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1. Introduction

In functional analysis, the notion of a topological vector space plays a central role. A lot
of deep and interesting results are only valid for certain subclasses of topological vector
spaces. Certainly, one of the most important better-behaved types of topological vector
spaces are the locally convex ones. Locally convex spaces are encountered repeatedly
when discussing weak topologies on a Banach space, sets of operators on Hilbert spaces or
the theory of distributions [2, 5, 6]. On the other hand, it is well-known that a topological
vector space X is locally convex if and only if it can be generated by a collection of semi-
norms, in the sense that, there exists a family P of continuous semi-norms on X such
that

{{x ∈ X : p(x) < ϵ} : p ∈ P, ϵ > 0}
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is a base for the neighborhood system of 0. A typical semi-norm is generated by a convex,
balanced and absorbing subset of X. In other words, if C ⊂ X is a convex, balanced and
absorbing set then the map pC : X −→ R+ defined by pC(x) := inf{t : t ⩾ 0, x ∈ tC} is a
semi-norm on X which is called the Minkowski functional. The map pC , as a semi-norm,
induces a topology on X which is denoted by τC . If C = B(0, 1) = {x ∈ X :∥ x ∥⩽ 1}
then τC coincides with norm topology on X. One can see [3] for more information about
locally convex spaces.

In this paper, we first present some elementary properties of τC ; then we study
τC by assigning a cardinal number N = N(τC) to this topology which is called
topological number. This cardinal number has some beautiful properties and, some how,
measures that how far is the topology τC from the norm topology.

Finally, we will extend this idea for locally convex topologies, generated by a family
of continuous semi-norms.

In the remaining of the paper, a C.B.A set means a convex, balanced and absorbing
set.

2. Some elementary properties of τC

Let X = R2 and C := R × [−1, 1] and xn := ((−1)n, 0), then clearly pC(xn) → 0 and
so xn → (0, 0) in τC , but {xn} does not converge in norm, so τC ̸= τ∥.∥. Therefore, the
first question which naturally arise is, ”when does τC coincides with the norm topology
τ∥.∥ on X? At first we try to answer this question. It is easily seen that if A ⊆ B then
τB ⊆ τA. We have the following theorem as well.

Theorem 2.1 τA ⊆ τB if and only if pA : (X, τB) → R+ is continuous.

Proof. Let τA ⊆ τB and xn → x in τB, then xn → x in τA and so we have pA(xn−x) → 0.
But |pA(xn)−pA(x)| ⩽ pA(xn−x), therefore pA(xn) → pA(x) and so pA : (X, τB) −→
R+ is continuous.

Now let pA : (X, τB) −→ R+ be continuous and xn → x in τB, then xn − x → 0 in τB
which implies pA(xn − x) → 0, so xn → x in τA and τA ⊆ τB. ■

Corollary 2.2 τA = τB if and only if pA : (X, τB) → R+ and pB : (X, τA) → R+ are
continuous.

Let C be a C.B.A subset of X and define the relation ∼C on X as follows:

”x ∼C y ⇔ pC(x− y) = 0.”

Then ” ∼C ” is clearly an equivalence relation on X. For x0 ∈ X, the equivalence class
of x0 is denoted by [x0]∼.

Example 2.3 Let X = R2 and C = R × [−1, 1], then [0]∼ = {(x, y) : y = 0} which is
the x-axes.

Lemma 2.4 Let C be a C.B.A subset of X and x0 ∈ X. If x1, x2 ∈ [x0]∼ then the line
passing through x1 and x2 is completely contained in [x0]∼.

Proof. Let x1, x2 ∈ [x0]∼, then pC(x1 − x0) = pC(x2 − x0) = 0. Now for each t ∈ R put
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xt := (1− t)x1 + tx2, then

pC(xt − x0) = pC((1− t)x1 + tx2 − (1− t)x0 − tx0)

= pC((1− t)(x1 − x0) + t(x2 − x0))

⩽ | 1− t | pC(x1 − x0) + |t|pC(x2 − x0)

= 0.

Therefore xt ∈ [x0]∼, and this completes the proof. ■

Lemma 2.5 Let C be a C.B.A subset of X. If C is unbounded then there exists x0 ∈ X
such that x0 ̸= 0 and pC(x0) = 0.

Proof. Since C is an unbounded and C.B.A subset of X, then there is a line passing
through the origin such that L ⊆ C. Then clearly, (1/λ)L = L ⊆ C and so L ⊆ λC for
all λ > 0. So, pC(x) = 0 for all x ∈ L. ■

Corollary 2.6 If C is an unbounded subset of X, then τC is not Hausdorff and conse-
quently τC ̸= τ∥.∥.

Theorem 2.7 If A is a bounded and C.B.A subset of X and 0 ∈ Int(A), then τA = τ∥.∥.

Proof. Since A is bounded then A ⊆ B(0,M), for some M > 0, therefore τB(0,M) =
τB(0,1) = τ∥.∥ ⊆ τA. On the other hand, since 0 ∈ Int(A), there exists ε > 0 such that
B(0, ε) ⊆ A so τA ⊆ τB(0,ε) = τB(0,1) = τ∥.∥, and it completes the proof. ■

Theorem 2.8 Let X be a normed space and dimX = n < ∞. Then a convex and
balanced set C ⊆ X is absorbing if and only if 0 ∈ Int(C).

Proof. If 0 ∈ Int(C) then C is clearly absorbing. Now let C be absorbing, B =
{e1, e2, ..., en} be a basis for X and ε > 0 be such that ±εej ∈ C for j = 1, 2, 3, ..., n.
Put V := co(±εe1, ...,±εen), then 0 ∈ V and so 0 ∈ Int(C). ■

Corollary 2.9 If dimX < +∞ and C is a C.B.A subset of X then τC = τ∥.∥ if and only
if C is bounded.

The following example shows that Theorem 2.8 does not hold if dimX is not finite.

Example 2.10
Let X be a normed space with dimX = ℵ0 and let B = {en}∞n=1 be a normalized basis

for X (i.e., ∥en∥ = 1 for n = 1, 2, 3, ...).
Put C := co({± 1

2n en : n = 1, 2, 3, ...}), then

(a) 0 /∈ Int(C).
(b) C is absorbing.

To show (a), let ε > 0 and choose n ∈ N such that 1
2n < ε, then

∥ 1
2n en ∥= 1

2n < ε so 1
2n en ∈ B(0, ε); since 1

2n en is a vertex of C then B(0, ε)∩Cc ̸= ∅
and so 0 /∈ Int(C).

To show (b), let x ∈ X and x =
∑k

j=1 λjej , then x =
∑k

j=1 µjsgnλj .
1
2j ej for some

µj ⩾ 0. Let ε > 0 be such that ε
∑k

j=1 µj =
∑k

j=1 εµj = 1. Then we have εx =∑k
j=1 εµjsgnλj .

1
2j ej ∈ C. Since C is convex and balanced then αx ∈ C for all α with

|α| ⩽ ε, so C is absorbing.
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3. Topological number for topologies induced by a C.B.A set

Definition 3.1 Let C be a C.B.A subset of X and τC be the topology generated by
PC . Define

N(τC) := min{card(A) : A ⊆ C, co(A) is a C.B.A set and τco(A) = τC}.

N(τC) is called the topological number of τC .

Example 3.2 Let X = R2 and C = B(0, 1) and put A := {±i,±j}. Then if D = co(A),
we will have τD = τC = τ∥.∥. It is clear that card(A) is minimum among all of the sets

with the same property, so N(τC) = 4. Similarly, for X = R3 and C = B(0, 1), if we put
A := {±i,±j,±k} then τco(A) = τC = τ∥.∥ and N(τC) = N(τ∥.∥) = 6.

The following theorem generalizes the previous example.

Theorem 3.3 If X is a normed space with dimX = n then N(τ∥.∥) = 2n.

Proof. Put C := B(0, 1) and A := {±e1,±e2, ...,±en} where B = {e1, e2, ..., en} is a
basis for X. If D = co(A) then τD = τC = τ∥.∥ and card(A) = 2n, therefore N(τ∥.∥) ⩽ 2n.
Let N(τ∥.∥) = 2k < 2n then there exists A := {±f1,±f2, ...,±fk} such that co(A) is
a C.B.A set and τco(A) = τ∥.∥. Since k < n then we may find f ̸= 0 such that f /∈
span({f1, f2, ..., fk}), therefore λf /∈ span({f1, f2, ..., fk}) for all λ > 0 and so λf /∈ co(A)
for all λ > 0 which is a contradiction to the fact that co(A) is absorbing, so N(τ∥.∥) = 2n.
■

Theorem 3.4 Let dimX = n and C be a C.B.A subset of X. Then τC ̸= τ∥.∥ if and
only if N(τC) ⩾ ℵ0.

Proof. Let N(τC) ⩾ ℵ0. If τC = τ∥.∥ then N(τC) = 2n < ℵ0, so τC ̸= τ∥.∥. Now let
τC ̸= τ∥.∥ and N(τC) < +∞; then we may find A ⊆ C such that card(A) < +∞,
τC = τco(A) and co(A) is balanced and absorbing. Since card(A) < +∞ then co(A) is
bounded and so τco(A) = τ∥.∥ which is a contradiction, thus N(τC) ⩾ ℵ0. ■

Example 3.5 LetX = R2 and C := R×[−1, 1]. Clearly, if C = co(A) then card(A) ⩾ ℵ0.
Of course here we may choose A such that card(A) = ℵ0 and so N(τC) = ℵ0.

Theorem 3.6 Let dimX = α where α is an infinite cardinal number and τC = τ∥.∥,
then N(τC) = α.

Proof. Let τC = τ∥.∥ and let B = {ej}j∈J be a normalized basis for X with card(J) = α.
Put A := {±ej}j∈J and D := co(A). We show that τD = τ∥.∥. It is clear that 0 ∈ Int(D).
Moreover D is Bounded, Since if x ∈ D = co(A) then x =

∑m
j=1 λjfj where fj = ±ekj

,

λj ⩾ 0 and
∑m

j=1 λj = 1, therefore

∥x∥ = ∥
m∑
j=1

λjfj∥ ⩽
m∑
j=1

|λj |∥fj∥ =

m∑
j=1

λj = 1.

Consequently D ⊆ B(0, 1) and so D is Bounded. Hence by Theorem 2.7 τD = τ∥.∥ = τC ,
so τC = τco(A) and card(A) = α. Therefore N(τC) ⩽ α.
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Now, let in contrast N(τC) = β < α, then there exists A = {fj}j∈ξ such that card(ξ) =
β and τC = τco(ξ). Since β < α = dimX then we can find 0 ̸= f ∈ X such that
f /∈ span(A) so λf /∈ span(A) ⊇ co(A) for all λ > 0 which is a contradiction to the fact
that co(A) is absorbing; therefore N(τC) = α. ■

Corollary 3.7 If dimX = α, C is a C.B.A subset of X and τC = τ∥.∥ then N(τC) = 2α.

Lemma 3.8 Let C ⊆ X, D ⊆ Y be C.B.A sets and A ⊆ C, B ⊆ D be such that co(A)
and co(B) are C.B.A sets. If τC = τco(A) and τD = τco(B) then τC×D = τco(A×B).

Proof. Since A × B ⊆ C × D then co(A × B) ⊆ C × D, therefore τC×D ⊆ τco(A×B).
Now, let (xn, yn) → (x, y) in τC×D. Since

pC×D((xn, yn)− (x, y)) = inf{t ⩾ 0 : t[(xn, yn)− (x, y)] ∈ C ×D}

= inf{t ⩾ 0 : (t(xn − x), t(yn − y)) ∈ C ×D}

= inf{t ⩾ 0 : t(xn − x) ∈ C, t(yn − y) ∈ D}

⩾ inf{t ⩾ 0 : t(xn − x) ∈ C}

⩾ 0

then

inf{t ⩾ 0 : t(xn − x) ∈ C} → 0.

Similarly,

inf{t ⩾ 0 : t(yn − y) ∈ D} → 0.

Hence xn → x in τC and yn → y in τD. But τC = τco(A) and τD = τco(B), so xn → x in
τco(A) and yn → y in τco(B). Therefore, pco(A)(xn − x) → 0 and pco(B)(yn − y) → 0 which
implies

inf{t ⩾ 0 : t(xn − x) ∈ co(A)} → 0

and

inf{t ⩾ 0 : t(yn − y) ∈ co(B)} → 0.

So, for a given ε > 0, there exists a natural number N such that inf{t ⩾ 0 : t(xn − x) ∈
co(A)} < ε

2 and inf{t ⩾ 0 : t(yn − y) ∈ co(B)} < ε
2 for all n ⩾ N . Now, for such natural

number n ⩾ N , we may choose 0 ⩽ t1, t2 < ε such that:

t1(xn − x) ∈ co(A),

and

t2(yn − y) ∈ co(B).
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Put t := min{t1, t2}; then t < ε, t(xn − x) ∈ co(A) and t(yn − y) ∈ co(B), because
co(A) and co(B) are balanced. Therefore

inf{t ⩾ 0 : t(xn − x) ∈ co(A), t(yn − y) ∈ co(B)} < ε,

hence

inf{t ⩾ 0 : t[(xn, yn)− (x, y)] ∈ co(A)× co(B)} < ε.

So pco(A)×co(B)((xn, yn)−(x, y)) → 0 and therefore (xn, yn) → (x, y) in τco(A)×co(B). Thus

τco(A×B) = τco(A)×co(B) ⊆ τC×D ⊆ τco(A×B).

Therefore τco(A×B) = τC×D. ■

Theorem 3.9 Let C ⊆ X, D ⊆ Y be C.B.A sets. Then

N(τC×D) = N(τC) +N(τD).

Proof. Let N(τC) = α and N(τD) = β. Then there exist A ⊆ C and B ⊆ D such
that A = {ei}i∈Γ, card(Γ) = α and τC = τco(A) and B = {fj}j∈Λ, card(Λ) = β and
τD = τco(B). Put Ω := {(ei, 0), (0, fj)}i∈Γ,j∈Λ, then card(Ω) = α+ β. First we show that
τC×D = τco(Ω). Since each (ei, 0) and (0, ej) belongs to C ×D, then co(Ω) ⊆ C ×D and
therefore τC×D ⊆ τco(Ω). On the other hand if we put ∆ := {(ei, fj)}i∈Γ,j∈Λ, then by
Lemma 3.8 τco(∆) = τC×D. But co(∆) ⊆ 2co(Ω), therefore τco(Ω) = τ2co(Ω) ⊆ τco(∆) =
τC×D. Hence τC×D ⊆ τco(Ω). It implies that N(τC×D) ⩽ α+ β.

The prove of the equality is obvious if α, β < ∞, so, without loss of generality, we
assume that β is an infinite cardinal number.

Case1: If α = β, then α+ β = α ⩽ N(τC×D) ⩽ α+ β and hence N(τC×D) = α+ β.

Case2: If α < β, then α+ β = β ⩽ N(τC×D) ⩽ α+ β and this proves the equality. ■

4. Linear topology and continuous semi-norms

If ρ is a semi-norm then we define Cρ and Wρ as follows:

Cρ := {x ∈ X : ρ(x) ⩽ 1}

and

Wρ := {x ∈ X : ρ(x) = 0}.

It is clear that Cρ is a C.B.A set and Wρ is a linear subspace of X. Then we may define
the topological number for the topology induced by the semi-norm ρ to be the topological
number, corresponding to the C.B.A set Cρ. In other words N(τρ) := N(τCρ

). Now we
are going to generalize the concept of topological number for more general topologies.
To do this, we need the concept of linear topology.
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Definition 4.1 Let W be a linear subspace of X. A sequence {xn}n⩾1 is said to tend to
an element x in the linear topology corresponding to W if and only if dist(xn−x,W ) →
0. The topology corresponding to the previous definition is called the linear topology
corresponding to the linear space W and is denoted by τW .

The following theorem shows that any topology induced by a continuous semi-norm is
indeed a linear topology.

Theorem 4.2 Let ρ be a continuous semi-norm and Wρ := ρ−1({0}). Then the topology
induced by ρ is equivalent to the linear topology corresponding to Wρ.

Proof. Let {xn}n⩾1 be a sequence in X such that xn → 0 in Wρ, then dist(xn,Wρ) → 0
or inf{∥xn−w∥ : w ∈ Wρ} → 0. So we may choose a sequence {wn}n⩾1 in Wρ such that
∥xn − wn∥ → 0. Since ρ is continuous and ρ(xn) = ρ(xn) − ρ(wn) ⩽ ρ(xn − wn) then
ρ(xn) → 0 and so xn → 0 in τρ. To prove the converse, let ρ(xn) → 0, then

inf{t : t ⩾ 0 and xn ∈ tCρ} → 0.

Choose a sequence {tn}n⩾1 of positive numbers such that tn ↘ 0 and xn ∈ tnCρ for
n ∈ N. It is easily seen that Wρ =

∩∞
n=1 tnCρ. So dist(xn,Wρ) → 0, thus xn → 0 in Wρ,

which gives the result. ■

Note: If ρ is not continuous then the previous theorem may fail. To see this, let X
be a normed space with dimX = ℵ0 and B = {en}n⩾1 be a basis for X. Put C :=
co({± 1

2n en : n ∈ N}), then C is a C.B.A set and 0 /∈ Int(C). Let {εn}n⩾1 be a sequence
of positive numbers such that εn ↘ 0. Then for n ∈ N, we may find xn ∈ X such that
xn ∈ B(0, εn) \ C, therefore xn → 0 and pC(xn) ⩾ 1. Thus we have found a sequence
{xn}n⩾1 in X such that dist(xn,WpC

) → 0 but pC(xn) does not tend to 0.

Corollary 4.3 Let X be an inner product space and ρ be a continuous semi-norm on
X and Wρ := ρ−1({0}). Then for any sequence {xn}n⩾1 in X we have

ρ(xn) → 0 if and only if ∥projxn

Wρ
⊥∥ → 0.

Corollary 4.4 For any continuous semi-norm ρ, if {xn}n⩾1 is a sequence in X such that
xn → x in norm then xn → x in τρ; in other words τρ ⊆ τ∥.∥.

Lemma 4.5 ([3]) Let X be a Banach space and V,W be closed linear subspaces of X
such that V +W is closed. Then there exists a constant c ⩾ 0 such that

dist(x, V ∩W ) ⩽ c(dist(x, V ) + dist(x,W ))

for all x ∈ X.

Corollary 4.6 Let dimX < ∞ and W1 , W2 be linear subspaces of X. If {xn}n⩾1 is a
sequence inX such that dist(xn,W1) → 0 and dist(xn,W2) → 0 then dist(xn,W1∩W2) →
0.

Corollary 4.7 Let dimX < ∞ and Wi (i = 1, 2, ..., k) be linear subspaces of X.
If {xn}n⩾1 is a sequence in X such that dist(xn,Wi) → 0 (i = 1, 2, ..., k), then
dist(xn,∩k

i=1Wi) → 0.

Let A := {ρi}i∈I be a family of semi-norms on X. The topology induced by the family
A is denoted by τA.



156 M. Rahimi et al. / J. Linear. Topological. Algebra. 03(03) (2014) 149-158.

Theorem 4.8 Let dimX < ∞ and A = {ρi}i∈I be a family of semi-norms on X and
Wρi

:= ρi
−1({0}). If there exist a finite number of subspaces Wρi1

, ...,Wρim
such that

∩m
k=1Wρik

= {0}, then τA = τ∥.∥.

Proof. Since dimX < ∞ then each ρi is continuous and so τA ⊆ τ∥.∥. Now, let xn → 0
in τA, then ρi(xn) → 0 for i ∈ I, therefore dist(xn,Wρi

) → 0 for i ∈ I. Then by the
previous corollary dist(xn,∩m

k=1Wρik
) → 0 and so dist(xn, 0) → 0 or ∥xn∥ → 0. Thus

xn → 0 in norm and hence τ∥.∥ ⊆ τA which gives the result. ■

5. Topological number for locally convex spaces with continuous
semi-norms

Definition 5.1 Let A = {ρi}i∈I be a family of semi-norms onX. The topological number
of the induced topology by the family A is defined as follows:

N(τA) := min{N(τCρ1∩...∩Cρk
) : k ∈ N, ρ1, ..., ρk ∈ A}.

The following theorem and its corollary generalizes Theorem 3.3.

Theorem 5.2 Let X be a normed space with dimX = n and let A = {ρi}i∈I be a
family of semi-norms. Then N(τA) = 2n if and only if there exist a finite number of
semi-norms ρ1, ..., ρk ∈ A such that Cρ1

∩ ... ∩ Cρk
is bounded.

Proof. Let Cρ1
∩ ... ∩ Cρk

be bounded for some ρ1, ..., ρk ∈ A. Combining Corollary
2.9 and Theorem 3.3 we will have N(τCρ1

∩...∩Cρk
) = 2n, so N(τA) ⩽ 2n. On the other

hand, since for each C.B.A set C, N(τC) ⩾ 2n then N(τA) = 2n. If for all finite number
of semi-norms ρ1, ..., ρk ∈ A, Cρ1

∩ ... ∩ Cρk
is unbounded, then by Corollary 2.9 and

Theorem 3.4, N(τCρ1∩...∩Cρk
) ⩾ ℵ0 for all finite numbers of semi-norms ρ1, ..., ρk ∈ A.

Therefore N(τA) ⩾ ℵ0 which gives the result. ■

Corollary 5.3 If dimX = n and N(τA) = 2n then τA = τ∥.∥.

Proof. If N(τA) = 2n then there exist finite number of semi-norms ρ1, ..., ρk ∈ A such
that Cρ1

∩ ... ∩ Cρk
is bounded, but ∩k

i=1Wρi
⊆ Wρj

⊆ Cρj
for j = 1, 2, ..., k, therefore

∩k
i=1Wρi

⊆ ∩k
i=1Cρi

. Since ∩k
i=1Cρi

is bounded and ∩k
i=1Wρi

is a linear subspace of X
then ∩k

i=1Wρi
= {0}, so by Theorem 4.8 τρ = τ∥.∥. ■

Definition 5.4 Let ρ and φ be two semi-norms on X and Y respectively. The map
ρ× φ : X × Y → R+ is defined as follows:

(ρ× φ)(x, y) := max{ρ(x), φ(y)}.

It is easily seen that ρ× φ is a semi-norm on X × Y .

The following Lemma can be easily proved.

Lemma 5.5 Let ρ and φ be two semi-norms on X and Y respectively, then we have:

(i) Cρ×φ = Cρ × Cφ.
(ii) Wρ×φ = Wρ ×Wφ.

The following theorem generalizes Theorem 3.9

Theorem 5.6 Let A = {ρi}i∈I and B = {φj}j∈J be two families of semi-norms on X
and Y respectively. Let A×B := {ρi × φj}(i,j)∈I×J be the family of semi-norms defined
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on X × Y . Then

N(τA×B) = N(τA) +N(τB).

Proof. By the definition ofN(τA) andN(τB) we may choose the semi-norms ρ1, ..., ρk on
X and φ1, ..., φk on Y such that N(τA) = N(τCρ1∩...∩Cρk

) and N(τB) = N(τCφ1∩...∩Cφm
),

then we have

Cρ1×φ1
∩ ... ∩ Cρk×φm

= (Cρ1
× Cφ1

) ∩ ... ∩ (Cρk
× Cφm

)

= (Cρ1
∩ ... ∩ Cρk

)× (Cφ1
∩ ... ∩ Cφm

).

Therefore,

N(τA×B) ⩽ N(τCρ1×φ1∩...∩Cρk×φm
) =N(τ(Cρ1∩...∩Cρk

)×(Cφ1∩...∩Cφm ))

=N(τCρ1∩...∩Cρk
) +N(τCφ1∩...∩Cφm

)

=N(τA) +N(τB).

(1)

Note that, the second equality holds by Theorem 3.9.
To show the equality we consider two cases:

Case1: If N(τA) and N(τB) are both finite then, by (1), N(τA×B) is finite as well,
therefore

N(τA×B) = 2 dim(X × Y ) = 2 dim(X) + 2 dim(Y ) = N(τA) +N(τB).

Case2: Let N(τB) be an infinite cardinal number and N(τA) ⩽ N(τB), then

N(τA) +N(τB) = N(τB) ⩽ N(τA×B).

This proves the equality. ■

Concluding remarks

This paper was an attempt to look at the locally convex spaces in a different way. We
assigned a cardinal number to any locally convex space, namely, topological number, and
proved some of its properties. In section 3, we first defined the topological number for
locally convex spaces generated by a semi-norm. We generalized this concept for locally
convex spaces generated by a family of semi-norms. The topological number resembles
logarithm, in the sense of Theorems 3.9 and 5.6.
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