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Abstract. If we consider some special conditions, we can assume fundamental group of a
topological space as a new topological space. In this paper, we will present a number of
theorems in topological fundamental group related to semilocally simply connected property
for a topological space.
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1. Introduction

There are some results about topological fundamental group in paper [1] by Daniel K.
Biss. In mentioned paper, he attempted to define a topology on fundamental group π1(X)

(denoted by πTop
1 (X)) for special topological space X, then he proved X is semiloclly

simply connected if and only if πTop
1 (X) is discrete.

In this paper we will state and prove other theorems in this subject. Let topological
spaces denote by X, Y , E, ... . A lift for a continuous map f : Y → X relative to a
map p : E → X, is a continuous map f̃ : Y → E such that p of̃ = f . Moreover, if
f : (X,x) → (Y, y) be a continuous map between pointed topological spaces, then by

fTop : πTop
1 (X,x) → πTop

1 (Y, y), we mean the induced map from f , between topological
fundamental groups. In this paper , the map p : E → X is a (weak) fibration, means that
p has homotopy lifting property relative to members of set {In|n ∈ N}, where I = [0, 1].
Also, we say a fibration p : E → X is a covering fibration if p♯ : πi(E) → πi(X) be
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an isomorphism for i ⩾ 2 and one to one for i = 1. For example every covering map
is a covering fibration. Furthermore, if for every two paths f̃1 and f̃2, two conditions
p of̃1 = p of̃2 and f̃1(0) = f̃2(0) conclude that f̃1 = f̃2, we say that the map p : E → X,
has unique path lifting property.

2. Some Results

At first, by use of Lemma (7.6.15) and Lemma (7.6.13) of [7] we state a simple proof for
the following Theorem.

Theorem 2.1 Let X be a topological space and f : Sn−1 → X be a continuous map.
If X ′ = X ∪f E

n and Y be a CW-complex with dimension little than n, then for every
continuous map g : Y → X ′, there is a map g′ : Y → X such that g is homotopic to g′.

Proof. By assumption for Y , we have dim(Y − ∅) = dim Y ⩽ n − 1. So by Lemma
(7.6.15) of [7], (X ∪f E

n, X) is (n − 1)-connected for all n ⩾ 1. Now, X ⊂ X ∪f E
n is

close if and only if X ⊂ X∪En/ ∼ is close. It is true if and only if p−1(X) = X is close in
X ∪En, where p : X ∪En → X ∪En/ ∼ is natural projection. But we have X ⊂ X ∪En

is close if and only if X ∩En ⊂ En is close. Since Sn−1 = X ∩En ⊂ En is close, so space
X is close in X ∪f E

n. On the other hand the space X ∪f E
n has weak topology respect

to {X ∪f E
n, X}, therefore {X ∪f E

n, X} has a relative CW -structure . Now by Lemma
(7.6.13) of [7], there is a continuous map g′ : Y → X, such that g is homotopic to g′. ■

For fibration p : E → X, if each fiber F of p has no nonconstant path, then path con-
nected component of F has at most one member. Therefore π1(F ) = 0 and consequently

0 = π2(F ) = π3(F ) = ....

Using this statement and Theorem (2.2.5) of [7], the Definition 4.1 of [1], can be brief in
the following manner.

Definition 2.2 A fibration p : E → X is called a rigid covering fibration if each fiber of
it, has no nonconstant path.

Following Theorem has useful role in the rest of his paper.

Theorem 2.3 Let p1 : (E1, e1) → (X,x) and p2 : (E2, e2) → (X,x) be two locally path
connected, rigid covering fibration for connected space X.The following statements are
equivalent:

i) There is an isomorphism f : (E1, e1) → (E2, e2) such that it is an isomorphism
in category of rigid fibration,

ii) p1♯(Π1(E1, e1)) = p2♯(Π1(E2, e2)).

Proof. For conclusion ii) from i), since f is bijective, continuous map with continuous
inverse and p2o f = p1, p1o f

−1 = p2, therefor we have,

p1♯(Π1(E1, e1)) ⊂ p2♯(Π1(E2, e2)) , p2♯(Π1(E2, e2)) ⊂ p1♯(Π1(E1, e1)).

So the result is obvious. Conversely, using the fact that every rigid covering fiberation
has unique path lifting property and ii), by Theorem (2.2.5) of [7], there is (continuous)
lifts p̃1 : (E1, e1) → (E2, e2) and p̃2 : (E2, e2) → (E1, e1) such that p2op̃1 = p1 and
p1op̃2 = p2 respectively. So we have p2o(p̃1op̃2) = p2. On the other hand p2oIdE2

= p2
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and (p̃1op̃2)(e2) = e2 = IdE2
(e2), therefor p̃1op̃2 = IdE2

and similarly p̃2op̃1 = IdE1
. It

yields p̃1 is continuous, bijective with continuous inverse and we have i). ■

Following Theorem states an important property for the map p that define as follows.

p : Hom((S1, 1), (X,x)) −→ πtop1 (X,x)

f 7−→ [f ]

Theorem 2.4 For a locally path connected, pointed topological space X, the map p is
open.

Proof. Let U ⊂ Hom((S1, 1), (X,x)) be open. By definition of quotient topology, we
must be show p−1(p(U)) ⊂ Hom((S1, 1), (X,x)) is open . But we have,

p−1(p(U)) = p−1({[f ]|f ∈ U}) = {f̄ ∈ Hom((S1, 1), (X,x))|∃f ∈ U s.t f̄ ≃p f}

Since above set equal to union of the path components of space Hom((S1, 1), (X,x))
that each of them contains at least one member of U , so we put
Hom((S1, 1), (X,x)) =

∪
λ∈ΛHomλ((S

1, 1), (X,x)) such that Homλ((S
1, 1), (X,x))

is a path component in Hom((S1, 1), (X,x)) for every λ ∈ Λ. Therefore we can
assume that p−1(p(U)) = ∪λ∈Ω⊂Λ Homλ((S

1, 1), (X,x)). Let fλ be represnta-
tive of homotopic class of component Homλ((S

1, 1), (X,x)) for every λ ∈ Λ. So
we have a homotopy Fλ : f ≃p fλ in λ-th component such that F transforms
f to fλ continuously for every f ∈ Homλ((S

1, 1), (X,x)). We define the map
rλ : Homλ((S

1, 1), (X,x)) −→ Hom((S1, 1), (X,x)) by rλ(f) = Fλ(f)|S1×{1} = fλ for

every λ ∈ Λ\Ω. Since restriction of all homotopy between f and fλ in S1 × {1} is fλ, so
rλ is well defined and also a constant map respect to fλ. In addition rλ is continuous
and in fact it is a contraction. We assume two cases for λ ∈ Ω:

1) If U ∩ Homλ((S
1, 1), (X,x)) has only one member, we choose it as fλ and rλ

defines as before.
2) If U ∩Homλ((S

1, 1), (X,x)) has more than one member.

So there are two continuous map:

a) Choosing fλ ∈ U ∩ Homλ((S
1, 1), (X,x)), we assume the non empty set

Zλ := (U ∩ Homλ((S
1, 1), (X,x)))\{fλ} and we consider the continuous identity

map IdZλ
.

b) We define rλ as before.

Now by gluing Lemma the continuous map

r : Hom((S1, 1), (X,x)) → Hom((S1, 1), (X,x))

can be define as,

r(f) =

 IdZλ
If λ ∈ Ω, f ∈ U and f be homotopic with another

member and not be the representive of λ component
rλ(f) otherwise

for every f ∈ Homλ((S
1, 1), (X,x)). But we have Im r = U ∪ (∪λ∈Λ\Ωfλ) and since

U ⊂ Hom((S1, 1), (X,x))) is open, therefor U ⊂ Im r is open. We have r is continuous,
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so r−1(U) is open in Hom((S1, 1), (X,x))). In fact we have,

r−1(U) =
∪

λ∈Ω1⊂Ω

Homλ((S
1, 1), (X,x)))

∪
λ∈Ω2⊂Ω

Homλ((S
1, 1), (X,x))\Zλ)

∪
λ∈Ω2

Zλ

where Ω = Ω1 ∪ Ω2 and ∅ = Ω1 ∩ Ω2. So

r−1(U) =
∪
λ∈Ω

Homλ((S
1, 1), (X,x))

is open in Hom((S1, 1), (X,x)). Note that for all λ ∈ Ω1, Homλ((S
1, 1), (X,x)) is an

inverse image of the element of U that consider as representative of λ-th component and
not homotopic to any element of U . Also, for every λ ∈ Ω2, Homλ((S

1, 1), (X,x))\Zλ

is inverse image of a member of U that is at least homotopic to a member of itself and
it choose as representative of λ-th. Moreover Zλ is the inverse image of the elements of
U ∩ Homλ((S

1, 1), (X,x)) that they are homotopic with a member of themselves and
they not choose as representative of λ component. This conclude that p is an open map.
■

3. Main Theorems

The following Theorem states a necessary and sufficient condition for products of topo-
logical spaces to be semilocally simply connected.

Theorem 3.1 Let X =
∏

i∈I Xi and Xis are metrizable, path connected and locally
path connected spaces. In addition let the index set I be countable, then the space X is
semilocally simply connected if and only if it satisfies in the following conditions.

(1) All but finitely many Xi are simply connected.
(2) All Xi are semilocally simply connected.

Proof. Let X be semilocally simply connected. By assumption and product topol-
ogy X is a metrizable, path connected and locally path connected space. Therefore by
[4], πTop

1 (X) is discrete space. Product topology again, yields πTop
1 (Xi) is discrete for

all i ∈ I. Therefore by [4] , Xi is semilocally simply connected and condition (2) is
satisfy. Since the product of infinity discrete space is discrete iff all but finitely many
of them have one point, so all but finitely many Xis are simply connected and we
have condition (1). Conversely, let Xi be semilocally simply connected for all i ∈ I.

So by [4], πTop
1 (Xi) have discrete topology for all i ∈ I. On the other hand, consider

index set J ⊂ I with |J | < ∞, such that πTop
1 (Xi) = 0 for all i ∈ I \ J . It yields∏

i∈I π
Top
1 (Xi) =

∏
i∈J π

Top
1 (Xi), therefore by product topology

∏
i∈I π

Top
1 (Xi) is dis-

crete. Since we have πTop
1 (

∏
i∈I Xi) ∼=

∏
i∈I π

Top
1 (Xi) and the righthand of this congruent

is discrete, so the left hand of this congruent is also discrete and by use of another con-
ditions (2) and [4], we have the result. ■

Using proposition (1.36) of [5], the following Theorem present a classification for con-
nected covering of a triply connected (i.e.connected, locally path connected, semilocally
simply connected) space. At first some primary notes must be state. Let ΩX be the space
of all loops in X based at x with compact-open topology. By some notes after (7.2.4) in
[7], there is an isomorphism ψ : π1(X) ∼= π0(ΩX) such that image of [f ] ∈ π(X) by ψ is a
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set of all members of ΩX that are path homotopic to f i.e. ψ[f ] = {g ∈ ΩX|g ≃p f} as an

element of π0(ΩX). Therefore the map δ = γTopoψ : π1(X) → πTop
0 (F ), is a continuous

map for all fiber F of fiberation p : E → X that has unique path lifting property.

Theorem 3.2 Suppose that (X,x) is a path connected, locally path connected, semilo-
cally simply connected pointed space. Therefore connected covers of X are classified by
conjugacy classes of open subgroups of πTop

1 (X,x).

Proof. By general topology, the statement of Theorem is equal to prove two following
statements.

(a) Let q : (X̃, x̃) → (X,x) is a covering map such that X̃ is connected and furthermore
q♯(π1(X̃, x̃)) = π. We will prove that the homogeneous space π1(X,x)/π has discrete
topology. By above note, we know that for this fibration and all fiber F , the mentioned
map δ : πTop

1 (X) → πTop
0 (F ) is continuous. Moreover by this condition, the space X̃ is

also path connected, so π0(X̃) = 0. Therefore the end of exact homotopy sequence, with
induced topology is

...→ πTop
1 (F ) → πTop

1 (X̃) → πTop
1 (X)

δ→ πTop
0 (F ) → 0,

so δ is onto. On the other hand, since π0(F ) is set of connected component of F , therefore

by assumptions we have isomorphism ψ : π0(F ) ∼= F with inverse p1 : F → πTop
0 (F ),

that maps members of a path component to corresponding path component as a member
of πTop

0 (F ). Now the map q is continuous covering projection , so the topology on F

is discrete and since the topology of πTop
0 (F ) is quotient topology that induced by p1,

therefore it is also a discrete topological space. Obviously p1 is an open map, so ψ = p−1
1 is

continuous. Define δ̄ :
πTop
1 (X)

Ker δ
→ πTop

0 (F ) by δ̄([g]+Ker δ) = δ([g]). Using assumptions,

δ̄ is continuous and since δ is onto, therefore δ̄ is bijective . Now we consider the image

of all single points of
πTop
1 (X)

Ker δ
by δ̄0. We know that it is a member of space πTop

0 (F ).

So by use of discreteness of this space, it must be has one point and it is an open

set. Therefore the inverse of this set with single point is open in
πTop
1 (X)

Ker δ0
and we have

the result. For the rest of proof it is enough we prove Ker δ = π = q♯(π1(X̃, x̃)) or

equivalently we must prove {[f ] ∈ πTop
1 (X,x)|f̃(1) = x̃} = q♯(π1(X̃, x̃)). Let [ee0 ] be

trivial element of πTop
0 (F ). Since δ(π) = [ee0 ], so obviously π ⊂ Kerδ. On the other hand

if [f ] ∈ Kerδ , then f̃ ,the lift of [f ] based at x̃, is a loop at x̃ i.e. [f̃ ] ∈ π1(X̃, x̃).
Therefore [f ] = [qof̃ ] ∈ q♯(π1(X̃, x̃) = π, so Kerδ ⊂ π. Furthermore, if we substituted x̃

by ỹ and considering covering map g : (X̃, ỹ) → (X,x), then two subgroups q♯(π1(X̃, x̃))

and g♯(π1(X̃, ỹ)) are conjugate (Theorem (1.38) of [6]).
(b) Let X be a path connected, locally path connected, semilocally simply connected,

so for all subgroup π ⩽ π1(X,x), there is a covering projection map q : X̃ → X, such
that for a suitable point x̃ ∈ X̃, we have q♯(π1(X̃, x̃)) = π (Proposition (1.36) of [6]).

There is one note about this part, if X̃ is connected, then by (a), the space
πTop
1 (X)

Ker δ
has

discrete topology. Moreover if π′ is a conjugate subgroup for π in π1(X,x), then there
is a covering projection map g : Ỹ → X such that for suitable point ỹ ∈ Ỹ we have
g♯(π1(Ỹ , ỹ)) = π′. Now if we assume Ỹ is connected, by use of part 3 of Theorem (2.5.2)

of [7], we conclude that there is a covering projection map f : Ỹ → X̃. ■
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