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Abstract. In this paper, we have defined and studied a generalized form of topological vector
spaces called s-topological vector spaces. s-topological vector spaces are defined by using semi-
open sets and semi-continuity in the sense of Levine. Along with other results, it is proved
that every s-topological vector space is generalized homogeneous space. Every open subspace
of an s-topological vector space is an s-topological vector space. A homomorphism between
s-topological vector spaces is semi-continuous if it is s-continuous at the identity.
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1. Introduction

If a set is endowed with algebraic and topological structures, then it is always fascinating
to probe relationship between these two structures. The most formal way for such a study
is to require algebraic operations to be continuous. This is the case we are investigating
here for algebraic and topological structures on a set X, where algebraic operations
(addition and scalar multiplication mappings) fail to be continuous. We join these two
structures through weaker form of continuity.

A topological vector space [10, 17] is a basic structure in topology in which a vector
space X over a topological field F (R or C) is endowed with a topology τ such that:
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(i) the vector addition mapping m : X ×X → X defined by m((x, y)) = x+ y and
(ii) scalar multiplication mapping M : F ×X → X defined by M((λ, x)) = λ · x for

all λ ∈ F and x, y ∈ X

are continuous with respect to τ . Equivalently, (X(F ), τ) is a topological vector space if:

(i) for each x, y ∈ X, and for each open neighbourhood W of x+ y in X, there exist
open neighbourhoods U of x and V of y in X such that U + V ⊂ W , and

(ii) for each λ ∈ F , x ∈ X and for each open neighbourhood W in X containing
λ · x, there exist open neighbourhoods U of λ in F and V of x in X such that
U · V ⊂ W .

The axioms for a space to become a topological vector space or linear topological
space have been given and studied by Kolmogroff [13] in 1934, and von Neumann [15],
in 1935. The relation between the axioms of topological vector space has been discussed
by Wehausen [18], in 1938 and Hyers [11], in 1939. Also Kelly [12] has done classical
work on topological vector spaces. In the last decade, we can see the work of Chen [4]
on fixed points of convex maps in topological vector spaces. Bosi [2] and Clark [5] has
researched on conics in topological vector spaces. More work, in recent years has been
done by Drewnowski [9], Alsulami and Khan [1].

The beautiful interaction between linearity and topology is explored in the present
paper where the compatibility is studied under semi-continuity. The basic idea in our
mind is to study such structures in which the topology is endowed upon a vector space
which fails to satisfy the continuity condition for vector addition and scalar multiplication
or either. We intend to study such structures for the weaker form of continuity such as
semi-continuity in the sense of Levine [14]. The concept of semi-continuity was introduced
by Norman Levine [14] in 1963 as a consequence of the study of semi-open sets. In
this paper, several new facts concerning topologies of s-topological vector spaces are
established.

2. Preliminaries

Throughout in this paper X and Y are always topological spaces with no separation
axioms considered until otherwise mentioned.

In 1963, N. Levine [14] defined semi-open sets in topological spaces. Since than many
mathematicians explored different concepts and generalized them by using semi-open
sets. A subset A of a topological space X is said to be semi-open if there exists an open
set O in X such that O ⊂ A ⊂ Cl(O), or equivalently if A ⊂ Cl(Int(A)). SO(X) denotes
the collection of all semi-open sets in X. The complement of a semi-open set is said to
be semi-closed ; the semi-closure of A ⊂ X, denoted by sCl(A), is the intersection of all
semi-closed subsets of X containing A [6, 7]. Let us mention that x ∈ sCl(A) if and only
if for any semi-open set U containing x, U ∩A ̸= ∅. Every open (closed) set is semi-open
(semi-closed). It is known that the union of any collection of semi-open sets is semi-open
set, while the intersection of two semi-open sets may not be semi-open. The intersection
of an open set and a semi-open set is semi-open set. Basic properties of semi-open sets
are given in [14] and of semi closed sets in [6–8].

Recall that a set U ⊂ X is a semi-open neighbourhood of a point x ∈ X if there exists
A ∈ SO(X) such that x ∈ A ⊂ U . A set A ⊂ X is semi open in X if and only if A is semi
open neighbourhood of each of its points. If a semi open neighbourhood U of a point x
is a semi open set, we say that U is a semi open neighbourhood of x.
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If X(F ) is a vector space then e denotes its identity element, and for a fixed x ∈ X, xT :
X → X; y 7−→ x+y and Tx : X → X, y 7→ y+x, denote the left and the right translation
by x, respectively. The operator + we call the addition mapping m : X×X → X defined
by m((x, y)) = x + y, and the scalar multiplication mapping Mλ : F ×X → X defined
by M((λ, x)) = λ · x.

Definition 2.1 Suppose (X, τX) and (Y, τY ) are topological spaces. A function f : X →
Y is called:

(1) semi-continuous [14] if for each open set O in Y , the inverse image f−1(O) ∈
SO(X). Equivalently, a mapping f : X → Y is semi-continuous if and only
if for each x ∈ X and each open neighbourhood V of f(x) there is a semi-open
neighbourhood U of x with f(U) ⊂ V . Clearly, continuity implies semi-continuity;
the converse need not be true.

(2) semi-Open if for every open set A of X, the set f(A) is semi-open in Y ;
(3) s-continuous [3] if the pre-image of every semi-open set is open;
(4) pre-semi-open [8] if for every semi-open set A of X, the set f(A) is semi-open in

Y ;

Lemma 2.2 [16] Let A and X0 be subsets of a topological space X such that A ⊆ X0

and X0 ∈ SO(X). Then, A ∈ SO(X) if and only if A ∈ SO(X0).

3. s-TOPOLOGICAL VECTOR SPACES

Definition 3.1 An s-topological vector space (X(F ), τ) is a vector space X over the field
F (R or C) with a topology τ defined on X(F ) and standard topology on F such that:

1) for each x, y ∈ X, and for each open neighbourhood W of x + y in X, there exist
semi-open neighbourhoods U and V of x and y respectively in X , such that

U + V ⊆ W

2)for each λ ∈ F , x ∈ X and for each open neighbourhood W of λ · x in X, there
exist semi-open neighbourhoods U of λ in F and V of x in X such that

U · V ⊆ W

It follows from the definition that every topological vector space is s- topological vector
space. The example below shows that the converse is not true in general.

Example 3.2 Let X = R be a vector space of real numbers over the field F = R and let
τ be a topology on X induced by open intervals (a, b) and the sets [1, c) where a, b, c ∈ R.

In this case, (R(R), τ) is an s-topological vector space over the field R with the topology
τ defined on R. We note that for each x, y ∈ R and each open neighbourhood W of x+ y
in τ , there exist semi-open neighbourhoods U and V of x and y respectively in τ , such
that U + V ⊆ W . Also for each λ ∈ R, x ∈ R and for each open neighbourhood W of
λ · x in τ , there exist semi-open neighbourhoods U of λ in R and V of x in τ such that
U · V ⊆ W . However, (R(R), τ) is not a topological vector space because, for instance
if, we choose x = −3, y = 4 and an open neighbourhood W = [1, 2) of x + y in τ , we
can not find open neighbourhoods U and V containing x and y respectively in τ which
satisfy the condition U + V ⊆ W .
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Theorem 3.3 Let (X(F ), τ) be an s-topological vector space. Suppose Tx: X → X is a
right translation and Mλ: X → X is multiplication mapping, then Tx and Mλ both are
semi-continuous.

Proof. Let y be an arbitrary element in X and let W be an open neighbourhood of
Tx(y) = y + x. By definition of s-topological vector spaces, there exist semi-open neigh-
bourhoods U and V containing y and x respectively, such that U + V ⊆ W . In par-
ticular, we have U + x ⊆ W which means Tx(U) ⊆ W . The inclusion shows that Tx is
semi-continuous at y. Hence Tx is semi-continuous on X.

Now we prove the statement for multiplication mapping. Let λ ∈ F and x ∈ X. Let
W be an open neighbourhood of Mλ(x) = λ · x. By definition of s-topological vector
spaces, there exist semi-open neighbourhoods U and V containing λ and x respectively,
such that U · V ⊆ W . In particular, we have λ · V ⊆ W , which means Mλ(V ) ⊆ W . The
inclusion shows that Mλ is semi-continuous at x. Hence Mλ is semi-continuous on X. ■

Theorem 3.4 Let (X(F ), τ) be an s-topologicaal vector space. If A ∈ τ then

(1) for every y ∈ X, A+y ∈ SO(X),
(2) for every non zero λ ∈ F , λ ·A ∈ SO(X).

Proof. 1) Let z ∈ A+ y. We have to show that z is a semi-interior point of A+ y. Now
z = x+y, where x is some point in A. By Theorem, 3.3 T−y : X → X is semi-continuous
for z ∈ X. Thus, for the open set A containing x; x = T(−y)(z), there exists semi-open
neighbourhood Mz of z such that T−y(Mz) = Mz + (−y) ⊆ A. This implies Mz ⊆ A+ y
which shows that z is a semi-interior point of A+ y. Hence A+ y ∈ SO(X).

2 ) Let z ∈ λ · A. We have to show that z is a semi-interior point of λ · A. Now
z = λ · x, for some x in A. We have multiplication mapping Mλ−1 : X → X is semi
continuous. Thus, for the set A ∈ τ containing Mλ−1(z) = λ−1 · z = x, there exists
semi-open neighbourhood Uz of z in X such that Mλ−1(Uz) = λ−1 ·Uz ⊆ A. This implies
Uz ⊆ λ ·A. This shows that z is a semi-interior point of λ ·A. Hence λ ·A ∈ SO(X). ■

Theorem 3.5 Let (X(F ), τ) be an s-topological vector space. If A ∈ τ and B is any
subset of X, then A+B ∈ SO(X).

Proof. We have by Theorem 3.4, Txi
(A) = A + xi ∈ SO(X) for each xi ∈ B. Since

union of any number of semi open sets is semi open, therefore A+B = ∪xi∈B(A+ xi) is
semi open in X. ■

Corollary 3.6 Suppose (X(F ), τX) is an s-topological vector space and A ∈ τ . Then the
set U = ∪∞

n=1nA is a semi-open set in X.

Definition 3.7 A bijective mapping f from a topological space to itself is called gener-
alized homeomorphism if it is semi-continuous and semi-open.

Definition 3.8 An s-topological vector space (X(F ), τ) is said to be generalized- ho-
mogenous space if for all x,y ∈ X, there is a generalized-homeomorphism f of the space
X onto itself such that f(x) = y.

Theorem 3.9 Let (X(F ), τ) be an s-topological vector space. For given y ∈ X and λ in
F with λ ̸= 0, the right (left) translation map Ty : x 7→ x + y and multiplication map
Mλ : x 7→ λ · x, where x ∈ X, are generalized-homeomorphisms onto itself.

Proof. It is obvious that right translations are bijective mappings. By Theorem 3.3, the
translations Ty and Mλ are semi-continuous mappings. We prove that the translation Ty
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is semi-open mapping. Let U be any open negihbourhood of x. Then Ty(U) = U + y. By
Theorem 3.4, U + y is semi-open in X. This proves that Ty is semi-open mapping.

Similarly, we can prove that Mλ : x 7→ λ · x is a generalized homeomorphism. ■

Theorem 3.10 Every s-topological vector space (X(F ), τ) is a generalized-homogenous
space.

Proof. Take any x, y ∈ X and put z = (-x) + y. Then Tz : X → X is a generalized
homeomorphism and Tz(x) = x+ z = y. ■

Theorem 3.11 Suppose (X(F ), τ) is an s-topological vector space and S is a subspace
of X. If S contains a non-empty open set, then S is semi-open in (X, τ).

Proof. Suppose U ̸= ϕ is open subset in X such that U ⊆ S. For any y ∈ S the
set Ty(U) = U + y is semi-open in X and is a subset of S. Therefore, the subspace
S =

∪
y∈S(U + y) is semi-open in X as the union of semi-open sets. ■

Theorem 3.12 Every open subspace S of an s-topological vector space (X(F ), τ) is also
an s-topological vector space (called s-topological subspace of X).

Proof. Let x, y ∈ S and W be an open neighbourhood of x+y in S. This gives W is an
open neighbourhood of x+ y in X. Hence, there exist semi-open neighbourhoods U ⊆ X
of x and V ⊆ X of y such that U + V ⊆ W . Now by Lemma 2.2, the sets A = U ∩ S
and B = V ∩ S are semi-open neighbourhoods of x and y respectively in S because S is
open in X. Also A+B ⊆ U + V ⊆ W .

Again, let λ ∈ F and x ∈ S. Let W be an open neighbourhood of λ · x in S. Since S
is open in X, therefore W is open neighbourhood of λ · x in X. Hence, there exist semi
open neighbourhoods U ⊆ F of λ and V ⊆ X of y such that U ·V ⊆ W . Now by Lemma
2.2, the set A = U ∩ F is semi open neighbourhood of λ in F and the set B = V ∩ S is
semi-open neighbourhood of y in S. Also A ·B ⊆ U · V ⊆ W , which means that S is an
s-topological vector space. ■

Theorem 3.13 In an s-topological vector space, for any open neighbourhood U of e,
there is a semi-open neighbourhood V of e such that V + V ⊆ U .

Proof. Proof is simple, therefore omitted. ■

Theorem 3.14 Let A and B be subsets of an s-topological vector space (X(F ), τ). Then
sCl(A) + sCl(B) ⊆ Cl(A+B).

Proof. Suppose that x ∈ sCl(A), y∈ sCl(B). Let W be an open neighbourhood of x+y.
Then there are semi-open neighbourhoods U and V of x and y respectively, such that
U + V ⊆ W . Since x ∈ sCl(A), y ∈ sCl(B), there are a ∈ A∩ U and b ∈ B ∩ V. Then
a + b ∈ (A + B) ∩ (U + V ) ⊆ (A + B) ∩ W . This means x + y ∈ Cl(A + B), that is
sCl(A) + sCl(B) ⊆ Cl(A+B). ■

Theorem 3.15 Let f : X → Y be a homomorphism of s-topological vetor spaces. If f is
s-continuous at the identity e of (X(F ), τ), then f is semi-continuous on X.

Proof. Let x ∈ X. Suppose W is open neighbourhood of y = f(x) in Y . Since Ty :
Y → Y is semi-continuous, therefore there is a semi-open neighbourhood V of e such
that Ty(V ) = V + y ⊆ W . Now from s-continuity of f at e of X, there exists open
neighbourhood U of e in X such that f(U) ⊆ V . Since Tx : X → X is semi-open,
therefore the set U + x is semi-open neighbourhood of x. So f(U + x) = f(U) + f(x) =
f(U) + y ⊂ V + y ⊆ W . Therefore f is semi-continuous at x of X, and hence on X. ■
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Theorem 3.16 Let (X(F ), τ) be an s-topological vector space. Then every open subspace
of X is semi-closed in X.

Proof. Let S be an open subspace of X. As right translation Tx : X → X is semi-open,
therefore S + x is semi-open in X. Then Y =

∪
x∈X−S(S + x) is also semi-open. Now

S = X − Y , is semi-closed. ■
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