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Abstract. In this paper, the notion of rank−k numerical range of rectangular complex ma-
trix polynomials are introduced. Some algebraic and geometrical properties are investigated.
Moreover, for ϵ > 0, the notion of Birkhoff-James approximate orthogonality sets for ϵ−higher
rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The
proposed definitions yield a natural generalization of the standard higher rank numerical
ranges.
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1. Introduction and preliminaries

Let Mn×m be the vector space of all n×m complex matrices. For the case n = m, Mn×n

is denoted by Mn; namely, the algebra of all n × n complex matrices. Throughout the
paper, k,m and n are considered as positive integers and k ⩽ min{m,n}. Moreover, Ik
denotes the k × k identity matrix. The set of all n × k isometry matrices is denoted by
Xn,k, i.e., Xn,k = {X ∈Mn×k : X∗X = Ik}. For the case n = k, Xn,n is denoted by Un;
namely, the group of all n× n unitary matrices.
Motivation of our study comes from quantum information science. A quantum channel
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is a trace preserving completely positive map such as L : Mn → Mn. By the structure
of completely positive linear maps, e.g., see [3], there are matrices E1, . . . , Er ∈Mn with∑r

j=1EjE
∗
j = In such that L(A) =

∑r
j=1E

∗
jAEj . The matrices E1, . . . , Er are inter-

preted as the error operators of the quantum channel L. Let V be a k−dimensional sub-
space of Cn and P be the orthogonal projection of Cn onto V. Then, the k−dimensional
subspace V is a quantum error correction code for the channel L if and only if there are
scalars γij ∈ C with i, j ∈ {1, . . . , r} such that PE∗

i EjP = γijP ; for more information,
see [7] and its references, and also see [11]. In this connection, the rank−k numerical
range of A ∈Mn is defined and denoted by

Λk(A) = {λ ∈ C : PAP = λP, for some rank− k orthogonal projection P on Cn}.

It is known, see [4, Proposition 1.1], that

Λk(A) = {λ ∈ C : X∗AX = λIk, for some X ∈ Xn,k}.

The sets Λk(A), where k ∈ {1, . . . , n}, are generally called higher rank numerical ranges
of A. Apparently, for k=1, Λk(A) reduces to the classical numerical range of A; namely,

Λ1(A) =W (A) := {x∗Ax : x ∈ Cn, x∗x = 1},

which has been studied extensively for many decades; e.g., see [9] and [10, Chapter 1].
Stampfli and Williams in [14, Theorem 4], and later Bonsall and Duncan in [2, Lemma
6.22.1], observed that the numerical range of A ∈Mn can be rewritten as:

W (A) = {µ ∈ C : ∥A− λIn∥2 ⩾ |µ− λ|, ∀λ ∈ C},

where ∥.∥2 denotes the spectral matrix norm (i.e., the matrix norm subordinate to the
Euclidean vector norm). By this idea, Chorianopoulos, Karanasios and Psarrakos [5]
recently introduced a definition of the numerical range for rectangular complex matrices.
For any A,B ∈Mn×m with B ̸= 0, and any vector norm ∥.∥ on Mn×m, they defined the
numerical range of A with respect to B as the compact and convex set:

W∥.∥(A;B) = {µ ∈ C : ∥A− λB∥ ⩾ |µ− λ|, ∀λ ∈ C}. (1)

It is clear that W∥.∥2
(A; In) = W (A) = Λ1(A), where A ∈ Mn. Hence, W∥.∥(. ; .) is a

direct generalization of the classical numerical range. It is known that W∥.∥(A;B) ̸= ∅ if
and only if ∥B∥ ⩾ 1. So, to avoid trivial consideration, we assume that ∥B∥ ⩾ 1.
Suppose

P (λ) = Alλ
l +Al−1λ

l−1 + · · ·+A1λ+A0 (2)

is a rectangular matrix polynomial, where Ai ∈ Mn×m (i ∈ {0, 1, 2, . . . , l}), Al ̸= 0, and
λ is a complex variable. The study of matrix polynomials has a long history, especially
with regard to their applications on higher order linear systems of differential equations;
e.g., see [8, 12] and references therein. Let B ∈ Mn×m and ∥ · ∥ be a vector norm on
Mn×m such that ∥B∥ ⩾ 1. Moreover, let P (λ) be a rectangular matrix polynomial as
in (2). Using (1), Chorianopoulos and Psarrakos [6] recently introduced and studied the
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numerical range of P (λ) with respect to B as:

W∥·∥[P (λ);B] = {µ ∈ C : 0 ∈W∥·∥(P (µ);B)}. (3)

For the case n = m, B = In and ∥ · ∥ = ∥ · ∥2, we have the classical numerical range of
the square matrix polynomial P (λ); namely,

W∥·∥2
[P (λ); In] =W [P (λ)] := {µ ∈ C : x∗P (µ)x = 0, for some nonzero x ∈ Cn}.

Hence,W∥·∥[.; .] is a direct generalization of the classical numerical range of square matrix
polynomials, which plays an important role in the study of overdamped vibration systems
with a finite number of degrees of freedom, and it also is related to the stability theory;
e.g., see [13] and its references. Recently, Aretaki and Maroulas [1] introduced the notion
of higher rank numerical ranges of square complex matrix polynomials. Let P (λ), as in
(2), be a square matrix polynomial; i.e., n = m. For a positive integer k ⩽ n, they defined
the rank−k numerical range of P (λ) as:

Λk[P (λ)] = {µ ∈ C : X∗P (µ)X = 0k for some X ∈ Xn,k}, (4)

where 0k ∈Mk is the zero matrix. It is readily verified that

W∥·∥2
[P (λ); In] =W [P (λ)] = Λ1[P (λ)] ⊇ Λ2[P (λ)] ⊇ · · · ⊇ Λn[P (λ)].

So, the notion of the numerical range of rectangular matrix polynomials is a generaliza-
tion of the higher rank numerical ranges of square matrix polynomials.
In this paper, we are going to generalize the notion of higher rank numerical ranges
of square matrix polynomial to rectangular matrix polynomials. For this, in Section 2,
we introduce the notion of rank−k numerical range of a rectangular matrix polynomial,
and we investigate some properties of this notion. The emphasis is on the study of the
boundedness of this set. In Section 3, we state some additional properties of the higher
rank numerical ranges of rectangular matrix polynomials.

2. Main results

In [15], the authors introduced a formula analogous to (1) to propose a definition of the
higher rank numerical ranges of rectangular matrices. For any A, B ∈ Mn×m and any
vector norm ∥ · ∥ on M(n−k+1)×(m−k+1), where 1 ⩽ k ⩽ min{n,m} is a positive integer,
they defined the rank−k numerical range of A with respect to B as

Λk,∥·∥(A;B) = {µ ∈ C : ∥X∗(A− λB)Y ∥ ⩾ |µ− λ|, ∀ λ ∈ C, ∀ (X,Y ) ∈ X}, (5)

where 
X = {(X,Y :=

[
X 0

0 U

]
) : X ∈ Xn,n−k+1, U ∈ Um−n} if m ⩾ n,

X = {(X :=

[
Y 0

0 U

]
, Y ) : Y ∈ Xm,m−k+1, U ∈ Un−m} if n ⩾ m.

(6)
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The sets Λk,∥·∥(.; .), where k ∈ {1, 2, . . . ,min{m,n}}, are generally called the higher rank
numerical ranges of rectangular matrices.
At first, we state some results from [15] which are useful in our discussion. Recall that,
in a complex normed space (X, ∥.∥), for any ϵ ∈ [0, 1), two vectors ϕ and ψ are said to be
Birkhoff-James ϵ−orthogonal, denoted by ϕ⊥ϵ

BJψ, if ∥ϕ+λψ∥ ⩾
√
1− ϵ2∥ϕ∥ for all λ ∈ C.

For the case ϵ = 0, we write ϕ⊥BJψ instead ϕ⊥0
BJψ. Also, let 1 ⩽ k2 ⩽ k1 ⩽ min{n,m}

be two positive integers. Moreover, let ∥ · ∥ be a vector norm on M(n−k2+1)×(m−k2+1).
Define ||| · ||| on M(n−k1+1)×(m−k1+1) by

|||Z||| = ∥
(
Z 0
0 0k1−k2

)
∥, (7)

where Z ∈M(n−k1+1)×(m−k1+1), and 0k1−k2
∈Mk1−k2

is the zero matrix.

Theorem 2.1 Let A, B ∈ Mn×m and 1 ⩽ k ⩽ min{n,m} be a positive integer. More-
over, let ∥ · ∥ be a vector norm on M(n−k+1)×(m−k+1) and X be the set as in (6). Then
the following assertions are true:
(i) Λk,∥·∥(A;B) =

∩
(X,Y )∈X W∥·∥(X

∗AY ;X∗BY ). Consequently, Λk,∥·∥(A;B) is a com-

pact and convex set in C. For the case k = 1, if the vector norm ∥·∥ is unitarily invariant,
then

Λ1(A;B) =W∥·∥(A;B);

(ii) For the case n = m, Λk,∥·∥(A;B) =
∩

X∈Xn,n−k+1
W∥·∥(X

∗AX;X∗BX). Consequently,
if B = In, then

Λk,∥·∥2
(A; In) = Λk(A);

(iii) Λk,∥·∥(UAV ;UBV ) = Λk,∥·∥(A;B), where for the case m ⩾ n, U ∈ Un and V =(
U∗ 0
0 ∗

)
∈ Um, and for the other case, i.e., n ⩾ m, V ∈ Um and U =

(
V ∗ 0
0 ∗

)
∈ Un;

(iv) Let 1 ⩽ k2 ⩽ k1 ⩽ min{n,m} be two positive integers, ∥ · ∥ be a unitarily invariant
norm on M(n−k2+1)×(m−k2+1) and ||| · ||| be the vector norm on M(n−k1+1)×(m−k1+1) as
in (7). Then

Λk1,|||·|||(A;B) ⊆ Λk2,∥·∥(A;B);

(v) If ∥X∗BY ∥ > 1 for all (X,Y ) ∈ X , then

Λk,∥·∥(A;B) ⊇
∩

(X,Y )∈X

{µ ∈ C : X∗BY⊥BJX
∗(A− µB)Y },

and the equality holds if ∥X∗BY ∥ = 1 for all (X,Y ) ∈ X ;
(vi) For any nonzero b ∈ C,

if |b| = 1, then Λk,∥·∥(A; bB) = b−1Λk,∥·∥(A;B);
if |b| < 1, then Λk,∥·∥(A; bB) ⊆ b−1Λk,∥·∥(A;B);
if |b| > 1, then Λk,∥·∥(A; bB) ⊇ b−1Λk,∥·∥(A;B);

(vii) Λk,∥·∥(aA+ bB;B) = aΛk,∥·∥(A;B) + b, where a, b ∈ C.
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Now we are ready, by using a formula analogous to (3), to propose a definition of the
higher rank numerical ranges of rectangular matrix polynomials.

Definition 2.2 Let B ∈ Mn×m, P (λ) be a rectangular matrix polynomial as in (2)
and 1 ⩽ k ⩽ min{n,m} be a positive integer. Moreover, let ∥ · ∥ be a vector norm on
M(n−k+1)×(m−k+1). The rank−k numerical range of P (λ) with respect to B is defined
and denoted by

Λk,∥·∥[P (λ);B] = {µ ∈ C : 0 ∈ Λk,∥·∥(P (µ);B)}.

The sets Λk,∥·∥[P (λ);B], where k ∈ {1, 2, . . . ,min{n,m}}, are generally called the higher
rank numerical ranges of P (λ) with respect to B.

Theorem 2.3 Let B ∈ Mn×m, P (λ) be a rectangular matrix polynomial as in (2)
and 1 ⩽ k ⩽ min{n,m} be a positive integer. Moreover, let ∥ · ∥ be a vector norm on
M(n−k+1)×(m−k+1). Then

Λk,∥·∥[P (λ);B] =
∩

(X,Y )∈X

W∥·∥[X
∗P (λ)Y ;X∗BY ],

where X is the set as in (6) and X∗P (λ)Y = (X∗AlY )λl + · · ·+ (X∗A1Y )λ+ (X∗A0Y ).
Consequently, if k = 1 and the vector norm ∥ · ∥ is unitarily invariant, then

Λ1,∥·∥[P (λ);B] =W∥·∥[P (λ);B].

Proof. Using Definition 2.2 and Theorem 2.1(i), the first equality is easy to verify. If
k = 1 and the vector norm ∥ · ∥ is unitarily invariant on Mn×m, then by Theorem 2.1(i),
the second equality can be also easily verify by the first result. So, the proof is complete.
■

Theorem 2.4 Let B ∈Mn, P (λ), as in (2), be a square matrix polynomial (i.e., n=m),
and 1 ⩽ k ⩽ n be a positive integer. Moreover, let ∥ · ∥ be a vector norm on Mn−k+1.
Then

Λk,∥·∥[P (λ);B] =
∩

X∈Xn,n−k+1

W∥·∥[X
∗P (λ)X;X∗BX].

Consequently, for the case B = In,

Λk,∥·∥
2
[P (λ); In] = Λk[P (λ)].

Proof. The results follow directly from Definition 2.2, relation (4) and Theorem 2.1(ii).
■

Remark 1 Theorems 2.3 and 2.4 show that the notion of rank−k numerical range of
rectangular matrix polynomials can be considered as generalizations of the numerical
range of rectangular matrix polynomials and the rank−k numerical range of square matrix
polynomials.

Noe, we are going to state some basic properties of the higher rank numerical ranges
of rectangular matrix polynomials. For this, we need the following lemma.
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Lemma 2.5 [6, Proposition 10] Let B ∈ Mn×m and P (λ) be a rectangular matrix
polynomial as in (2). Moreover, let ∥ · ∥ be a vector norm on Mn×m and 0 ̸= α ∈ C. Then
the following assertions are true:
(i) W∥·∥[αP (λ);B] =W∥·∥[P (λ);B], W∥·∥[P (αλ);B] = α−1W∥·∥[P (λ);B] andW∥·∥[P (λ+
α);B] =W∥·∥[P (λ);B]− α;

(ii) If R(λ) = λlP (
1

λ
) := A0λ

l + A1λ
l−1 + · · · + Al−1λ + Al is the reversal matrix

polynomial of P (λ), then

W∥·∥[R(λ);B] \ {0} = {µ ∈ C :
1

µ
∈W∥·∥[P (λ);B], µ ̸= 0}.

Proposition 2.6 Let B ∈ Mn×m, P (λ) be a rectangular matrix polynomial as in (2),
and 1 ⩽ k ⩽ min{n,m} be a positive integer. Moreover, let ∥ · ∥ be a vector norm on
M(n−k+1)×(m−k+1). Then the following assertions are true:

(i) Λk,∥·∥[P (αλ);B] = α−1Λk,∥·∥[P (λ);B] and Λk,∥·∥[αP (λ);B] = Λk,∥·∥[P (λ);B], where
α ∈ C is nonzero;
(ii) Λk,∥·∥[P (λ+ α);B] = Λk,∥·∥[P (λ);B]− α, where α ∈ C.

(iii) If R(λ) = λlP (
1

λ
) := A0λ

l +A1λ
l−1 + · · ·+Al−1λ+Al, then

Λk,∥·∥[R(λ);B] \ {0} = { 1
µ
: µ ∈ Λk,∥·∥[P (λ);B], µ ̸= 0}.

Proof. Let X be the set as in (6) and (X,Y ) ∈ X be given. By setting

Q(λ) := X∗P (λ)Y = (X∗AlY )λl + · · ·+ (X∗A1Y )λ+ (X∗A0Y ),

and using Lemma 2.5, we have

W∥·∥[X
∗P (αλ)Y ;X∗BY ] =W∥·∥[Q(αλ);X∗BY ]

= α−1W∥·∥[Q(λ);X∗BY ]

= α−1W∥·∥[X
∗P (λ)Y ;X∗BY ],

W∥·∥[X
∗(αP (λ))Y ;X∗BY ] =W∥·∥[αQ(λ);X∗BY ]

=W∥·∥[Q(λ);X∗BY ]

=W∥·∥[X
∗P (λ)Y ;X∗BY ],

and

W∥·∥[X
∗P (λ+ α)Y ;X∗BY ] =W∥·∥[Q(λ+ α);X∗BY ]

=W∥·∥[Q(λ);X∗BY ]− α

=W∥·∥[X
∗P (λ)Y ;X∗BY ]− α.

Now, the results in (i) and (ii) follow from Theorem 2.3.
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By Theorem 2.3 and Lemma 2.5(ii), we have:

µ ̸= 0, µ ∈ Λk,∥·∥[R(λ);B] ⇐⇒ ∀(X,Y ) ∈ X , µ ∈W∥·∥[X
∗R(λ)Y ;X∗BY ], µ ̸= 0

⇐⇒ ∀(X,Y ) ∈ X , 1

µ
∈W∥·∥[X

∗P (λ)Y ;X∗BY ], µ ̸= 0

⇐⇒ 1

µ
∈ Λk,∥·∥[P (λ);B], µ ̸= 0.

So, the set equality in (ii) also holds. ■

In the following proposition, we investigate the closeness of the rank−k numerical
range of rectangular matrix polynomials.

Proposition 2.7 Let B ∈ Mn×m, P (λ) be a rectangular matrix polynomial as in (2)
and 1 ⩽ k ⩽ min{n,m} be a positive integer. Moreover, let ∥ · ∥ be a vector norm on
M(n−k+1)×(m−k+1). Then Λk,∥·∥[P (λ);B] is a closed set in C.

Proof. In view of Theorem 2.3, it is enough to show that for every (X,Y ) ∈ X ,
where X is the set as in (6), W∥·∥[X

∗P (λ)Y ;X∗BY ] is closed. Let (X,Y ) ∈ X and
{µt}∞t=1 ⊆ W∥·∥[X

∗P (λ)Y ;X∗BY ] with limt→∞ µt = µ be given. We will show that
µ ∈W∥·∥[X

∗P (λ)Y ;X∗BY ]. For this, let λ ∈ C be arbitrary. By (3) and (1), we have

∥X∗P (µt)Y − λX∗BY ∥ ⩾ |λ|

for all t ∈ N. Since ∥ · ∥ and P (·) are continuous functions, the above inequality shows
that

∥X∗P (µ)Y − λX∗BY ∥ ⩾ |λ|.

So, by (3) and (1), µ ∈W∥·∥[X
∗P (λ)Y ;X∗BY ], and hence, the result holds. ■

The following example shows that the rank−k numerical range of rectangular matrix
polynomials need not be a bounded set, and so a compact set in C.

Example 2.8 Let P (λ) = λA − I2, where A =

(
−1 0
0 1

)
∈ M2. By Theorem 2.4, we

have:

Λ1,∥·∥2
[P (λ); I

2
] =W [P (λ)]

= {µ ∈ C : (x∗Ax)µ = 1, for some x ∈ C2and x∗x = 1}

= {µ ∈ C : tµ = 1 for some t ∈ [−1, 1]}

= {1
t
: t ∈ [−1, 1], t ̸= 0}

= (−∞,−1] ∪ [1,+∞).

So, Λ1,∥·∥2
[P (λ); I

2
] is an unbounded and disconnected set in C.

At the end of this section, we investigate the boundedness of Λk,∥·∥[P (λ);B]. For this,
we need the following Lemma.
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Lemma 2.9 [6, Theorem 12] Let B ∈Mn×m, P (λ) be a rectangular matrix polynomial
as in (2), and ∥ · ∥ be a vector norm on Mn×m. Then the following assertions are true:
(i) If 0 /∈W∥·∥(Al;B), then W∥·∥[P (λ);B] is bounded.
(ii) Suppose 0 ∈W∥·∥(Al;B) and 0 is not an isolated point of W∥·∥[R(λ);B], where

R(λ) = λlP (
1

λ
) := A0λ

l +A1λ
l−1 + · · ·+Al−1λ+Al.

Then W∥·∥[P (λ);B] is unbounded.

Theorem 2.10 Let B ∈ Mn×m, P (λ) be a rectangular matrix polynomial as in (2)
and 1 ⩽ k ⩽ min{n,m} be a positive integer. Moreover, let ∥ · ∥ be a vector norm on
M(n−k+1)×(m−k+1). Then the following assertions are true:
(i) If 0 ̸∈ Λk,∥·∥(Al;B), then Λk,∥·∥[P (λ);B] is bounded.
(ii) Suppose 0 ∈ Λk,∥·∥(Al;B) and 0 is not an isolated point of Λk,∥·∥[R(λ);B], where

R(λ) = λlP (
1

λ
) := A0λ

l +A1λ
l−1 + · · ·+Al−1λ+Al.

Then Λk,∥·∥[P (λ);B] is unbounded.

Proof. (i); Since 0 ̸∈ Λk,∥·∥(Al;B), by Theorem 2.1(i), there exists a (X,Y ) ∈ X such
that

0 /∈W∥·∥(X
∗AlY ;X∗BY ),

where X is the set as in (6). Using Lemma 2.9(i), W∥·∥[X
∗P (λ)Y ;X∗BY ] is a bounded

set in C, and hence, by Theorem 2.3, Λk,∥·∥[P (λ);B] is also bounded.
To prove (ii), since 0 ∈ Λk,∥·∥(Al;B), by Definition 2.2, it follows that 0 ∈ Λk,∥·∥[R(λ);B].
Moreover, since 0 is not an isolated point of the set Λk,∥·∥[R(λ);B], there is a sequence
{µt}t∈N ⊆ Λk,∥·∥[R(λ);B] \ {0} such that limt→∞ µt = 0. So, by Proposition 2.6(iii), we
have

{µ−1
t }t∈N ⊆ Λk,∥·∥[P (λ);B],

and hence, the result in (ii) follows from this fact that the range of the sequence {µ−1
k }k∈N

is unbounded. ■

3. Additional results

In this section, we investigate some algebraic properties of the higher rank numerical
range of rectangular matrix polynomials.

Proposition 3.1 Let B ∈Mn×m and P (λ) = q(λ)B, where q(λ) is a scalar polynomial.
Moreover, let 1 ⩽ k ⩽ min{n,m} be a positive integer and ∥ · ∥ be a vector norm on
M(n−k+1)×(m−k+1). Then

Λk,∥·∥[P (λ);B] = {µ ∈ C : q(µ) = 0}.
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Proof. Using Definition 2.2 and Theorem 2.1(vii), we have:

µ ∈ Λk,∥·∥[P (λ);B] ⇐⇒ 0 ∈ Λk,∥·∥(P (µ);B) = Λk,∥·∥(q(µ)B;B) = {q(µ)}

⇐⇒ q(µ) = 0.

So, the result holds. ■

In the following theorem, we show that the rank−k numerical range of rectangular
matrix polynomials is invariant under some unitary matrices.

Theorem 3.2 Let B ∈ Mn×m, P (λ) be a rectangular matrix polynomial as in (2),
and 1 ⩽ k ⩽ min{n,m} be a positive integer. Moreover, let ∥ · ∥ be a vector norm on
M(n−k+1)×(m−k+1). Then

Λk,∥·∥[UP (λ)V ;UBV ] = Λk,∥·∥[P (λ);B],

where for the case m ⩾ n, U ∈ Un and V =

(
U∗ 0
0 ∗

)
∈ Um, and for the other case, i.e.,

n ⩾ m, V ∈ Um and U =

(
V ∗ 0
0 ∗

)
∈ Un. Also, UP (λ)V = (UAlV )λl + · · ·+ (UA1V )λ+

(UA0V ).

Proof. Using Definition 2.2 and Theorem 2.1(iii), the result is easy to verify. ■

In the following theorem, we state the relationship between higher rank numerical
ranges of rectangular matrix polynomials.

Theorem 3.3 Let B ∈ Mn×m, P (λ) be a rectangular matrix polynomial as in (2) and
1 ⩽ k2 ⩽ k1 ⩽ min{n,m} be two positive integers. Moreover, let ∥·∥ be a unitarily invari-
ant norm on M(n−k2+1)×(m−k2+1) and ||| · ||| be the vector norm on M(n−k1+1)×(m−k1+1)

as in (7). Then

Λk1,|||·|||[P (λ);B] ⊆ Λk2,∥·∥[P (λ);B].

Proof. Let µ ∈ Λk1,|||·|||[P (λ);B] be given. So, by Definition 2.2, 0 ∈ Λk1,|||·|||(P (µ);B),
and hence, by Theorem 2.1(iv), 0 ∈ Λk2,|||·|||(P (µ);B). So, µ ∈ Λk2,|||·|||[P (λ);B]. Hence,
the proof is complete. ■

Using Definition 2.2 and Theorem 2.1(v), we have the following proposition.

Proposition 3.4 Let B ∈ Mn×m, P (λ) be a rectangular matrix polynomial as in (2)
and 1 ⩽ k ⩽ min{n,m} be a positive integer. Moreover, let ∥ · ∥ be a vector norm on
M(n−k+1)×(m−k+1) and X be the set as in (6). Then the following assertions are true:
(i) If ∥X∗BY ∥ = 1 for all (X,Y ) ∈ X , then

Λk,∥·∥[P (λ);B] =
∩

(X,Y )∈X

{µ ∈ C : X∗BY⊥BJX
∗P (µ)Y };

(ii) If ∥X∗BY ∥ > 1 for all (X,Y ) ∈ X , then

Λk,∥·∥[P (λ);B] ⊇
∩

(X,Y )∈X

{µ ∈ C : X∗BY⊥BJX
∗P (µ)Y }.
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The following proposition follows from Definition 2.2 and Theorem 2.1(vi).

Proposition 3.5 Let B ∈Mn×m, 0 ̸= b ∈ C, P (λ) be a rectangular matrix polynomial
as in (2) and 1 ⩽ k ⩽ min{n,m} be a positive integer. Moreover, let ∥ · ∥ be a vector
norm on M(n−k+1)×(m−k+1). Then the following assertions are true:
(i) If |b| = 1, then Λk,∥·∥[P (λ); bB] = Λk,∥·∥[P (λ);B];
(ii) If |b| < 1, then Λk,∥·∥[P (λ); bB] ⊆ Λk,∥·∥[P (λ);B];
(iii) If |b| > 1, then Λk,∥·∥[P (λ); bB] ⊇ Λk,∥·∥[P (λ);B].

Corollary 3.6 Let B ∈ Mn×m, P (λ) be a rectangular matrix polynomial as in (2)
and 1 ⩽ k ⩽ min{n,m} be a positive integer. Moreover, let ∥ · ∥ be a vector norm on
M(n−k+1)×(m−k+1). If ∥B∥ > 1, then

Λk,∥·∥[P (λ); ∥B∥−1B] ⊆ Λk,∥·∥[P (λ);B].

Remark 2 Let A,B ∈ Mn×m and P (λ) = λB − A. Using Definition 2.2 and Theorem
2.1(vii), we have

Λk,∥·∥[P (λ);B] = Λk,∥·∥(A;B).

Now, if ∥ ·∥ is unitarily invariant, then by Theorem 2.3, we have Λ1,∥·∥[P (λ);B] =
W∥·∥(A;B), and so, one can find some numerical examples from [5] or [6] to see the
shape of Λ1,∥·∥[P (λ);B]. But in general, it is interesting if we have a MATLAB program to
plotting the shape of Λk,∥·∥[P (λ);B] for any k and for any rectangular matrix polynomial.

Let A,B ∈ Mn×m, 1 ⩽ k ⩽ min{n,m} be a positive integer, and X be the set as
in (6). Moreover, let ∥ · ∥ be a vector norm on M(n−k+1)×(m−k+1) and 0 ⩽ ϵ < 1. The
Birkhoff-James ϵ−orthogonality set of A with respect to B is defined and denoted, [6,
Definition 1], by

W ϵ
∥·∥(A;B) = {µ ∈ C : ∥A− λB∥ ⩾

√
1− ϵ2∥B∥|µ− λ|, ∀λ ∈ C}.

Also, the rank−k, ϵ numerical range of A with respect to B is defined and denoted, e.g.,
see [15, Definition 2.13], by

Λϵ
k,∥·∥(A;B) = {µ ∈ C :∥X∗(A− λB)Y ∥ ⩾

√
1− ϵ2∥X∗BY ∥|µ− λ|, ∀λ ∈ C,

∀(X,Y ) ∈ X},

and by [15, Theorem 2.14 and Proposition 2.15], we have

Λϵ
k,∥·∥(A;B) =

∩
(X,Y )∈X

W ϵ
∥·∥(X

∗AY ;X∗BY ), (8)

Λϵ
k,∥·∥(A;B) =

∩
(X,Y )∈X

{µ ∈ C : X∗BY ⊥ϵ
BJ X

∗(A− µB)Y }. (9)

Moreover, let P (λ) be a rectangular matrix polynomial as in (2). The Birkhoff-James
ϵ−orthogonality set of P (λ) with respect to B is defined and denoted, e.g., see [6, Relation
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(11)], by

W ϵ
∥·∥[P (λ);B] = {µ ∈ C : 0 ∈W ϵ

∥·∥(P (µ);B)}. (10)

By this idea, at the end of this section, we introduce and study the notion of rank−k, ϵ
numerical range of rectangular matrix polynomials.

Definition 3.7 Let B ∈ Mn×m, P (λ) be a rectangular matrix polynomial as in (2),
1 ⩽ k ⩽ min{n,m} be a positive integer, and X be the set as in (6). Moreover, let ∥ · ∥
be a vector norm on M(n−k+1)×(m−k+1) and 0 ⩽ ϵ < 1. The rank−k, ϵ numerical range
of P (λ) with respect to B is defined and denoted by

Λϵ
k,∥·∥[P (λ);B] = {µ ∈ C : 0 ∈ Λϵ

k,∥·∥(P (µ);B)}.

It is clear that:

Λϵ
k,∥·∥[P (λ);B] = {µ ∈ C :∥X∗(P (µ)− λB)Y ∥ ⩾

√
1− ϵ2∥X∗BY ∥|λ|, ∀λ ∈ C,

∀(X,Y ) ∈ X}.

Using Definition 3.7, Relations (8), (9), (10), and Theorem 2.3, we have the following
theorem.

Theorem 3.8 Let B ∈ Mn×m, P (λ) be a rectangular matrix polynomial as in (2),
1 ⩽ k ⩽ min{n,m} be a positive integer and X be the set as in (6). Moreover, let ∥ · ∥
be a vector norm on M(n−k+1)×(m−k+1) and 0 ⩽ ϵ < 1. Then

Λϵ
k,∥·∥[P (λ);B] =

∩
(X,Y )∈X

W ϵ
∥·∥[X

∗P (λ)Y ;X∗BY ]

=
∩

(X,Y )∈X

{µ ∈ C : X∗BY ⊥ϵ
BJ X

∗P (µ)Y }.
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