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Operational matrices with respect to Hermite polynomials
and their applications in solving linear differential

equations with variable coefficients
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Abstract. In this paper, a new and efficient approach is applied for numerical approximation
of the linear differential equations with variable coefficients based on operational matrices
with respect to Hermite polynomials. Explicit formulae which express the Hermite expansion
coefficients for the moments of derivatives of any differentiable function in terms of the
original expansion coefficients of the function itself are given in the matrix form. The main
importance of this scheme is that using this approach reduces solving the linear differential
equations to solve a system of linear algebraic equations, thus greatly simplifying the problem.
In addition, two experiments are given to demonstrate the validity and applicability of the
method.
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1. Introduction

Orthogonal polynomials play a prominent role in pure, applied and computational math-
ematics, as well as in the applied sciences and also in many fields of numerical analysis
such as quadratures, approximation theory and so on [4, 11, 15, 27]. In particular case,
these polynomials have an important role in the spectral methods. These methods (spec-
tral methods) have been successfully applied in the approximation of partial, differential
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and integral equations. Three most widely used spectral versions are the Galerkin, collo-
cation and Tau methods. Their utility is based on the fact that if the solution sought is
smooth, usually only a few terms in an expansion of global basis functions are needed to
represent it to high accuracy [6–9, 16, 20, 35]. We must note to this point that numerical
methods for ordinary, partial and integral differential equations can be classified into the
local and global categories. The finite-difference and finite-element methods are based on
local arguments, whereas the spectral methods are in the global class [14, 34]. Spectral
methods, in the context of numerical schemes for differential equations, belong to the
family of weighted residual methods, which are traditionally regarded as the foundation
of many numerical methods such as finite element, spectral, finite volume and boundary
element methods. Also the linear ODEs with variable coefficients and their solutions
play a major role in the branch of modern mathematics and arise frequently in many
applied areas. Therefore, a reliable and efficient technique for the solution of them is
too important. The analytic results on the existence and uniqueness of solutions to the
second order linear ODEs have been investigated by many authors [1, 24], however the
existence and uniqueness of the solution for ODEs under their conditions is beyond the
scope of this paper. We assume that the ODEs which we consider in this paper with
their conditions have solutions. During the last decades, several methods have been used
to solve higher order linear ODEs such as Adomian’s decomposition method [2, 3, 36],
Taylor collocation method [17, 18, 19, 33] Haar functions method [28, 31], Tau method
[25, 26], Wavelet method [10], Hybrid function method [21], Legendre wavelet method
[30], collocation method based on Jacobi polynomials [22], Taylor polynomial solutions
[32], Boubaker polynomial approach [5], and Bernoulli polynomial approach [12]. In this
paper, we develop a new and efficient approach to obtain the numerical solution of the
general linear differential-difference equations with variable coefficients of the form

dj∑
k=1

Ak,j(x)y
(j)(x) +

dj−1∑
k=1

Ak,j(x)y
(j−1)(x) + ...+

d0∑
k=1

Ak,j(x)y
(0)(x) = g(x),

−∞ ≤ x ≤ +∞,
j ≥ 0, dt > 0, t = 0, ..., j,

(1)

with the conditions

j∑
k=0

αiky
(k)(ai) = µi, i = 0, 1, ..., j. (2)

The main importance of our work is considering the general linear differential equation
(1) with respect to (2) in which the other papers only considered particular cases of
our general problem. The remainder of this paper is organized as follows: In section 2,
we introduce the properties of Hermite polynomials and the basic formulation of them
required for our subsequent development. Section 3, is devoted to the operational matrices
of the Hermite polynomials (derivative and moment) with some useful theorems. Section
4, summarizes the application of the Hermite polynomials to the solution of problem
(1) and (2). Thus, a set of linear equations is formed and a solution of the considered
problem is introduced. Section 5, is devoted to approximations by Hermite polynomials
and useful theorems. In section 6, the proposed method is applied for two numerical
experiments. Finally, we have monitored a brief conclusion in section 7. Note that we
have computed the numerical results by Matlab (version 2013) programming.
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1.1 The Hermite polynomials

In this part, we define the Hermite polynomials and their properties such as their
Sturm-Liouville ordinary differential equation, three terms recursion formula and etc.
Let Λ = (−∞,+∞), then the Hermite polynomials are denoted by Hn, and they are the
eigenfunctions of the Sturm-Liouville problem

ex
2
(
e−x2

(Hn(x))
′
)′

+ λnHn(x) = 0, x ∈ Λ, (3)

with the eigenvalues λn = 2n [14, 34].
Laguerre polynomials are orthogonal in L2

w(x)(Λ) space with the weight function w(x) =

e−x2

, satisfy in the following relation

∫ +∞

−∞
Hn(x)Hm(x)w(x)dx = γnδm,n, γn =

√
π2nn!, (4)

where δm,n is the Kronecker delta function. The explicit form of these polynomials is in
the form

Hn(x) = n!

[n/2]∑
i=0

(−1)i

i!

(2x)n−2i

(n− 2i)
. (5)

These polynomials are satisfied in the following three terms recurrence formula

Hn+1(x) = 2xHn(x)− 2nHn−1(x), n ≥ 1. (6)

An important property of the Hermite polynomials is the following derivative relation
[14, 34]:

H ′
n(x) = 2nHn−1(x), ∀n ≥ 1, x ∈ Λ. (7)

Further, (Hi(x))
′ are orthogonal with respect to the weight function wα+k. i.e.∫ +∞

−∞
H ′

i(x)H
′
j(x)w(x)dx = γnδi,j , (8)

where γn is defined in (4).

A function y(x) ∈ L2
w(x)(−∞,+∞), can be expressed in terms of Hermite polynomials

as

y(x) =

∞∑
i=0

aiHi(x), (9)
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where the coefficients ai is given by

ai =
1

γi

∫ +∞

−∞
Hi(x)y(x)w(x)(x)dx. (10)

In practice, only the first m+ 1 terms of the Hermite polynomials are considered. Then
we have:

ym(x) =

m∑
i=0

aiHi(x) = (Hi(x))
T A, (11)

where the Hermite coefficient vector A and the Hermite vector H(x) are given by

A = [a0, a1, ..., am]T ,

H(x) = [H0,H1, ..., Hm]T .

(12)

2. Operational matrices of the Hermite polynomials (derivative and
moment)

In this section, we present the operational matrices of the Hermite polynomials (derivative
and moment). To do this, first we introduce the concept of the operational matrix.

2.1 The operational matrix

Definition 1. Suppose

ϕ = [ϕ0, ϕ1, ..., ϕn], (13)

where ϕ0, ϕ1, ..., ϕn are the basis functions on the given interval [a, b]. The matrices En×n

and Fn×n are named as the operational matrices of derivatives and integrals respectively
if and only if

d
dtϕ(t) ≃ Eϕ(t),∫ x
a ϕ(t)dt ≃ Fϕ(t).

(14)

Further assume g = [g0, g1, ..., gn], named as the operational matrix of the product, if
and only if

ϕ(x)ϕT (x) ≃ Ggϕ(x). (15)

In other words, to obtain the operational matrix of a product, it is sufficient to find gi,j,k
in the following relation

ϕi(x)ϕj(x) ≃
i+j∑
k=0

gi,j,kϕk(x), (16)
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which is called the linearization formula [13]. Operational matrices are used in several
areas of numerical analysis and they hold particular importance in various subjects such
as integral equations [29], differential and partial differential equations [23] and etc.
Also many textbooks and papers have employed the operational matrices for spectral
methods. Now we present the following theorem.

Theorem 1. If we consider the Hermite approximation

y(x) ∼=
m∑
i=0

akHk(x) = (H(x))TA, (17)

then

xiy(j)(x) ∼= BTH(x) =
((

GiDj
)T

A
)T

H(x), (18)

where

Di,j =

{
2i, j = i− 1,
0, otherwise,

(19)

and

Gi,j =

1/2, j = i+ 1,
−i+ 1, j = i− 1,
0, otherwise.

(20)

Proof: First, we obtain the operational matrix with respect to the derivative operator.
For this goal, we must obtain a matrix D which satisfy in the following formula

(H0(x))
′

(H1(x))
′

...
(Hn(x))

′

 = D


H0(x)
H1(x)
...
Hn(x)

 , (21)

but by using (7), we can obtain the matrix D as the following

Di,j =

{
2i, j = i− 1,
0, otherwise.

(22)

Now by j-times repeating the formula (21), we can obtain the operational matrix with
respect to y(j)(x) as the following


(H0(x))

(j)

(H1(x))
(j)

...

(Hn(x))
(j)

 = Dj


H0(x)
H1(x)
...
Hn(x)

 . (23)
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Also for obtaining the operational matrix with respect to moment opertor we must obtain
a matrix G, which satisfy in the following relation

xH0(x)
xH1(x)
...
xHn(x)

 = G


H0(x)
H1(x)
...
Hn(x)

 , (24)

but by using (6), we can obtain the matrix G as the following

Gi,j =

1/2, j = i+ 1,
−i+ 1, j = i− 1,
0, otherwise.

(25)

Now by i-times repeating the formula (24), we can obtain the operational matrix with
respect to xiy(x), as the following

xiH0(x)
xiH1(x)
...
xiHn(x)

 = Gi


H0(x)
H1(x)
...
Hn(x)

 . (26)

Now using formulae (21) and (24), yields

xiy(j)(x) ≃
n∑

k=0

akx
i(Hk(x))

(j) = ATxi


(H0(x))

(j)

(H1(x))
(j)

...

(Hn(x))
(j)

 =

ATGiDj


H0(x)
H1(x)
...
Hn(x)

 =
((

GiDj
)T

A
)T

H(x),

(27)

so the proof is completed. □

3. The method of solution

In this section, we describe our new approach for solving the linear differential equations
with variable coefficients (1) with respect to the conditions (2). Our approach is based
on approximating the exact solution of (1) by truncated Hermite expansion as

y(x) ≃
m∑
i=0

aiHi(x) = (H(x))TA, (28)
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where

A = [a0, a1, ..., am]T , (29)

and

H(x) = [H0(x),H1(x), ...,Hm(x)] . (30)

Also we assume that the coefficients Ak,j(x) have the Taylor series expansion in the
following form

Ak,j =

mj∑
i=0

e
(j)
k,ix

i. (31)

Now by substituting (28) and (31), into (1), we obtain

sj∑
k=1

mj∑
i=0

e
(j)
k,ix

iy(j)(x)+

sj−1∑
k=1

mj−1∑
i=0

e
(j−1)
k,i xiy(j−1)(x)+ ... +

s0∑
k=1

m0∑
i=0

e
(0)
k,ix

iy(0)(x) ≃ f(x), (32)

therefore from (32), we must simplify xi
(
y(j)(x)

)
as the following

xiy(j)(x) ≃
m∑
k=0

akHk(x) = (H(x))TB
(i)
(j) =

(
(
GiDj

)T
A)T (H(x)),

(33)

where D and G, are defined in (19) and (20) respectively. Also we approximate the right
hand side of (1) as

f(x) =

m∑
i=0

biHi(x) = (H(x))TB, (34)

where

B = [b0, b1, ..., bm]T , (35)

and

H(x) = [H0(x),H1(x), ...,Hm(x)] . (36)

Using formulae (33) and (34) into (32), we obtain

(H(x))T
(

sj∑
k=1

mj∑
i=0

e
(j)
i,kB

(i)
(j) +

sj∑
k=1

mj∑
i=0

e
(j−1)
i,k B

(i)
(j−1) + ....

sj∑
k=1

mj∑
i=0

e
(0)
i,kB

(i)
(0)

)
=(

L(α)(x)
)T

F ≃ (H(x))TB.

(37)

From linear independency of the Hermite polynomials, we conclude

F = B (38)
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where

F = [f0, f1, ..., fm]. (39)

Therefore from (38), we have a system of m + 1 algebraic equations of m + 1 unknown
coefficients ai. Finally, we must obtain the corresponding matrix form for the boundary
conditions. For this purpose from (2), the values y(j)(a) can be written as:

y(j)(a) = (H(x))T
(
Dj

)T
A, a ∈ (−∞,+∞). (40)

Substituting (40) in the boundary conditions (2) and then simplifying it, we obtain the
following matrix form

j∑
i=0

bi,ly
(l)(ai) = (H(x))T

{
j∑

i=0

bi,lD
iA

}
= σl, ai ∈ (−∞,+∞). (41)

Now from (38) and (41), we have m + j + 1 algebraic equations of m + 1 unknown
coefficients. Thus for obtaining the unknown coefficients, we must eliminate j arbitrary
equations from these m + j + 1 equations. But because of the necessity of holding the
boundary conditions, we eliminate the last j equations from (38). Finally, replacing the
last j equations of (38) by the j equations of (41), we obtain a system of m+1 equations
of m+ 1 unknowns ai.

4. Approximations by Hermite polynomials

Now in this section, we present some useful theorems which show the approximations of
functions by Hermite polynomials. For this purpose, let us define Λ = {x | −∞ < x < ∞}
and

JN = span{H0(x),H1(x), ...,HN (x)}.

The L2
w(x)(Λ)− orthogonal projection πN : L2(Λ) → JN is a mapping in a way that for

any y(x) ∈ L2(Λ), we have:

⟨πN (y)− y,Φ⟩ = 0, ∀Φ ∈ JN .

Due to the orthogonality, we can write

πN (y) =

N−1∑
k=0

ckHk(x), (42)

where ci (i = 0, 1, ..., N − 1) are constants in the following form

ci =
1

γk
< y(x),Hk >L2

w(x)
.

In the literature of spectral methods, πN (y) is named as Hermite expansion of y(x) and



Z. Kalateh Bojdi et al. / J. Linear. Topological. Algebra. 02(02) (2013) 91-103. 99

approximates y(x) on (−∞,+∞). In the spectral methods, by substituting the Hermite
expansion πN (y) in the ordinary differential equations and their boundary conditions,
we obtain a residual term which symbolically is showed by Res(x) as a function of x
and N . Different strategies for minimizing a residual term Res(x), leads to different
versions of the spectral methods such as Galerkin, Tau and collocation methods. For
instance, in the collocation methods the residual term Res(x) is vanished in particular
points named as collocated points. Also estimating the distance between y(x) and it’s
Hermite expansion as measured in the weighted norm ∥.∥w(α) is an important problem
in numerical analysis. The following theorem provide the basic approximation results
for Hermite expansion.

Theorem 2. we have

∥ dl

dxl
(πN (y)− y) ∥w(x)⩽ N (l−m)/2 ∥ dm

dxm
y(x) ∥w(x),

0 ⩽ l ⩽ m, ∀y ∈ Bm(Λ),

where

Bm(Λ) = {∀y ∈ L2
w :

dly

dxl
∈ L2

w(Λ), 0 ⩽ l ⩽ m}.

Proof: See [14]. □

5. The test experiments

In this section, two numerical experiments are given to illustrate the properties of the
method and all of them were performed on the computer using a program written in
Matlab 2013.

Experiment 1. Consider the second-order differential equation

(x2 + 1)y′′(x) + y′(x) = 1, (43)

with the boundary conditions

y(0) = 0, y(1) = 1. (44)

The exact solution is y(x) = x.

Now we approximate the exact solution of (43) by

y(x) ≃
5∑

i=0

aiHi(x) = (H(x))TA, (45)
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where

A = [a0, a1, .., a5]. (46)

Also we expand the right hand side of (43) as

1 ≃
5∑

i=0

biHi(x) = (H(x))TB, (47)

where

B = [1, 0, .., 0]. (48)

First we reduce the equation (43) into the following matrix form

(
G2D2 +D2 +D

)T
A = 0. (49)

Also its boundary conditions as

5∑
i=0

aiHi(0) = (H(0))TA = 0. (50)

and

5∑
i=0

aiHi(1) = (H(1))TA = 1. (51)

By implementation of our method which is presented in section 4, and also after the
augmented matrices of the system and boundary conditions are computed, we obtain
the solution

y(x) = x, (52)

which is the exact solution.

Experiment 2. Consider the third-order linear difference equation

x2y′′′(x) + y′′(x) = 2, (53)

with boundary conditions

y(0) = 0, y(1) = 1, y(−1) = 1. (54)
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Now we approximate the exact solution of (53) by

y(x) ≃
5∑

i=0

aiHi(x) = (H(x))TA. (55)

Also we expand the right hand side of (53) as

2 ≃
5∑

i=0

biHi(x) = (H(x))TB, (56)

where

B = [2, 0, .., 0]. (57)

No we must reduce the equation (53) into the following matrix form

(
G2D3 +D2

)T
A = B. (58)

and also its boundary conditions as

5∑
i=0

aiHi(0) = (H(0))TA = 0, (59)

5∑
i=0

aiHi(1) = (H(1))TA = 1. (60)

and

5∑
i=0

aiHi(−1) = (H(−1))TA = 1. (61)

After the augmented matrices of the system and boundary conditions are computed, we
obtain the solution

y(x) = x2, (62)

which is the exact solution.

6. Conclusion

In this paper, we have introduced a new and efficient approach for numerical approxima-
tion of linear differential equations with variable coefficients. The method is based on the
approximation of the exact solution with Hermite polynomials approximation and also
variable coefficients with Taylor series expansion. Implementation of the method reduces
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the problem to a system of algebraic equations. Two test experiments are presented for
showing the accuracy and efficiency of the method.
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