

Journal of Linear and Topological Algebra Vol. 01, No. 02, Summer 2013, 115- 118

E-Clean Matrices and Unit-Regular Matrices

Sh.A. Safari Sabet^a and S. Razaghi^{a,*}

^a*Department of Mathematics, Islamic Azad University, Central Tehran Branch,Code 14168-94351, Iran*;

Abstract. Let $a, b, k \in K$ and $u, v \in U(K)$. We show for any idempotent $e \in K$, $\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}$ *b* 0) is e-clean iff $\begin{pmatrix} a & 0 \\ u(vb + ka) & 0 \end{pmatrix}$ is e-clean and if $\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}$ *b* 0) is 0-clean, $\begin{pmatrix} ua & 0 \\ u(vb + ka) & 0 \end{pmatrix}$ is too.

Keywords: matrix ring, unimodular column, unit-regular, clean , e-clean.

1. Introduction

Throughout this paper, all rings are associative with identity and we let $U(K)$ be the units group of ring K and $(a', b')^t$ as a column of 2×2 matrix. An element in a ring K is said to be clean (respectively, unit-regular) if it is the sum (respectively, product) of an idempotent element and an invertible element. Answering a question of Nicholson, Yu, Camilo and Khurana proved that a unit-regular ring is clean [1] and [2]. Lam and Khurana have shown that a single unit-regular need not to be clean. More generally, they gave a criterion for a matrix $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$ to be clean in a matrix ring $M_2(K)$ over any commutative ring K [3]. In this note, similarly, we gave a criterion for a matrix $\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}$ *b* 0 \setminus to be clean in a matrix ring $M_2(K)$ over any commutative ring *K*. Finally, we show that for $a, b, k \in K$ and $u, v \in U(K)$ and for any idempotent $e \in K$, (*a* 0 *b* 0) is e-clean iff $\begin{pmatrix} a & 0 \\ u(vb + ka) & 0 \end{pmatrix}$ is e-clean and if matrix $\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}$ *b* 0) is 0-clean, $\begin{pmatrix} ua & 0 \\ u(vb + ka) & 0 \end{pmatrix}$ is too.

2. Main results

Throughout this work, an unimodular column means a column whose entries generate the unit ideal.

*[∗]*Corresponding author. Email: razaghi somaye@yahoo.com

Proposition 2.1 A matrix $B =$ (*a* 0 *b* 0 \setminus is unit-regular in $M_2(K)$ iff there exists an idempotent $e \in K$ and a unimodular column $(a', b')^t \in K^2$ such that $(a, b)^t =$ $(a', b')^t e$.

Proof. If $(a, b)^t$ has the form $(a', b')^t e$ as above, since $(a', b')^t$ is unimodular, $a'y - b'x = 1$ for some *x, y* \in *K* and the equation

$$
\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} = \begin{pmatrix} a' & x \\ b' & y \end{pmatrix} \begin{pmatrix} e & 0 \\ 0 & 0 \end{pmatrix}
$$

shows that *B* is unit-regular. Conversely, assume that *B* is unit-regular; say $B =$ *UE* , where $E = E^2$ and $U \in GL_2(K)$. $E = \begin{pmatrix} e & r \\ s & t \end{pmatrix}$ and $U =$ $\left(\begin{array}{c} w & x \\ y & z \end{array}\right)$. Then $(r, t)^t = U^{-1}.(0, 0)^t = (0, 0)^t$, and so

$$
E = E^2 = \begin{pmatrix} e^2 & 0 \\ se & 0 \end{pmatrix}
$$

shows that $e = e^2$, and $s = se$. Therefore, $(a, b)^t = (a', b')^t e$, where

$$
(a', b')^t = (w, y)^t + (x, z)^t s
$$

is an unimodular column since (w, x) and (x, z) are the columns of a matrix in $GL_2(K)$. \square

We shall now introduce a matrix that will be crucial for the work in the rest of this paper. For any three elements *e*, $x, k \in K$ such that $e = e^2$ and $ex = 0$, we define the matrix

$$
E(e, x, k) := \begin{pmatrix} e - kx & x \\ ke - k(kx + 1) & kx + 1 \end{pmatrix} \in M_2(K) \tag{1}
$$

The basic properties of *E*(*e, x , k*) are summarized as follows [3].

Proposition 2.2 $E := E(e, x, k)$ is an idempotent matrix over K with $tr(E) =$ $e + 1$ and $det(E) = e$.

Proposition 2.3 Let $E = (a_{ij})$ be any 2×2 idempotent matrix over *K* with determinant *e*. Then $e^2 = e$, and $ea_{ij} = \delta_{ij} e$ (where $\{\delta_{ij}\}\$ are the Kronecker deltas). If the last column of *E* happens to be unimodular, then $a_{22} \equiv 1 (mod a_{12} K)$.

Proof. First, we have $e = det(E) = det(E^2) = (det(E))^2 = e^2$. Let $f = 1$ *e* be the complementary idempotent of *e*. Over the factor ring K/fK , \overline{E} has determinant $\overline{1}$, and is thus invertible. But then $\overline{E} = \overline{E}^2$ implies that \overline{E} is the identity matrix. This means that $a_{ii} \in 1 + fK$ for all *i*, and $a_{ij} \in fK$ for $i \neq j$. Multiplying these by *e*, we see that $ea_{ii} = e$ for all *i*, and $ea_{ij} = 0$ for $i \neq j$. If, in addition, the last column of *E* is unimodular, then, over the factor ring $K/a_{12}K$, *a*²² becomes a unit, and *E* becomes an (idempotent) block-upper triangular matrix. The latter implies that the image of a_{22} in $K/a_{12}K$ is an idempotent, and thus we must have $a_{22} \equiv 1 (mod a_{12} K)$.

It is known $[3]$, definition(3.1)] that if *e* be a given idempotent in *K*, and matrix $M \in M_n(K)$ can be written in the form $E + U$, for some $E = E^2$ of determinant e and some $U \in GL_n(K)$, *M* is *e*-clean.

THEOREM 2.4 Let *e* be a given idempotent in *K*. Then $B = \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}$ *b* 0 \setminus *is e-clean iff there exits* $x, y \in K$ *with* $ex = 0$ *and* $y \equiv 1 (mod xK)$ *such that* $ay - bx$ *is e-clean.* **Proof.** For the "if" part, write *y* in the form $kx + 1$ with $ex = 0$, and let $au - bx =$ $e + u$, where $u \in U(K)$. We can then form the idempotent matrix $E := E(e, x, k)$ in (1), with $det(E) = e$ by Proposition (2.2). Letting $U := B - E$, we have

$$
det(U) = -(ay + bx) + det(E) = -(e + u) + e = -u \in U(K).
$$

Thus, $U \in GL_2(K)$, and $B = E + U$ shows that *B* is *e*-clean. For the "only if" part, assume that $B = E + U$ with $E = E^2 = \begin{pmatrix} p & x \\ q & y \end{pmatrix}$ of determinant *e*, and $U \in GL_2(K)$. Since $U =$ $\int a - p - x$ *b − q −y* \setminus and $U \in GL_2(K)$, we have $(-x, -y)^t$ is an unimodular column so the last column of *E* is unimodular. Thus, by Proposition (2.3), we have $ex = 0$, and $y \equiv 1(mod xK)$. Now let $u := -det(U) \in U(K)$. Then

$$
-u = \det \begin{pmatrix} a-p-x \\ b-q-y \end{pmatrix} = -ay + bx + e
$$

so $ay - bx = e + u \in K$ is *e*-clean, as desired.

Corollary 2.5 Let $k \in K$ and $u, v \in U(K)$. For any idempotent $e \in K$,

(1)
$$
B = \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}
$$
 is e-clean iff $B' = \begin{pmatrix} a & 0 \\ vb + ka & 0 \end{pmatrix}$ is e-clean.
\n(2) $B = \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}$ is e-clean iff $B'' = \begin{pmatrix} a & 0 \\ u(vb + ka) & 0 \end{pmatrix}$ is e-clean.

Proof.

- (1) It's proof is similar to [[3], Corollary (3.3)].
- (2) Let *B* is e-clean, there exist (by Theorem (2.4)) $ex = 0, y \equiv 1 \pmod{xK}$ and $ay - bx$ is e-clean.

Let $b' = u(vb + ka)$. Then $ay - bx = ay - v^{-1}(u^{-1}b' - ka)x = ay_1 - b'x_1$ is e-clean for $x_1 = v^{-1}u^{-1}x$ and $y_1 = y + v^{-1}kx$. Since $ex_1 = eu^{-1}v^{-1}x = 0$ and $y_1 \equiv y \equiv 1$ modulo the ideal $x_1K = xK$, *B''* is e-clean again by theorem(2.4). Conversely, Assuming *B^{''}* is e-clean, there exist $x_1, y_1 \in K$ such that $ex_1 = 0$, $y_1 \equiv 1 \pmod{x_1K}$ and $ay_1 - b'x_1$ is e-clean.

Let $b' := u(vb + ka)$. Then $ay_1 - b'x_1 = ay_1 - u(vb + ka)x_1 = ay_1 - uvbx_1 - ukax_1 =$ $ay - bx$ for $x = uvx_1$ and $y = y_1 - ukx_1$. Since $ex = euvx_1 = 0$ and $y \equiv y_1 \equiv 1$ modulo the ideal $x_1K = xK$, so *B* is e-clean.

If *e* = 0 then *B* is 0-clean. The following theorem gives some properties for *B* to be 0-clean. It's proof is analogue of [[3], Corollary $(2.5.2)$]. \Box

Corollary 2.6 $B =$ (*a* 0 *b* 0 \setminus is 0-clean iff there exsist $x_0, y_0 \in K$ such that $ay_0 - bx_0 =$ 1 and y_0+x_0K contains a unit of K. (In this case, B is also unit-regular, according to Proposition (2.1).)

Corollary 2.7 Let $a, b \in K$ and $u, v \in U(K)$. If $\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}$ *b* 0 \setminus is 0-clean, so $\begin{pmatrix} ua & 0 \\ u(vb + ka) & 0 \end{pmatrix}$ is.

Proof. If $u = 1$, this is covered by corollary (2.5) (even in the e-clean case). Thus, it only remains to make the passage from *B* to $\begin{pmatrix} ua & 0 \\ u & 0 \end{pmatrix}$ *ub* 0 \setminus .This can be done (albeit only in the 0-clean case) by rewriting the equation ay_0 − bx_0 = 1 for some $x_0, y_0 \in K$ in Corollary (2.6) in the form $au(u^{-1}y_0) - bu(u^{-1}x_0) = 1$, and noting that

$$
u^{-1}y_0 + u^{-1}x_0K = u^{-1}(y_0 + x_0K).
$$

□

References

- [1] V.P. Camillo, D. Khurana, A characterization of unit-regular rings, Comm. Algebra 29(2001) 2293- 2295.
- [2] V.P. Camillo, H.P.Yu, Exchange rings, units and idempotents, Comm. Algebra 22(1994) 4737-4749.
- [3] D. Khurana,T.Y. Lam, Clean matrices and unit-regular matrices, J. Algebra 280(2004) 683-698.