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On the nonnegative inverse eigenvalue problem
of traditional matrices
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Abstract. In this paper, at first for a given set of real or complex numbers o with nonnegative
summation, we introduce some special conditions that with them there is no nonnegative
tridiagonal matrix in which o is its spectrum. In continue we present some conditions for
existence such nonnegative tridiagonal matrices.
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1. Introduction

The nonnegative inverse eigenvalue problem (NIEP) asks for necessary and sufficient
conditions on a list ¢ = (A1, A2,...,A,) of complex numbers in order that it be the
spectrum of a nonnegative matrix. In terms of n the NIEP solve only for n < 5 [1,2,3,4,5].

The problem of constructing a symmetrical tridiagonal matrix from certain spectral
information is important in many applications, such as vibration theory, structural de-
sign, control theory, and it has attracted the attention of many authors [7,8,9]. In this
paper we discuss about inverse eigenvalue problem for nonnegative tridiagonal matrices.

The spectral radius of nonnegative matrix A denoted by p(A). There is a right and
a left eigenvector associated with the Perron eigenvalue with nonnegative entries. In
addition s; the k-th power sum of the eigenvalues \; and in the list o, A1 is the Perron
element.
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Some necessary conditions on the list of complex number o = (A1, Ag,...,\,) to be
the spectrum of a nonnegative matrix are listed below.
(1) The Perron eigenvalue max{|\;|; \; € o} belongs to o (Perron-Frobenius theorem).
(2) sx = Y0, A > 0.
(3) s < n™ sy, for k,m =1,2,... (JLL inequality)[2,6].

We recall below Theorem 2.1 of [5] that is similar to Lemma 5 of [3] and by using
this Theorem, we construct a n x n nonnegative tridiagonal matrix for a given set which
satisfies in the special conditions in a recursive method for n < 5.

Theorem 1.1 Let B be a m x m nonnegative matrix, My = {u1, 2, ..., m} be its
eigenvalues and p; be Perron eigenvalue of B. Also assume that A is a n x n nonnegative

matrix in following form A = (1;171 ; > , where A; is a (n — 1) X (n — 1) matrix, a
1
and b are arbitrary vectors in R*! and My = {A1, A2,..., A} is the set of eigenvalues

of A. Then there exist a (m + n — 1) x (m + n — 1) nonnegative matrix such that
M = {pa, ..., tm, A1, A2, ..., Ay } 1 its eigenvalues.

In section 2 of this paper we show that for a given set of real or complex numbers with
nonnegative summation that satisfies in following conditions:

a1 = Z )\i>\j < 0, (1.1)

Qg = Z )\z)\])\k > 0, (12)

1<i<j<k<n

there is no nonnegative tridiagonal matrix that ¢ is spectrum.

In section 3 for n < 5 and for set of real numbers ¢ we introduce some necessary
conditions for existence nonnegative tridiagonal matrix that realizes . We also present
some cases that there is no solution of problem.

2. Absence solution

Theorem 2.1 Let 0 = {A\1,A\2,..., Ay} be a set of complex numbers that satisfies in
(1.1) and (1.2) and following conditions

(1) )\1 >0
(2) 37 X =0 (2.1)
)M > AL,i=2 ..., 1

Then there is no any nonnegative tridiagonal matrix with spectrum o.

Proof. If \; for i = 1,2,...,n are the eigenvalues of n x n matrix, then the its
characteristic polynomials is as follows

P()\)Z)\”—(Xn:)\i))\”’le( STOANNTE= () AT+ (22)
=1

1<i<j<n 1<i<j<k<n
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We continue proof by reductio ad absurdum. Assume that there exist the n X n nonneg-
ative tridiagonal matrix A = (aij)nxn as

a11 a12
a21 a22 a3

an—1,n

nn—1 Qnn

such that \; for i = 1,2,...,n are its spectrum. Therefore the characteristics polynomial
of A is

Pa(A) = A" = (i aa) A"+ (X1<icjcn iljj — Z?:_f i i p1@ig1,) A"
=1 _
~(X i cicichan Qii@jjQkk — Dy D5 Qi j+1a5415) A" 4 (2:3)
i#j

By relations (1.1) and (1.2) we have

n—1
Zai,i—lai+1,i> Z Qi@ (2.4)
i=1

1<i<j<n

n n—1
> WiijjQkk > Y Y Qi 410541 - (2.5)
1<i<j<k<n =1 j=1
i#j
With lose of generality we assume that
((a33 = min {au, a33} forn =3
44 — min {GQQ, CL44} ,a33 = min {CLH, CL33} forn =4

ass = min {ass, ass},asq = min {age, a4}, aszs = min {a11, a3} forn =5

Ann = min {an—Q,n—27 an,n} yAn—1n—1 =
min {an-3,-3,an-1,n-1},---,a33 = min{a11,as3} .

If we replace the relation (2.6) to the right hand side of (2.5) we can reach to the relation
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that includes the right hand side of relation (2.4). i.e.

Sl icjehan Qi Gk > Yoiy S0 Qi 4105115 =
i#£]
(11023032 + 411034043 + ... + A11Ap—1 nAnn—1+
(22034043 + 22045054 + . .. + 42201 pAnpn—1+
(33012021 + (33045054 + ... + G33An—1 nAn -1+ ... + Ap—1n—1a12021+
Gn—17n—1023032 + ... + Qp—1n—10n—3n—20n—2n—3 + An nA12021 + An nA23a32+
vt -3 0n—20n—2n-3 t Gnndp—2n—10n—1n—2 >
az3 (X0 i 10i1) + aaa (0 aii1aig )+
%5(2?:_11 Qii—1iy1i) + ...+ an,n(z?:_ll Qi i—1Git15) >
a33(21§i<j<n aiiajj) + a44(21<i<j<n aiiajj) + a55(21gi<]‘<n aiiajj) + ...+ ann
(Z1<z‘<]<n iiaj;)

After simplifying of the above relations we reach to the following relation

a3s(a11 + ag + aga + ...+ ann) + a3y (ann+

a2 + assz +ass + ...+ amn) + ...+ afm(au + a22 + assz+

ceiF Ap_2n-2F An_1n-1) + azzasa(ain + a2 + ass+

age + ... + ann) + asgass(air + ag + ass + aes + arr + ...+ anp) + azzann(ann+

a2 + agq + ...+ ap_1n—1) + asaass(ai1 + a2 + ase + a77 + ... + anp) + asaae6(a11+
ag + ass +arr+ ...+ ann) + ...+ agaan p(ann + a+

ass + aee + ... + an—1,n—1) + assa66(ar1+

azy + arr +agg + ... + anp) + assarr(air + ag2 + age + ass + agg + ... + angp)+

oo Fassapp(ain +ax+ass +arr+ ...+ an—10-1) + ...+ an—1n—1ann(a1 + az) <O0.

And this means the summation of sum of nonnegative numbers is strictly negative and
this is impossible.[]

Corollary 2.2 Let 0 = {\1, Aa,..., A\, } is a set of real numbers that holds in (2.1) and
for i = 2,3,...,n we have \; < 0, then there is no nonnegative tridiagonal matrix that
o is its spectrum.

Proof. If \; < 0 for i = 2,3,...,n, it is obvious the relations (1.1) and (1.2) are hold,
and therefore by Theorem 2.1 proof is complete. [J

3. Existence and construction

In this section we study existence (with construction) or absence of nonnegative tridiag-
onal matrix of order maximum 5, for a given set of real numbers o with |o| = n < 5 that
o is its spectrum.

e The case n =2

Theorem 3.1 Let 0 = {\1, A2} be a set of real numbers such that satisfies relation
(2.1) then o is the set of eigenvalues of a nonnegative tridiagonal matrix.

Proof. ¢ has only one of following cases:
(a) If A2 > 0, then A = diag(A1, \2) is a solution of problem.
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(b) If A2 < 0, then the matrix

RS
A= (05, o

solves the problem.[]

The case n =3

Theorem 3.2 Let 0 = {A1, A2, A3} be a set of real numbers that satisfies relation
(2.1). Then we have the following cases:

(a) If Ag, A3 > 0, then o is the set of eigenvalues of a nonnegative tridiagonal matrix.
(b) If A2, A3 < 0, then there is no nonnegative tridiagonal matrix with spectrum o.
(c) If A2 < 0 and A3 > 0, then o is the set of eigenvalues of a nonnegative tridiagonal
matrix.

Proof.
(a) B = diag(A1, A2, A3) is a solution of our problem.
(b) Corollary 2.2
(¢) The nonnegative tridiagonal matrix

B:<(é)(\)3>’ (3.2)

is a solution of our problem where A is matrix (3.1) and o is zero vector with
dimension 2 x 1. 0J

The case n =4

Theorem 3.3 Let 0 = {\1, A2, A3, \s} be a set of real numbers that satisfies relation
(2.1). Then we have the following cases:

(a) If Ao, A3, A4 = 0, then o is the set of eigenvalues of a nonnegative tridiagonal
matrix.

(b) If A2, A3, Ag < 0, then there is no nonnegative tridiagonal matrix with spectrum o.
(¢) If A2 < 0 and A3, Ay > 0, then o is the set of eigenvalues of a nonnegative
tridiagonal matrix.

(d) If A2, A3 < 0, Ay > 0 and at least for one of the eigenvalues A2 and A3, for example
A3, we have A3 + A4 > 0 then o is the set of eigenvalues of a nonnegative tridiagonal
matrix.

(e) If A2, A3 <0, Ay > 0 and we have A\g + Ay < 0, A3 + A4 < 0 and relation (1.2) then
there is no nonnegative tridiagonal matrix with spectrum o.

Proof.
(a) C = diag(A1, A2, A3, A1) is a solution of our problem.
(b) Corollary 2.2
(¢) The nonnegative tridiagonal matrix

c:(ﬁf), (3.3)
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is a solution of our problem where B is matrix (3.2) and o is zero vector with dimension
of 3 x 1.
(d) The nonnegative tridiagonal matrix

0 —XX O 0
1A +X0 0
0 0 0 —A3\g
0 0 1 A3+ M\

C =

is a solution of our problem.

(6) If Mo+ X4 <0, A3+ Ay < 0 and Ay, A3 < 0, Ay > 0 then X, A3 < 0 and
a1 = AMAF A A3 F A A A A3+ Ao g+ A3 s = A (As+ A1) FA2( A3+ )+ A1 Aa+A3A4 < 0
and if we have relation (1.2) then by Theorem 2.1 proof is complete. O

e The case n =5

Theorem 3.4 Let 0 = {A1, A2, 3,1, A5} be a set of real numbers that satisfies
relation (2.1). Then we have the following cases:

(a) If A2, A3, A\q, A5 = 0, then o is the set of eigenvalues of a nonnegative tridiagonal
matrix.

(b) If A2, A3, A4, A5 < 0, then there is no nonnegative tridiagonal matrix with spectrum
.

(¢) If Ada < 0 and A3, Ag, A5 = 0, then o is the set of eigenvalues of a nonnegative
tridiagonal matrix.

(d) If Mg, A3 < 0 and Mg, A5 > 0 and at least for one of the eigenvalues Ag and Ag, for
example A3, we have A3 + Aqy = 0 or A3 + A5 > 0 then o is the set of eigenvalues of a
nonnegative tridiagonal matrix.

(e) If Ao, A3 < 0, A\g, A5 = 0 and we have Ao + Ay < 0, A3+ Ay < 0 and Ay + A5 <0,
A3 + A; < 0 and relation (1.2) then there is no nonnegative tridiagonal matrix with
spectrum o.

(f) If Ag, A3, A4 < 0, A5 > 0 and we have Ay + A5 < 0, A3 + A5 < 0, Ay + A5 < 0 then
there is no nonnegative tridiagonal matrix with spectrum o.

Proof.
(a) D = diag(A1, A2, A3, Ag, A5) is a solution of our problem.
(b) Corollary 2.2
(¢) The nonnegative tridiagonal matrix

D= (OCT ;{)) (3.5)

is a solution of our problem where C is matrix (3.3) and o is zero vector with dimension
of 4 x 1.
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(d) The nonnegative tridiagonal matrix

0 —AX O 0
1A +X0 0
D=0 0 0 —X3)\
0 0 1A3+4+M
0 0 0 0 X

o O O O
—~

w

(=]

~

is a solution of our problem.

(e) If Ag+As <0, A3+ As < O0and A+ A5 <0, A3+ A5 < 0 then ag = A Ao+ A A3+
AL+ A A5 + AaAs + Ao s + Ao ds + Asha + A3 s + Aads = A (A3 + Aa) + Aa(As+ Aa) +
AM(A2 + As5) + As(A2 + A1) + A3(As + As5) < 0 and if we have relation (1.2) then by
theorem 2.1 proof is complete.

(f) The relations (1.1) and (1.2) are hold because

a1 = 21<i<j<5 )\i)\j = )\1()\2—1-)\5)4—/\3(/\1+)\4)+)\4()\1+)\2)+)\5()\2+)\4)+)\3()\2+/\5) <
0

and

a2 = Y 1cicichgs MiAA = AMA2(A3+A5) + A A1 (A2 +A5) + M A3(Ad+A5) + Ao A3 (Aa +
/\5) -+ )\4)\5()\2 + )\3) >0

Therefore by Theorem 2.1 proof is complete. [J

4. The conjecture

In this section we introduce a conjecture that is proved above with some conditions:
If relation (1.2) is not hold, again there is no any nonnegative tridiagonal matrix for
(e) of The case n = 4 and The case n = 5.
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