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Abstract. In this paper, at first for a given set of real or complex numbers σ with nonnegative
summation, we introduce some special conditions that with them there is no nonnegative
tridiagonal matrix in which σ is its spectrum. In continue we present some conditions for
existence such nonnegative tridiagonal matrices.
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1. Introduction

The nonnegative inverse eigenvalue problem (NIEP) asks for necessary and sufficient
conditions on a list σ = (λ1, λ2, . . . , λn) of complex numbers in order that it be the
spectrum of a nonnegative matrix. In terms of n the NIEP solve only for n ⩽ 5 [1,2,3,4,5].

The problem of constructing a symmetrical tridiagonal matrix from certain spectral
information is important in many applications, such as vibration theory, structural de-
sign, control theory, and it has attracted the attention of many authors [7,8,9]. In this
paper we discuss about inverse eigenvalue problem for nonnegative tridiagonal matrices.

The spectral radius of nonnegative matrix A denoted by ρ(A). There is a right and
a left eigenvector associated with the Perron eigenvalue with nonnegative entries. In
addition sk the k-th power sum of the eigenvalues λi and in the list σ, λ1 is the Perron
element.
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Some necessary conditions on the list of complex number σ = (λ1, λ2, . . . , λn) to be
the spectrum of a nonnegative matrix are listed below.
(1) The Perron eigenvalue max{|λi|;λi ∈ σ} belongs to σ (Perron-Frobenius theorem).
(2) sk =

∑n
i=1 λ

k
i ≥ 0.

(3) smk ≤ nm−1skm for k,m = 1, 2, . . . (JLL inequality)[2,6].
We recall below Theorem 2.1 of [5] that is similar to Lemma 5 of [3] and by using

this Theorem, we construct a n×n nonnegative tridiagonal matrix for a given set which
satisfies in the special conditions in a recursive method for n ⩽ 5.

Theorem 1.1 Let B be a m × m nonnegative matrix, M1 = {µ1, µ2, . . . , µm} be its
eigenvalues and µ1 be Perron eigenvalue of B. Also assume that A is a n×n nonnegative

matrix in following form A =

(
A1 a
bT µ1

)
, where A1 is a (n − 1) × (n − 1) matrix, a

and b are arbitrary vectors in Rn−1 and M2 = {λ1, λ2, . . . , λm} is the set of eigenvalues
of A. Then there exist a (m + n − 1) × (m + n − 1) nonnegative matrix such that
M = {µ2, . . . , µm, λ1, λ2, . . . , λm} is its eigenvalues.

In section 2 of this paper we show that for a given set of real or complex numbers with
nonnegative summation that satisfies in following conditions:

α1 =
∑

1⩽i<j⩽n

λiλj < 0, (1.1)

α2 =
∑

1⩽i<j<k⩽n

λiλjλk > 0, (1.2)

there is no nonnegative tridiagonal matrix that σ is spectrum.
In section 3 for n ⩽ 5 and for set of real numbers σ we introduce some necessary

conditions for existence nonnegative tridiagonal matrix that realizes σ. We also present
some cases that there is no solution of problem.

2. Absence solution

Theorem 2.1 Let σ = {λ1, λ2, . . . , λn} be a set of complex numbers that satisfies in
(1.1) and (1.2) and following conditions

(1) λ1 > 0
(2)

∑n
i=1 λi ⩾ 0

(3) λ1 > |λi| , i = 2, . . . , n.
(2.1)

Then there is no any nonnegative tridiagonal matrix with spectrum σ.

Proof. If λi for i = 1, 2, . . . , n are the eigenvalues of n × n matrix, then the its
characteristic polynomials is as follows

p(λ) = λn − (

n∑
i=1

λi)λ
n−1 + (

∑
1⩽i<j⩽n

λiλj)λ
n−2 − (

∑
1⩽i<j<k⩽n

λiλjλk)λ
n−3 + . . . . (2.2)
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We continue proof by reductio ad absurdum. Assume that there exist the n× n nonneg-
ative tridiagonal matrix A = (aij)n×n as

a11 a12
a21 a22 a23

. . .
. . .

. . .
. . .

. . . an−1,n

an,n−1 an,n


such that λi for i = 1, 2, . . . , n are its spectrum. Therefore the characteristics polynomial
of A is

PA(λ) = λn − (
∑n

i=1 aii)λ
n−1 + (

∑
1⩽i<j⩽n aiiajj −

∑n−1
i=1 ai,i+1ai+1,i)λ

n−2

−(
∑

1⩽i<j<k⩽n aiiajjakk −
∑n

i=1

∑n−1
j=1

i̸=j

aiiaj,j+1aj+1,j)λ
n−3 + . . . . (2.3)

By relations (1.1) and (1.2) we have

n−1∑
i=1

ai,i−1ai+1,i >
∑

1⩽i<j⩽n

aiiajj , (2.4)

∑
1⩽i<j<k⩽n

aiiajjakk >

n∑
i=1

n−1∑
j=1

i ̸=j

aiiaj,j+1aj+1,j . (2.5)

With lose of generality we assume that



a33 = min {a11, a33} forn = 3
a44 = min {a22, a44} , a33 = min {a11, a33} forn = 4
a55 = min {a33, a55} , a44 = min {a22, a44} , a33 = min {a11, a33} forn = 5
...
an,n = min {an−2,n−2, an,n} , an−1,n−1 =
min {an−3,n−3, an−1,n−1} , . . . , a33 = min {a11, a33} .


(2.6)

If we replace the relation (2.6) to the right hand side of (2.5) we can reach to the relation
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that includes the right hand side of relation (2.4). i.e.

∑
1⩽i<j<k⩽n aiiajjakk >

∑n
i=1

∑n−1
j=1

i̸=j

aiiaj,j+1aj+1,j =

a11a23a32 + a11a34a43 + . . .+ a11an−1,nan,n−1+
a22a34a43 + a22a45a54 + . . .+ a22an−1,nan,n−1+
a33a12a21 + a33a45a54 + . . .+ a33an−1,nan,n−1 + . . .+ an−1,n−1a12a21+
an−1,n−1a23a32 + . . .+ an−1,n−1an−3,n−2an−2,n−3 + an,na12a21 + an,na23a32+
. . .+ an,nan−3,n−2an−2,n−3 + an,nan−2,n−1an−1,n−2 >

a33(
∑n−1

i=1 ai,i−1ai+1,i) + a44(
∑n−1

i=1 ai,i−1ai+1,i)+

a55(
∑n−1

i=1 ai,i−1ai+1,i) + . . .+ an,n(
∑n−1

i=1 ai,i−1ai+1,i) >
a33(

∑
1⩽i<j⩽n aiiajj) + a44(

∑
1⩽i<j⩽n aiiajj) + a55(

∑
1⩽i<j⩽n aiiajj) + . . .+ an,n

(
∑

1⩽i<j⩽n aiiajj)

After simplifying of the above relations we reach to the following relation

a233(a11 + a22 + a44 + . . .+ an,n) + a244(a11+
a22 + a33 + a55 + . . .+ an,n) + . . .+ a2n,n(a11 + a22 + a33+
. . .+ an−2,n−2 + an−1,n−1) + a33a44(a11 + a22 + a55+
a66 + . . .+ an,n) + a33a55(a11 + a22 + a44 + a66 + a77 + . . .+ an,n) + a33an,n(a11+
a22 + a44 + . . .+ an−1,n−1) + a44a55(a11 + a22 + a66 + a77 + . . .+ an,n) + a44a66(a11+
a22 + a55 + a77 + . . .+ an,n) + . . .+ a44an,n(a11 + a22+
a55 + a66 + . . .+ an−1,n−1) + a55a66(a11+
a22 + a77 + a88 + . . .+ an,n) + a55a77(a11 + a22 + a66 + a88 + a99 + . . .+ an,n)+
. . .+ a55an,n(a11 + a22 + a66 + a77 + . . .+ an−1,n−1) + . . .+ an−1,n−1an,n(a11 + a22) < 0.

And this means the summation of sum of nonnegative numbers is strictly negative and
this is impossible.□

Corollary 2.2 Let σ = {λ1, λ2, . . . , λn} is a set of real numbers that holds in (2.1) and
for i = 2, 3, . . . , n we have λi < 0, then there is no nonnegative tridiagonal matrix that
σ is its spectrum.

Proof. If λi < 0 for i = 2, 3, . . . , n, it is obvious the relations (1.1) and (1.2) are hold,
and therefore by Theorem 2.1 proof is complete. □

3. Existence and construction

In this section we study existence (with construction) or absence of nonnegative tridiag-
onal matrix of order maximum 5, for a given set of real numbers σ with |σ| = n ⩽ 5 that
σ is its spectrum.

• The case n = 2

Theorem 3.1 Let σ = {λ1, λ2} be a set of real numbers such that satisfies relation
(2.1) then σ is the set of eigenvalues of a nonnegative tridiagonal matrix.

Proof. σ has only one of following cases:
(a) If λ2 ⩾ 0, then A = diag(λ1, λ2) is a solution of problem.
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(b) If λ2 < 0, then the matrix

A =

(
0 −λ1λ2

1 λ1 + λ2

)
, (3.1)

solves the problem.□

• The case n = 3

Theorem 3.2 Let σ = {λ1, λ2, λ3} be a set of real numbers that satisfies relation
(2.1). Then we have the following cases:
(a) If λ2, λ3 ⩾ 0, then σ is the set of eigenvalues of a nonnegative tridiagonal matrix.
(b) If λ2, λ3 < 0, then there is no nonnegative tridiagonal matrix with spectrum σ.
(c) If λ2 < 0 and λ3 ⩾ 0, then σ is the set of eigenvalues of a nonnegative tridiagonal
matrix.

Proof.
(a) B = diag(λ1, λ2, λ3) is a solution of our problem.
(b) Corollary 2.2
(c) The nonnegative tridiagonal matrix

B =

(
A 0
0T λ3

)
, (3.2)

is a solution of our problem where A is matrix (3.1) and o is zero vector with
dimension 2× 1. □

• The case n = 4

Theorem 3.3 Let σ = {λ1, λ2, λ3, λ4} be a set of real numbers that satisfies relation
(2.1). Then we have the following cases:
(a) If λ2, λ3, λ4 ⩾ 0, then σ is the set of eigenvalues of a nonnegative tridiagonal
matrix.
(b) If λ2, λ3, λ4 < 0, then there is no nonnegative tridiagonal matrix with spectrum σ.
(c) If λ2 < 0 and λ3, λ4 ⩾ 0, then σ is the set of eigenvalues of a nonnegative
tridiagonal matrix.
(d) If λ2, λ3 ⩽ 0 , λ4 > 0 and at least for one of the eigenvalues λ2 and λ3, for example
λ3, we have λ3 + λ4 ⩾ 0 then σ is the set of eigenvalues of a nonnegative tridiagonal
matrix.
(e) If λ2, λ3 ⩽ 0 , λ4 > 0 and we have λ2 + λ4 ⩽ 0, λ3 + λ4 ⩽ 0 and relation (1.2) then
there is no nonnegative tridiagonal matrix with spectrum σ.

Proof.
(a) C = diag(λ1, λ2, λ3, λ4) is a solution of our problem.
(b) Corollary 2.2
(c) The nonnegative tridiagonal matrix

C =

(
B o
oT λ4

)
, (3.3)
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is a solution of our problem where B is matrix (3.2) and o is zero vector with dimension
of 3× 1.
(d) The nonnegative tridiagonal matrix

C =


0 −λ1λ2 0 0
1 λ1 + λ2 0 0
0 0 0 −λ3λ4

0 0 1 λ3 + λ4

 , (3.4)

is a solution of our problem.
(e) If λ2 + λ4 ⩽ 0, λ3 + λ4 ⩽ 0 and λ2, λ3 ⩽ 0, λ4 > 0 then λ2, λ3 < 0 and
α1 = λ1λ2+λ1λ3+λ1λ4+λ2λ3+λ2λ4+λ3λ4 = λ1(λ3+λ4)+λ2(λ3+λ4)+λ1λ2+λ3λ4 < 0
and if we have relation (1.2) then by Theorem 2.1 proof is complete. □

• The case n = 5

Theorem 3.4 Let σ = {λ1, λ2, λ3, λ4, λ5} be a set of real numbers that satisfies
relation (2.1). Then we have the following cases:
(a) If λ2, λ3, λ4, λ5 ⩾ 0, then σ is the set of eigenvalues of a nonnegative tridiagonal
matrix.
(b) If λ2, λ3, λ4, λ5 < 0, then there is no nonnegative tridiagonal matrix with spectrum
σ.
(c) If λ2 < 0 and λ3, λ4, λ5 ⩾ 0, then σ is the set of eigenvalues of a nonnegative
tridiagonal matrix.
(d) If λ2, λ3 < 0 and λ4, λ5 ⩾ 0 and at least for one of the eigenvalues λ2 and λ3, for
example λ3, we have λ3 + λ4 ⩾ 0 or λ3 + λ5 ⩾ 0 then σ is the set of eigenvalues of a
nonnegative tridiagonal matrix.
(e) If λ2, λ3 < 0 , λ4, λ5 ⩾ 0 and we have λ2 + λ4 ⩽ 0, λ3 + λ4 ⩽ 0 and λ2 + λ5 ⩽ 0,
λ3 + λ5 ⩽ 0 and relation (1.2) then there is no nonnegative tridiagonal matrix with
spectrum σ.
(f) If λ2, λ3, λ4 < 0, λ5 ⩾ 0 and we have λ2 + λ5 < 0, λ3 + λ5 < 0, λ4 + λ5 < 0 then
there is no nonnegative tridiagonal matrix with spectrum σ.

Proof.
(a) D = diag(λ1, λ2, λ3, λ4, λ5) is a solution of our problem.
(b) Corollary 2.2
(c) The nonnegative tridiagonal matrix

D =

(
C o
oT λ5

)
, (3.5)

is a solution of our problem where C is matrix (3.3) and o is zero vector with dimension
of 4× 1.
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(d) The nonnegative tridiagonal matrix

D =


0 −λ1λ2 0 0 0
1 λ1 + λ2 0 0 0
0 0 0 −λ3λ4 0
0 0 1 λ3 + λ4 0
0 0 0 0 λ5

 , (3.6)

is a solution of our problem.
(e) If λ2 + λ4 ⩽ 0, λ3 + λ4 ⩽ 0 and λ2 + λ5 ⩽ 0, λ3 + λ5 ⩽ 0 then α1 = λ1λ2 + λ1λ3 +
λ1λ4+λ1λ5+λ2λ3+λ2λ4+λ2λ5+λ3λ4+λ3λ5+λ4λ5 = λ1(λ3+λ4)+λ2(λ3+λ4)+
λ1(λ2 + λ5) + λ5(λ2 + λ4) + λ3(λ4 + λ5) < 0 and if we have relation (1.2) then by
theorem 2.1 proof is complete.
(f) The relations (1.1) and (1.2) are hold because
α1 =

∑
1⩽i<j⩽5 λiλj = λ1(λ2+λ5)+λ3(λ1+λ4)+λ4(λ1+λ2)+λ5(λ2+λ4)+λ3(λ2+λ5) <

0
and
α2 =

∑
1⩽i<j<k⩽5 λiλjλk = λ1λ2(λ3+λ5)+λ1λ4(λ2+λ5)+λ1λ3(λ4+λ5)+λ2λ3(λ4+

λ5) + λ4λ5(λ2 + λ3) > 0
Therefore by Theorem 2.1 proof is complete. □

4. The conjecture

In this section we introduce a conjecture that is proved above with some conditions:
If relation (1.2) is not hold, again there is no any nonnegative tridiagonal matrix for

(e) of The case n = 4 and The case n = 5.
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