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On the Finite Groupoid G(n)
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Abstract. In this paper we study the existence of commuting regular elements, verifying
the notion left (right) commuting regular elements and its properties in the groupoid G(n) .
Also we show that G(n) contains commuting regular subsemigroup and give a necessary and
sufficient condition for the groupoid G(n) to be commuting regular.
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1. Introduction

We use S and G to denote a semigroup and a groupoid, respectively. An element x of a
semigroup S is called regular if there exists y in S such that, z = xyx [3]. Two elements
x and y of a semigroup S are commuting regular if for some z € S, zy = yxzyz [2]. A
semigroup S is called commuting regular if and only if for each x,y € S there exists an
element z of S such that xy = yxzyx [1]. In [2] Pourfaraj showed that the existence of
commuting regular elements for the loop ring Z;[L,,(m)] when t is an even perfect number
or t is the form of 2'p or 3'p, where p is an odd prime or in general, when t = pips ( p1
and pe are distinct odd primes ). Define a binary operation * on G = Z,, U{e} as follows,

1) axa=aforallacgG.

2) axe=exa=afor all a € G.

3) a*xb=ta+ ub (modn) , where t,u € Z, are fix elements and a,b € G (a # b),
Z,={0,1,2,...n—1},n >3 and e & Z,,.

The properties of these groupoids denote by G(n) has been studied in [5].
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2. Commuting Regular Elements

Definition 2.1 Two elements a and b of a groupoid G are called left commuting regular
if for some ¢; € G, ab = ((ba)cy)(ba). Similarly, they are called right commuting regular
if for some c2 € G, ab = (ba)(ca(ba)). Finally, two elements x and y are commuting
regular if they are both left and right commuting regular. [see 4]

Definition 2.2 A groupoid G is called left commuting regular groupoid if for each
a,b € G there exists ¢; € G such that , ab = ((ba)c1)(ba). Similarly, right commuting
regular groupoid is defined. A groupoid G is called commuting regular groupoid if G is
both a left and right commuting regular groupoid.[see 4]

Example 2.3 The groupoid G(3) where t = 1 and u = 2 is given by the following table

We have:
(2x1)x(0x(2%1))=1%(0x1)=1x%2.

So,1 and 2 are right commuting regular. On the other hand,

1%x2# ((2%1)%0) % (2x1)
1x2# ((2x1)*1)%(2x1)
124 ((2x1)%2)*(2x1)
124 ((2x1)*xe)x(2x1)

Thus, 1 and 2 aren’t left commuting regular. 2 and 2 are commuting regular,
2%2=(2x%2)xex(2x%2).

Proposition 2.4 Let the G(n) be a groupoid, where n = tu—1. Suppose that a,b € G(n)
and pair of elements {b* a,c1, (b*a)*c1} and {bx*a,ca, (b*a)* co} are distinct. Then
a and b are commuting regular elements, where b = au (mod n), ¢c; = —bt3 — b (mod n)
and ca = —au® — a (mod n).

Proof We consider two follows case:

Casel) If a b = b a then:

axb=(bxa)x(axb)x*(bxa)

Case2) If a x b # b+ a then:
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((bxa)*c1)*(bxa) =
= ((bt + au) x c1) * (bt + au)
= ((bt + au)t + cru) * (bt + au)
= bt® + aut? + citu + btu + au?
=bt3 +at +bt3 — b+ b+ bu (since tu = 1 (mod n) and b = au (modn))
= at + bu
=axb
Similarly,

axb=(bxa)x(cyx(bxa)).

Proposition 2.5 Let the G(n) be a groupoid, where n = tu+1 . Suppose that a,b € G(n)
and pair of elements in {bx*a, ¢y, (bxa)*cy} and {b*a,ca, (bxa)*cy} are distinct. Then a
and b are commuting regular elements, where, b = au (mod n), ¢ = —2at+bt>—b (mod n)
and ¢y = —2at — 2bu + au® — a (mod n).

Example 2.6 Let G(20) where t = 3 and u = 7, then @ = 11 and b = 17 are commuting
regular elements:

((17%11) % 4) % (17 11) = (17 11) % (16 % (17 % 11)) = 11 = 17.
Note that 17 = 11 x 7 (mod 20).
Proposition 2.7 Let G(n) be a groupoid, where t = —u (mod n), then a,b € G(n) are
commuting regular elements, where at = bt (mod n).
Proof Since at = bt (mod n) and t = —u (mod n) :
—au = —bu (mod n).
So in G(n),
axb=at+bu=>bt+au=>x*a.
And therefore:
axb=(bxa)x*(axb)x*(bxa).
So a and b are commuting regular.

Proposition 2.8 Let G(n) be a groupoid, where n = (t — u)k, k € Z, if for some
a,be G(n), a—b=k (mod n), then a and b are commuting regular elements.

Proof We have ¢ — b = ;

d
_u(mo n) , so

(a—0b)(t —u) =0 (mod n)
Therefore, in G(n):

at —au—bt+bu=0

at +bu = bt + au
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axb=bxa
So:
axb=(bxa)*(axb)*(bxa)

Proposition 2.9 Let G(n) be a groupoid, then a,b € G(n) are commuting regular
elements where at = au (mod n) and bt = bu (mod n).
Proof We have a * b = at 4+ bu = bt + au = b* a So

axb=(bxa)x(axb)*(bxa)

Thus a and b are commuting regular elements.

Proposition 2.10 Let G(n) be a groupoid, where ¢t + u = n. Suppose that a € G(n)
and k € Z. Then a and ka are commuting regular elements, where au = —au (mod n).
Proof Since t = —u (mod n) , for all a € G(n) we have at = —au (mod n) and by
au = —au (mod n), at = au (mod n) . So kat = kau (mod n) . Now by the proposition
2.9, a and ka are commuting regular elements.

3. Commuting Regular Groupoids

Proposition 3.1 The groupoid G(n) for all a € G(n) contains the commuting regular
subgroupoid {e, a}.
Proof The subgroupoid {e,a} given by the following table,

x| e a
el e a
al a e

exa=(axe)xax(axe)
axa=(axa)xex(axa)
exe=(exe)xex(exe)

Proposition 3.2 Let G(n) be a groupoid, where n = 2u, u?> = u (mod n) and t = 1.
Then for every a in G(n), {e,a,a + u} is a commuting regular groupoid.
Proof Let b = a + u. If, we have:

TH*T =€, T e=€*xT =0T

Also,

_ 0 ais even (mod n),
W= vwais odd (mod n),

b if ais even (mod n)

a*bzb*aECH‘“'HmE{a if ais odd (mod n)
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So {e,a,b} is groupoid.
For all z,y € {e,a,b} we have x xy =y *x. So

Thus {e, a, b} is a commuting regular groupoid.
Example 3.3 Let G(n) be a groupoid, where n = 6 , u = 3 and ¢t = 1 is given by the
following table,

xle 012345
ele 012345
0j0e 30303
1111 e1414
212 25e525
313303e30
444141el
52525 25ce

{e,0,3}, {e,1,4} and {e, 2,5} are commuting regular groupoids.

Proposition 3.4 Let G(n) be a groupoid, where t = 0, n = 2u and u is an odd element.
Therefore groupoid G(n) contains commuting regular and commutative groupoids G =
{e,1,3,...,n — 1} and G(2) = {e,0,2,....,n — 2}. In particular, if u> = u (mod n), then
G1 and G2 are commuting regular and commutative semigroup.

Proof For all a,b € G; — {e}, if a # b we have a *xb = b * a = u. So, we have:

axb=(bxa)*(axb)*(bxa)
In particular, if u? = u (mod n) for all a,b,c € G1 we have:

(axb)xc=buxc=cu

ax(bxc)=ax*cu=cu?

Therefore (7 is a semigroup. The proof for G5 is the same as above.

Corollary 3.5 Let G(n) be a groupoid, where u = 0,n = 2t and ¢ is odd element.
Then groupoid G(n) contains commuting regular and commutative groupoids G; =
{e,1,3,....,n — 1} and G(2) = {e,0,2,...,n — 2}. In particular, if 2 = ¢ (mod n) then G4
and Gy are commuting regular and commutative semigroup.

Proposition 3.6 Let G(n) be a groupoid, where t = 0, n = 3u and v = 3k + 1
for some k € Z. Then groupoid G(n) contains commuting regular and commutative
groupoids G = {e,2,5,....,n — 1}, G(2) = {e,1,4,....n — 2} and G3 = {¢,0,3,....,.n —
3}. Inparticular, if u?> = u (mod n), then Gi, Gy and G5 are commuting regular and
commutative semigroups.

Theorem 3.7 Let G(n) be a groupoid, where t = 0, n = mu and u = mk + 1, for some
m, k € Z. Then groupoid G(n) contains commuting regular and commutative groupoids.
Inparticular, if u? = u (mod n) then G(n) contains commuting regular and commutative
semigroups.

Example 3.8 Let G(n) be a groupoid, where t = 0, v = 5 and n = 10 is given in the
following table,
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xe 0123456789
ele 0123456789
00 e 505050505
1110e 05050505
20205e5050505
33050e 050505
440505eb50505
5/505050e0505
6/6 050505e505
7177050505 0e05
8805050505 e5d
999 050505050ce

Clearly, the semigroups {e, 0,2,4,6,8}, {e,1,3,5,7,9} are comuting regular and com-
mutative.
Theorem 3.9 Let G(n) be a groupoid, where t = u . If t> = t (mod n) then G(n) is a
commuting regular and commutative semigroup.
Proof Let a,b € G(n) — {e},
1) If a # b, then a and b are commuting regular elements [4, Theorem 3.8].
2)Ifa=bthenaxb=bxa=e,soaxb= (bxa)*xex(bxa),
3)Ifb=ethenaxe=exa=a,soaxe=(exa)xax(exa).
On the other hand,

ax (bxc)=ax (bt +ct) = at + bt? + ct?

(a*b) * ¢ = (at + bt) x ¢ = at® + bt* + ct.

So, the groupoid G(n) is a semigroup.
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