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Abstract. One of the efficient and powerful schemes to solve linear and nonlinear equations
is homotopy analysis method (HAM). In this work, we obtain the approximate solution of
a system of partial differential equations (PDEs) by means of HAM. For this purpose, we
develop the concept of HAM for a system of PDEs as a matrix form. Then, we prove the
convergence theorem and apply the proposed method to find the approximate solution of
some systems of PDEs. Also, we show the region of convergence by plotting the H-surface.
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1. Introduction

Homotopy analysis method (HAM) was introduced by Liao in [8]. HAM is an efficient
method for solving different kinds of partial differential equations. In recent years this
method has been used to solve the various types of PDEs [1, 2, 5–7, 15]. The system of
PDEs arise in mathematics, engineering and physical sciences. In [11], Sami Bataineh et
al. used the HAM for solving the system of PDEs analytically, and in [3, 4], the homotopy
perturbation method (HPM) was applied for solving the system of PDEs.

In this work, we introduce a development of the homotopy analysis method based on
the matrix form of HAM and apply it to find the approximate solution of a given system
of linear or nonlinear partial differential equations. Then, we prove the convergence of the
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proposed method and apply the method to find the solution of some systems of PDEs.
Also, we introduce the H-surface to determine the region of convergence.
In section 2, we present the main idea of the work and introduce the HAM via matrix
form. In section 3, we prove the convergence theorem of this method for a general form
of system of partial differential equations. Section 4 contains some linear and nonlinear
systems of PDEs which are solved based on the HAM in matrix form and the regions of
convergence are shown.

2. Main idea

In this section, we develop the idea of HAM to solve a system of linear or nonlinear
differential equations. We consider the following system,

N [U(X, t)] = 0, (1)

N =

N1[U(X, t)]
...

Nn[U(X, t)]

 , U(X, t) =

U1(X, t)
...

Un(X, t)


where N is the matrix of nonlinear operators, X = (x, y, z) is the vector of variables and
U is the vector of unknown functions. At first, we construct the zero-order deformation
system as follows.

(I −Q)L[ϕ(X, t;Q)− U (0)(X, t)] = QHN [ϕ(X, t;Q)], (2)

where I is the identity matrix, L =

(
L1 0

.
.
.

0 Ln

)
is an auxiliary linear operator matrix,

H =

(
h1 0

.
.
.

0 hn

)
is an auxiliary parameter matrix, ϕ(X, t;Q) is the vector of unknown

functions, U (0)(X, t) is the vector of initial guess and Q =

(
q1 0

.
.
.

0 qn

)
, 0 ⩽ qi ⩽ 1,

1 ⩽ i ⩽ n, is a diagonal matrix which denotes the embedding parameter matrix.
It is obvious, when the qi’s, 1 ⩽ i ⩽ n, increase from 0 to 1 or in other word, the
embedding parameter matrix changes from Q = 0 to Q = I, the solution of system of
equations (2) changes from ϕ(X, t; 0) = U (0)(X, t) to ϕ(X, t; I) = U(X, t). Therefore,
ϕ(X, t) varies from the initial guess U (0)(X, t) to the exact solution U(X, t) of the system.

We consider ϕ(X, t;Q) in the following expansion in matrix form,

ϕ(X, t;Q) = U (0)(X, t) +

+∞∑
m=1

QmU (m)(X, t), (3)
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where

U (m)(X, t) =
1

m!


∂mϕ1(X,t,q1)

∂qm1
|q1=0

...
∂mϕn(X,t,qn)

∂qmn
|qn=0.

 . (4)

The convergence of the vector series (3) depends upon the auxiliary parameter matrix
H, if it is convergent at Q = I, we have

U(X, t) = U (0)(X, t) +

+∞∑
m=1

U (m)(X, t). (5)

Now, we define the vector,

−→
U k = {U (0)(X, t), . . . , U (k)(X, t)}, (6)

where,

U (i) =

U
(i)
1 (X, t)

...

U
(i)
n (X, t)

 , i = 0, . . . , k. (7)

Differentiating the zero-order system (2) m times with respect to the diagonal elements
of the embedding parameter matrix Q and setting Q = 0 and finally dividing them by
m!, we have the so-called mth-order deformation system as follows,

L[U (m)(X, t)− χmU (m−1)(X, t)] = HRm(
−→
U m−1), (8)

where,

Rm(
−→
U m−1) =

1

(m− 1)!


∂m−1N1[ϕ(X,t,Q)]

∂qm−1
1

|Q=0

...
∂m−1Nn[ϕ(X,t,Q)]

∂qm−1
n

|Q=0

 , χm =
{
0, m ⩽ 1,
I, m > 1.

(9)

It should be emphasized that U (m)(X, t) for m ⩾ 1 is convergent by the linear system
(8) with boundry conditions that comes from the original system.
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3. Convergence of the HAM for system of PDEs

In this case, we consider the following general form of the system of partial differential
equations,

ADS +BT +B′T ′ = C, (10)

where A is the 3× 3 coefficients matrix, D is the 3× 3 differential operator matrix that

[D]ij =
∂α

(1)
ij

∂xα
(1)
ij

+
∂α

(2)
ij

∂yα
(2)
ij

+
∂α

(3)
ij

∂zα
(3)
ij

+
∂α

(4)
ij

∂tα
(4)
ij

S is unknowns vector
(
u v w

)T
. B and B′ are the 3 × 9 and 3 × 7 coefficients matrices

of functions respectively and T and T ′ are the following vectors:

T =
(
u v w u2 v2 w2 uv uw vw

)T
T ′ =

(
uv2 uw2 vu2 vw2 wu2 wv2 uvw

)T
and C =

(
c1(x, y, z, t) c2(x, y, z, t) c3(x, y, z, t)

)T
is the 3× 1 vector of known functions.

In this part, we prove a theorem for convergence of the HAM for system of partial
differential equations (10).

Theorem 3.1 If the series solution (5) of system (10) and also the series
∑+∞

m=0DSm

where Sm =
(
um vm wm

)T
are convergent then the series (5) converges to the exact

solution of the system (10).

Proof. Let:

S =

+∞∑
m=0

Sm,

where

lim
m→+∞

Sm =
−→
0 . (11)

We write

n∑
m=1

[Sm − χmSm−1] = S1 + (S2 − S1) + (S3 − S2) + · · ·+ (Sn − Sn−1) = Sn.

Using (11), we have,

+∞∑
m=1

[um − χmSm−1] = lim
n→+∞

Sn =
−→
0 .
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According to the definition of the operator L, we can write

+∞∑
m=1

L[Sm − χmSm−1] = L

+∞∑
m=1

[Sm − χmSm−1] =
−→
0 .

From above expression and equation (8), we obtain

+∞∑
m=1

L[Sm − χmSm−1] = H

+∞∑
m=1

[Rm(
−→
S m−1)].

Since H ̸= 0, we have

+∞∑
m=1

[Rm(
−→
S m−1)] =

−→
0 . (12)

From (12), it holds

+∞∑
m=1

Rm(
−→
S m−1) =

+∞∑
m=1

ADSm−1

+B

+∞∑
m=1

( (
um−1 vm−1 wm−1

)T∑m−1
i=0

(
um−1um−1−i vm−1vm−1−i wm−1wm−1−i um−1vm−1−i um−1wm−1−i vm−1wm−1−i

)T
)

+B′
+∞∑
m=1

m−1∑
i=0

m−i−1∑
k=0

( (
uivkvm−i−k−1 uiwkwm−i−k−1 viukum−i−k−1

)T(
viwkwm−i−k−1 wiukum−i−k−1 wivkvm−i−k−1 uivkwm−i−k−1

)T
)

−(I − χm)C =
−→
0 .

We consider the following element from previous matrix equation. The similar manipu-
lations can be done for other elements.
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+∞∑
m=1

m−1∑
i=0

m−i−1∑
k=0

uivkwm−i−k−1

=

+∞∑
i=0

m−1∑
m=i+1

m−i−1∑
k=0

uivkwm−i−k−1

=

+∞∑
i=0

ui

+∞∑
m=i+1

m−i−1∑
k=0

vkwm−i−k−1

=

+∞∑
i=0

ui

+∞∑
m=1

m−1∑
k=0

vkwm−k−1

=

+∞∑
i=0

ui

+∞∑
k=0

+∞∑
m=k+1

vkwm−k−1

=

+∞∑
i=0

ui

+∞∑
k=0

vk

+∞∑
m=0

wm.

In addition, we have,

+∞∑
m=1

ADSm−1 = AD

+∞∑
m=0

Sm,

+∞∑
m=1

(I − χm)C = C.

Therefore

ADS +BT +B′T ′ − C =
−→
0 . (13)

■

4. Test Examples

In this part, we consider three sample systems of PDEs and apply the matrix form of
HAM mentioned in previous section to solve these systems. The results in the tables have
been provided by MAPLE.

Example 4.1 We consider the following linear system of PDEs:

utt + vx + 2u = 0,
uxx + vt + 2u = 0,

(14)

with the initial conditions:
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u(x, 0) = sin(x),
ut(x, 0) = cos(x),
v(x, 0) = cos(x).

(15)

The exact solution of this system is:

S(x, t) =

(
sin(x+ t)
cos(x+ t)

)
. (16)

We see:

N [S(x, t)] =

(
N1[S(x, t)]
N2[S(x, t)]

)
=

(
utt + vx + 2u
uxx + vt + 2u

)
,

S(x, t) =

(
u(x, t)
v(x, t)

)
.

(17)

To solve the system (14) by means of HAM, we have:

N [ϕ(x, t,Q)] =

(
N1[ϕ(x, t,Q)]
N2[ϕ(x, t,Q)]

)
=

(
∂2ϕ1(x,t,q1)

∂t2 + ∂ϕ2(x,t,q2)
∂x + 2ϕ1(x, t, q1)

∂2ϕ1(x,t,q1)
∂x2 + ∂ϕ2(x,t,q2)

∂t + 2ϕ1(x, t, q1)

)
, (18)

where Q =
(
q1 0
0 q2

)
and the linear matrix operator

L[ϕ(x, t,Q)] =

(
∂2

∂t2 0

0 ∂
∂t

)(
ϕ1(x, t, q1)
ϕ2(x, t, q2)

)
, (19)

with the property

L

(
c1(x) + c2(x)t

c3(x)

)
= 0, (20)

where c1(x), c2(x) and c3(x) are the integration constants. By using (8) under the initial
conditions, we have:

Rm(−→u m−1) =

(
∂2um−1(x,t)

∂t2 + ∂vm−1(x,t)
∂x + 2um−1(x, t)

∂2um−1(x,t)
∂x2 + ∂vm−1(x,t)

∂t + 2um−1(x, t)

)
. (21)

The solution of the mth-order deformation system (8) for m ⩾ 1 becomes:
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Sm(x, t) = χmSm−1(x, t) +HL−1Rm(
−→
S m−1)

= χmSm−1(x, t) +

(
h1 0
0 h2

)(∫ ∫
dt 0

0
∫
dt

)

×

(
∂2um−1(x,t)

∂t2 + ∂vm−1(x,t)
∂x + 2um−1(x, t)

∂2um−1(x,t)
∂x2 + ∂vm−1(x,t)

∂t + 2um−1(x, t)

)
.

(22)

We choose the initial approximation as:

S0(x, t) =

(
u0
v0

)
=

(
sin(x) + t cos(x)

cos(x)

)
. (23)

Applying (22) for m ⩾ 1, we have,

S1 =

(
1
6h1t

2(3 sin(x) + 2t cos(x))
1
2h2t(2 sin(x) + t cos(x))

)

S2 =


1

120(60 sin(x) + 40t cos(x) + 60h1 sin(x) + 40h1t cos(x)+
20h2t cos(x)− 5h2t

2 sin(x) + 10h1t
2 sin(x) + 4h1t

3 cos(x))

1
12h2t(12 sin(x) + 6t cos(x) + 12h2 sin(x) + 6h2t cos(x)+

2h1t
2 sin(x) + h1t

3 cos(x))



...

In general, for H = −I we have,

S0 + S1 + S2 + · · · =
(
(1− t2

2! +
t4

4! − · · · ) sin(x) + (t− t3

3! +
t5

5! − · · · ) cos(x)
(1− t2

2! +
t4

4! − · · · ) cos(x)− (t− t3

3! +
t5

5! − · · · ) sin(x)

)
=

(
sin(x+ t)
cos(x+ t)

)
.

We can see the convergence of this method at two points (x1, t1) = (0.5, 1) and (x2, t2) =
(3, 1.5) for H = −I in Table 1.

Table 1
(0.5, 1) (3, 1.5)

n=2
(

1.0202604
0.11240188

) (
−1.1665823
−0.42620403

)
n=4

(
0.99747196
0.07079598

) (
−0.97955171
−0.21567996

)
n=6

(
0.99749480
0.07073681

) (
−0.97751894
−0.21079367

)
n=8

(
0.99749498
0.07073720

) (
−0.97752994
−0.21079568

)
n=10

(
0.99749498
0.07073720

) (
−0.97752999
−0.21079578

)
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We present the H-surfaces of the example 4.1 which is a two-dimensional system to
see the convergent region. In [8] the concept of h-curve was discussed to show the region
of convergence in the HAM to solve a given linear or nonlinear equation, where h is the
auxilary parameter. These curves convert to surfaces for a set of equations like a system
of PDEs. By ploting the H-surface, it is easy to discover the valid region of the HAM
and the optimal values of the entries of matrix H, which corresponds to the hyperplane
parallel to the hyperplane that is made by the h1, . . . , hn.
In figures 1, 2 and 3, we plot the 5-approximation of u, v, vt, vx, utt and uxx when x = 0.5
and t = 1. In this case, when H = −I we obtain the Taylor series of the exact solution
of the system. In this figures, we can see the region of convergence of the u, v, vt, vx, utt
and uxx is [−2, 1]× [−2, 1].

Example 4.2 We consider the following linear system of PDEs with variable coefficients:

ut + vzz − wxx − u = 0,
uyy + vtt − exwxx − v = 0,
eyuyy + vxx − wttt − w = 0,

(24)

with the initial conditions:

u(x, y, z, 0) = y + z,
v(x, y, z, 0) = y + x,
vt(x, y, z, 0) = y + x,
w(x, y, z, 0) = x+ y,
wt(x, y, z, 0) = x+ y,
wtt(x, y, z, 0) = x+ y.

(25)

The exact solution of this system is:

S(x, y, z, t) =

(y + z)et

(x+ z)et

(x+ y)et

 . (26)

Similar to the example 4.1, for m ⩾ 1 we have:

Sm(x, y, z, t) = χmSm−1(x, y, z, t) +HL−1Rm(
−→
S m−1) = χmSm−1(x, y, z, t)

+

h1 0 0
0 h2 0
0 0 h3

×

∫ dt 0 0
0
∫ ∫

dt 0
0 0

∫ ∫ ∫
dt



×


∂um−1(x,y,z,t)

∂t + ∂2vm−1(x,y,z,t)
∂z2 − ∂2wm−1(x,y,z,t)

∂x2 − um−1(x, y, z, t)
∂2um−1(x,y,z,t)

∂y2 + ∂2vm−1(x,y,z,t)
∂t2 − ex ∂2wm−1(x,y,z,t)

∂x2 − vm−1(x, y, z, t)

ey ∂2um−1(x,y,z,t)
∂y2 + ∂2vm−1(x,y,z,t)

∂x2 − ∂3wm−1(x,y,z,t)
∂t3 − wm−1(x, y, z, t)

 .

(27)
where
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L =

 ∂
∂t 0 0

0 ∂2

∂t2 0

0 0 ∂3

∂t3

 , (28)

with the property

L

 c1(x, y, z)
c2(x, y, z) + c3(x, y, z)t

c4(x, y, z) + c5(x, y, z)t+ c6(x, y, z)t
2

 = 0, (29)

where c1(x, y, z), . . . , c6(x, y, z) are integration constant.

We choose the initial approximation as:

S0(x, y, z, t) =

u0
v0
w0

 =

 y + z
(x+ z)(1 + t)

(x+ y)(1 + t+ 1
2 t

2)

 . (30)

Applying (27) for m ⩾ 1 and H = −I we have,

S1 =

 t(y + z)

( t
2

2! +
t3

3! )(x+ z)

( t
3

3! +
t4

4! +
t5

5! )(x+ y)



S2 =

 t2

2! (y + z)

( t
4

4! +
t5

5! )(x+ z)

( t
6

6! +
t7

7! +
t8

8! )(x+ y)



...

In general, we have,

S0 + S1 + S2 + · · · =

(1 + t+ t2

2 + · · · )(x+ z)

(1 + t+ t2

2 + · · · )(y + z)

(1 + t+ t2

2 + · · · )(x+ z)

 =

et(y + z)
et(x+ z)
et(x+ y)

 .

We can see the convergence of this method at two points (x1, y1, z1, t1) = (1, 2, 3, 0.5)
and (x2, y2, z2, t2) = (2, 3, 1, 3) for H = −I in Table 2.

Table 2
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(1, 2, 3, 0.5) (2, 3, 1, 3)

n=2
8.1250000

6.5947917
4.9461639

 34.00000000
55.20000000
100.0457589


n=4

8.2421875
6.5948851
4.9461639

 65.50000000
60.19017857
100.4276173


n=6

8.2435981
6.5948851
4.9461639

 77.65000000
60.25640578
100.4276846


n=8

8.2436064
6.5948851
4.9461639

 80.03660714
60.25661055
100.4276846


n=10

8.2436064
6.5948851
4.9461639

 80.31866071
60.25661077
100.4276846



Example 4.3 We consider the nonlinear system of ordinary differential equations as
follows:

utt − 2uv2 = 0,
vt − uv = 0,

(31)

with the initial conditions:

u(0) = 0,
ut(0) = 1,
v(0) = 1.

(32)

The exact solution of this system is:

S(t) =

(
tan(t)
sec(t)

)
. (33)

In this example, we have:

N [ϕ(t,Q)] =

(
N1[ϕ(t,Q)]
N2[ϕ(t,Q)]

)
=

(
∂2ϕ1(t,q1)

∂t2 − 2ϕ1(t, q1)ϕ
2
2(t, q2)

∂ϕ2(t,q2)
∂t − ϕ1(t, q1)ϕ2(t, q2)

)
, (34)

where Q =
(
q1 0
0 q2

)
and the linear matrix operator

L[ϕ(t,Q)] =

(
∂2

∂t2 0

0 ∂
∂t

)(
ϕ1(x, t, q1)
ϕ2(x, t, q2)

)
, (35)

with the property

L

(
c1 + c2t

c3

)
= 0, (36)

where c1, c2 and c3 are the integration constant. The solution of the mth-order deforma-
tion system (8) for m ⩾ 1 becomes:
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Sm(t) = χmSm−1(t) +HL−1Rm(
−→
S m−1) = χmSm−1(t) +

(
h1 0
0 h2

)(∫ ∫
dt dt 0
0

∫
dt

)
×(

∂2Sm−1(t)
∂t2 − 2

∑+∞
m=1

∑m−1
i=0

∑m−i−1
k=0 ui(t)vk(t)vm−i−k−1(t)

∂um−1(t)
∂t −

∑+∞
m=1

∑m−1
i=0 ui(t)vm−i−1(t)

)
.

(37)
We choose the initial approximation as:

S0(t) =

(
u0
v0

)
=

(
t
1

)
. (38)

Applying (37), we can see the results of the method at two points t1 = 0.5 and t2 = 1
for H = −I in Table 3.

Table 3

t1 = 0.5 t2 = 1
n=2

(
0.545833334
1.138020833

) (
1.46666667
1.708333333

)
n=4

(
0.5462976742
1.139478798

) (
1.542504409
1.827405754

)
n=6

(
0.5463024405
1.139493772

) (
1.554959773
1.846970484

)
n=8

(
0.5463024894
1.139493926

) (
1.557005635
1.850184116

)
n=10

(
0.5463024899
1.139493927

) (
1.557341679
1.850711974

)

5. Conclusion

In this work, the homotopy analysis method was introduced in matrix form and applied
to obtain the approximate solution of a linear or nonlinear system of partial differential
equations. For this purpose, a convergence theorem was proved and some sample systems
of PDEs were solved and the convergence of the HAM was discussed in each system.
Also, the H-surface was introuced to illustrate the region of convergence in the HAM.
Therefore, the HAM is able to solve the system of PDE via the matrix form and the
convergence of method is guranteed.
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(a) H-surface of u (b) H-surface of v

Figure 1. H-Surfaces of u and v in example 4.1

(a) H-surface vt (b) H-surface vx

Figure 2. H-Surfaces of vt and vx in example 4.1

(a) H-surface utt (b) H-surface uxx

Figure 3. H-Surfaces of utt and uxx in example 4.1


