle oRuy + t2h14u(()14) =0, 1= 2,

22:0 UUp—k + h? 2,162:1 akusz + tn,2h14u(()14) =0,1=n-—2,

14 ‘
Zi:o VeUn_k + h? Z,lle neun . + tn_1h14u(() ) = 0,i=n-1,
by using Taylor ’s expansion we obtain the unknown coefficients in (8) as follows:

1210210269217

(V0,715 72,73, 74) = (65, —104,14,24,1), t1 =tp1 = (m

);

—2248215317 4539179
19958400 * 17600 ’

(7717 112,713, 14,15, M6, N7, 7185 719, 1110, 1115 7712) = (

—6055918291 9918918899 —892246279 18019157507 —30650022317
6652800 ~ 4989600 ' 285120 4989600 = 9979200

2380569353 —16851712321 503717713 —130447723 18976637
1247400 7 19958400 1995840 ' 2851200 4989600

)7

521085679991

=(26,14,-80,15,24,1),ts =ty,9o = (—————
(M07M15M27ﬂ3vﬂ4au5a) ( 67 ) 80) 55 ) )7 2 n—2 (373621248000

),

—7712745923
159667200

(01,02,03,04,05,06,07,08,09,010, 011, 012) = (
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259885933 —19222747601 8351791919 —3712133107 95883047
5702400 ~ 53222400 ° 11404800 ° 3193344 ’ 71280

—2614370381 28466192407 —7204033313 16761737 —43435489
2280960 39916800 ' 22809600 177408 ' 2534400 ’

113795873

79833600 )

3. Convergence analysis
In this section, we investigate the convergence analysis of the sixth-order method and also
in the same way we can prove the convergence analysis for any of the other methods. The

equations (7) along with boundary condition (8) yields nonlinear system of equations,
and may be written in a matrix form as

AgUN 4 \R2BEY (UM = RW), (9)

& u®

(where £1(U/1) = 7 = (", e,

the matrices Ag and B are an (n — 1) x (n — 1)-dimensional which have the following
forms

Ag=—P3_(1,2,1) +30P2_,(1,2,1) — 120P,_1(1,2, 1), (10)
where
z =y
- z -y
Pn—l(xwzuy): ) (11)
-xr z -y
—T Z
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(71 M2 M3 M4 M5 Me M7 M8 M9 Mo M1 M2
01 02 03 04 05 O¢ O7 08 09 010 011 012
Qo (i3 Qg Qi3 Qg (1

a1 (ip (3 (g (3 2 (1

(12)
a1 (g 3 g4 3 g O
a1 g 3 g 3 Q9
012 011 010 09 08 07 06 05 04 03 02 0]
L M2 M1 1Mo M9 M N7 Ne M5 T4 M3 T2 71
—65uy,
—26uyg,
—up — Aagq,
0
R = : (13)
0
—Up — )\ala
—26UO,
—65UO,
We assume that
A,TY 4 A2Be) @Yy = RO 4O, (14)
where the vector U — u(z;), (i = 1,2,...,n — 1), is the exact solution and t() =
[t1,t2,...,tn_1]7, is the vector of local truncation error.
By using (9) and (14) we get
AEW = [Ay + M\2BF, (UMW) EW = M), (15)
where
D —gh _ U,
@) — (U ) = BED)ED, (16)

e
and F(UW) = diag{%},(i = 1,2,...,n — 1), is a diagonal matrix of order n — 1.

To prove the existence of A1, since A = Ay + h*BF,(UWY), we have to show Ay =
—P3 (1,2,1) +30P2_{(1,2,1) — 120P,_1(1,2,1),, is nonsingular.
by using Henrici [11] we have

[(Po-1(1,2,1)) 71 < (b—a)?

8h? (17)
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It is clear that the matrix Ag is nonsingular and also ||A5"| < w where w is a positive
number (||.|| is the Lo, norm).

Several results can now be derived directly from the Eq. (11). We shall now consider the
inversion of the product of matrices P,—1(—1, z,—1) and P,,_1(1, 2/,1). We first note that
the matrices P,—1(—1,2,—1) and P,_1(1,2',1) are commuted. By considering F(z) =
P,_1(-1,z,—1) and G(2') = P,—1(1,2',1) then we have the following lemmas [16].
Lemma 1. If we consider the matrices F'(z) and G(z’) then:

(F"(2)G™(") ™ = (Z+1z)n > (7) F=0()G7 (), 2 # —7'. (18)
=0

)

Proof:

; (z42)n

(2

" /n . ) 1
[ NG () = e+ ) ] = In, 2 # =2

And similarly

= (M) PO GO = L AR = L st
32 (7) ORI = e+ = 2

This completes the proof of the Lemma, 1.
Lemma 2. By consider the matrices F(z) and G(z’) then we have:

(F™(z)F™(2) "' = S G Z(—l)Z(

n
(22 =0

7

)F_("_i)(z’)F_i(z), 2 # 2.

Proof:
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n

LSy (”) (F"(2) F" () P~ (2 P ()] =

Y
(z—2")n — i

n

1 if ™\ pn—i TN 1 e VU = s
S () ] = gl = A = D £

o
(z =2 — i

This completes the proof of the Lemma 2.
Lemma 3. By consider the matrices F(z) and G(z’) then we have:

n

()G () = Z(—w‘(

n
— ;
(=2 S

> G~ (NG (2), 2 # 2.

1

Proof:

1 - 1) n nAGT (S —(n—1) S —3 )] =
(e ee e @)
1 - if ™ izl n—i p o
a0 () e -
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And

n

LAl (D) G N = e = ) ] = s £ 5

(z—z P (z— 2"

This completes the proof of the Lemma 3.

Theorem 1. If YV < W, then the matrix A given by (15) is monotone
0

(V = max| 25 i = 1,2,.m — 1),
Proof: From (15) we have

A= Ay + M\?BE,(UW),
hence AA;! =T+ A2BF,(UM)AS?, so that

AgA™r = (I + M2BE,(UM)AgH) ™! =
=T — (\R2BFL(UM)AGY) + WW2BE, (UMW) Ay 1?2 — (AR2BFL(UM)AG ) + ...

= [I = AR2BE (UMY AZHT + AR2BEL, (UM AGYH2 + AR2BE,(UM)AZH + ...

Also if p(AW2BFL(UM)Ag') < 1 then, the two infinite series convergence. Let
u{D
IF(UD)|| <Y = max| 255 |i = 1,2,...,n — 1, then

A=

(A5t — A IAR2BE,(UMYAGY T + (AW2BFy(UMW) A Y2 + (AW2BE,(UM) A1 + ...,

where the infinite series is nonnegative. Hence to show that A is monotone, it sufficient
to show that [Ay" — Ay "AR2BE,(UM)A 1] > 0. Here we have

At > AGIREBFL(UMW)AGY = T > A AW BFL(UW) =

A2 AG BEL(UD)II < M2 AGIBINFU M) < 1. (19)
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Then

1
Y < ﬁ.
ARZ|B[[[Ag |

Theorem 2. Let u(x) be the exact solution of the boundary value problem (2) and
assume u;, ¢ = 1,2,...,n — 1, be the numerical solution obtained by solving the system
(9). Then we have

|E]| = O(r°),
provided Y < 27%&%, where
1 20 397 1208
aq 427a2 7 , 3 14 , (4 21 7/81 7/82 57ﬁ3 807

Proof: We can write the error equation (15) in the following form

EW = (Ag + M2BF(UM) ™1 = (I + Ah2A; ' BF, (UMW)t As 1),

IEW | < I + M2 AG BE(U W) T 1AG eV

it follows that

e
1EW|| < HAo1 e 7 (20)
L= A2 A Bl F.U )]
provided 2| Ayt ||| B||| Fi (UM)|| < 1. Following [16] we have
ey < 20 o)
252

where Mg = max|u® (€)|,a < £ < b.
From inequalities (20), (21), [|45Y] < w, [[FR(UM)]| < Y (Y = max|2% |0 =

8u£1)
1,2,..,n—1,) and | B|| < % we obtain

17325wh® Mg
E|| < = O(h%), 22
1] 252(1 — 279548636 Ah2wY) (%) (22)
provided
17325
Y . 23
< 279548636 N0 2w (23)
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Corollary

(i) For oy = 50,20 = 10,3 = a4 = 0,61 = 24,8, = 15 and 3 = —80, we
have

IE] = O(h?).

(i) For ay = 50, ais = 10, o3 = —450, ovg = 900, By = 24, B3 = 15, and B3 = —80, we get

|E|| = O(n*).
(iii) For oy = é,ag = 2—70,(13 = %,(m = %,Bl = 24,By = 15, and B3 = —80, we
obtain

1E]| = O(n°).
(iv)hFor o = %,O@ = %,ag = %,O@ =0,61 = _11?}58?16, 2 = }ZZQ?, and f3 = 0,
we have

|E]| = O(r®).
(v) For a1 = &5, a2 = 55553, 03 = Gy, u = Gores 1 = G5 P2 = — gy, and
B3 =0, we get

IE]| = O(r").
(1) Por a1 = 50 = 49280 = P = 20— Y. = M and
B3 = —4%280, we have

IE|| = O(r'?).

4. Numerical Illustrations

In order to test the viability of the proposed method based on non-polynomial spline
and to demonstrate its convergence computationally, we consider the boundary-value
problem (2). This problem has been solved using our methods with different values of n
and a1, as, ag, ag, 81, B2, 3. The maximum absolute errors in solutions are tabulated in
Tables 2-5. The maximum absolute errors in solutions of this problem are compared with
method in [15] for n = 16, 32, 64, 128. The tables show that our results are more accurate.
All calculations were implemented using Mathematica6.0 with Working Precision 50.

Conclusion

The approximate solutions of the one-dimensional Bratu’s problem by using non-
polynomial spline, shows that our methods are better in the sense of accuracy and
applicability. These have been verified by the maximum absolute errors max|e;| given
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Table 1. Maximum absolute errors sixth-order method in [15]
n A=1 =2 A =3.51
8  5.64x107Y 4.53x107% 3.51x107°
16  4.66x1071  1.76x107° 1.45x10°7
32 833x1071 2.13x107'1  1.02x107?
64 9.21x107' 2.87x10713 1.48x10~1!
128 - 247x10~%  1.58x10713
Table 2. Observed maximum absolute errors sixth-order method
n A=1 =2 A =351
16 1.25x10~11  4.69x10~1° 3.01x10~°
32 1.87x10713% 5.02x107'2  3.75%x107?
64 2.89x10715 7.64x107 3.32x10~M!
128 4.52x10717 1.19x107' 5.21x10°13
256  7.05x1071 1.85x10717 8.71x1071°
Table 3. Observed maximum absolute errors twelve-order method
n A=1 A =2 A =3.51
16 4.87x1071% 1.13x10719 2.99x107°
32 2.02x10717 1.93x10~ 1.57x107?
64 2.08x10721 5.25x10719 1.63x10°14
128 1.31x1072° 6.49x1072* 1.86x10~1°
256  7.82x10730  2.67x107%7 -
Table 4. Observed maximum absolute errors for A =1
n Second-order Fourth-order Eight-order Tenth-order
16 2.27x1073 2.64x107°  5.04x107 T 4.63x10~ 13
32 6.12x10~4 1.71x1076  1.51x10713 1.74x1077
64 1.55x107% 1.07x1077  5.96x10716 3.38x1072!
128  3.90x107° 6.74x1079  2.30x10718  5.42x10~%
256 9.76x1076  4.21x10710 8.98x1072! 4.96x10~%7
512 2.44x1076 2.63x1071  3.50x10723 4.85x10730
1024 6.11x1077 1.65x10712  1.37x1072° 4.73x10733

181

in tables. Some properties of band matrices are obtained, which are required in proving
the convergence analysis of the finite difference and spline methods.
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