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1. Introduction and Preliminaries

The symbol K denotes a field that can be either R or C. Let X and Y be Banach spaces
over K. We denote by BLK(X,Y) the Banach space of all bounded linear operators from
X into Y over K with the operator norm. Let us recall that T ∈ BLK(X,Y) is compact
if the closure of T (E) is compact in Y whenever E is a bounded set in X.

It is known that if X, Y and Z are Banach spaces over K and S ∈ BLK(X,Y) and
T ∈ BLK(Y,Z), then T ◦ S is compact if S or T is compact.

Let X be a Banach space over K. Then BLK(X,X) is a unital Banach algebra over K
when ST = S ◦ T for all S, T ∈ BLK(X,X). For T ∈ BLK(X,X), the spectrum of T is
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denoted by σ(T ) and defined by

σ(T ) = {λ ∈ K : λIX − T is not invertible in BLK(X,X)},

where IX : X −→ X is the identity operator on X.
Let X be a nonempty set, VK(X) be a vector space over K of K-valued functions

on X and ϕ : X −→ X be a map such that f ◦ ϕ ∈ VK(X) for all f ∈ VK(X). Then
Cϕ,VK(X) : VK(X) −→ VK(X) defined by Cϕ,VK(X)(f) = f ◦ϕ is a linear operator on VK(X)
which is called the composition operator induced by ϕ on VK(X).

Let X be a topological space. We denote by CbK(X) the set of all K-valued bounded
continuous functions on X. Then CbK(X) is a unital commutative Banach algebra over
K under the pointwise operations and with the uniform norm

∥ f ∥X= sup{|f(x)| : x ∈ X} (f ∈ CbK(X)).

We denote by CK(X) the algebra of all K-valued continuous functions on X. Clearly,
CbK(X) = CK(X) whenever X is compact. We write Cb(X) and C(X) instead of
CbC(X)and CC(X), respectively.

Let (X, d) and (Y, ρ) be metric spaces. A map ϕ : X −→ Y is called a Lipschitz mapping
from (X, d) into (Y, ρ) if there exists a constantM ⩾ 0 such that ρ(ϕ(x), ϕ(y)) ⩽Md(x, y)
for all x, y ∈ X. A map ϕ : X −→ Y is called supercontractive from (X, d) into (Y, ρ) if

lim
d(x,y)→0

ρ(ϕ(x), ϕ(y))

d(x, y)
= 0,

that is, for each ε > 0, there exists δ > 0 such that
ρ(ϕ(x), ϕ(y))

d(x, y)
< ε whenever x, y ∈ X

and 0 < d(x, y) < δ.
Let (X, d) be a metric space. A function f : X −→ K is called a K-valued Lipschitz

function on (X, d) if f is a Lipschitz mapping from (X, d) into the Euclidean metric space
K. For a K-valued Lipschitz function f on (X, d), the Lipschitz number of f on (X, d) is
denoted by L(X,d)(f) and defined by

L(X,d)(f) = sup{|f(x)− f(y)|
d(x, y)

: x, y ∈ X,x ̸= y}.

We denote by LipK(X, d) the set of all K-valued bounded Lipschitz functions on (X, d).
Clearly, LipK(X, d) is a subalgebra of CbK(X) and 1X ∈ LipK(X, d), where 1X is the
constant function with value 1 on X. Moreover, LipK(X, d) with the norm

∥f∥X,L = max{∥f∥X , L(X,d)(f)}

is a Banach space and with the norm

∥f∥Lip(X,d) = ∥f∥X + L(X,d)(f)

is a unital commutative Banach algebra over K. Since

∥f∥X,L ⩽ ∥f∥Lip(X,d) ⩽ 2∥f∥X,L
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for all f ∈ LipK(X, d), we deduce that ∥ · ∥X,L and ∥ · ∥Lip(X,d) are equivalent norms
on LipK(X, d). The set of all f ∈ LipK(X, d) for which f is supercontractive on (X, d),
is denoted by lipK(X, d). Clearly, lipK(X, d) is a subalgebra of LipK(X, d) and 1X ∈
lipK(X, d). Moreover, lipK(X, d) is a closed set in (LipK(X, d), ∥·∥X,L) and (LipK(X, d), ∥·
∥Lip(X,d)). So (lipK(X, d), ∥ · ∥X,L) is a Banach space and (lipK(X, d), ∥ · ∥Lip(X,d)) is a
unital commutative Banach algebra over K. We write Lip(X, d) and lip(X, d) instead of
LipC(X, d) and lipC(X, d), respectively. These algebras were first introduced by Sherbert
in [8, 9]. Note that, if ϕ : X −→ X is a Lipschitz mapping then f ◦ ϕ ∈ LipK(X, d)
(f ◦ ϕ ∈ lipK(X, d), respectively) for all f in LipK(X, d) (lipK(X, d), respectively).

Let (X, d) be a pointed metric space with the base point e ∈ X. We denote by
Lip0,K(X, d) the set of all K-valued Lipschitz functions f on X such that f(e) = 0.
Clearly, Lip0,K(X, d) is a linear subspace of CK(X). Moreover, Lip0,K(X, d) with the
norm L(X,d)(·) is a Banach space over K. Note that if ϕ : X −→ X is a base point
preserving Lipschitz mapping, then f ◦ ϕ ∈ Lip0,K(X, d) for all f ∈ Lip0,K(X, d). We
write Lip0(X, d) instead of Lip0,C(X, d). For further general facts about Lipschitz spaces
LipK(X, d), lipK(X, d) and Lip0,K(X, d), we refer to [10].

Kamowitz and Scheinberg [5] characterized compact endomorphisms of complex Lip-
schitz algebras on compact metric spaces and determined their spectra.

Jiménez-Vargas and Villegas-Vallecillos [4] characterized compact composition opera-
tors on Banach spaces of Lipschitz functions LipK(X, d) with the norm ∥·∥X,L, lipK(X, d)
with the norm ∥·∥X,L and Lip0,K(X, d) with the norm L(X,d)(·) and determined the spec-
trum of compact composition operators on LipK(X, d) and lipK(X, d), where (X, d) is a
metric space, not necessarily compact.

Let X be a topological space. A self-map τ : X −→ X is called a topological involution
on X if τ is continuous and τ(τ(x)) = x for all x ∈ X.

Let X be a topological space and τ be a topological involution on X. The map σ :
Cb(X) −→ Cb(X) defined by σ(f) = f ◦ τ is an algebra involution on the complex
algebra Cb(X), which is called the algebra involution induced by τ on Cb(X). Note that
∥σ(f)∥X = ∥f∥X for all f ∈ Cb(X). We now define

Cb(X, τ) = {f ∈ Cb(X) : σ(f) = f}.

Then Cb(X, τ) is a unital self-adjoint uniformly closed real subalgebra of Cb(X), iX /∈
Cb(X, τ) where iX is the constant function with value i on X, Cb(X) = Cb(X, τ) ⊕
i Cb(X, τ) and

max{∥f∥X , ∥g∥X} ⩽ ∥f + ig∥X ⩽ 2max{∥f∥X , ∥g∥X},

for all f, g ∈ Cb(X, τ). Moreover, Cb(X, τ) = CbR(X) if τ is the identity map on X. Note
that if X is compact, then Cb(X, τ) = C(X, τ), where C(X, τ) = {f ∈ C(X) : f ◦τ = f}.
Real Banach algebra C(X, τ) was defined explicitly by Kulkarni and Limaye in [6]. For
further general facts about C(X, τ) and its real subalgebras, we refer to [7].

In this part we introduce real Lipschitz spaces Lip(X, d, τ), lip(X, d, τ) and
Lip0(X, d, τ).

Definition 1.1 Let (X, d) be a metric space. A self-map τ : X −→ X is called a

Lipschitz involution on (X, d) if τ(τ(x)) = x and τ is a Lipschitz mapping from (X, d)

into (X, d).

Note that if τ is a Lipschitz involution on (X, d), then τ is a topological involution on
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(X, d) and C ⩾ 1 whenever d(τ(x), τ(y)) ⩽ Cd(x, y) for all x, y ∈ X.
Let (X, d) be a metric space, τ be a Lipschitz involution on (X, d) and σ be the

algebra involution induced by τ on Cb(X). We can easily show that σ(Lip(X, d)) =
Lip(X, d), σ(lip(X, d)) = lip(X, d), L(X,d)(σ(f)) ⩽ CL(X,d)(f) for all f ∈ Lip(X, d) and
∥σ(f)∥X,L ⩽ C∥f∥X,L for all f ∈ Lip(X, d) , where C ⩾ 1 and d(τ(x), τ(y)) ⩽ Cd(x, y)
for all x, y ∈ X. We now define

Lip(X, d, τ) := {f ∈ Lip(X, d) : σ(f) = f},

lip(X, d, τ) := {f ∈ lip(X, d) : σ(f) = f}.

In fact, Lip(X, d, τ) = Lip(X, d) ∩ Cb(X, τ) and lip(X, d, τ) = lip(X, d) ∩ Cb(X, τ).
In the following result, we give some properties of Lip(X, d, τ) and lip(X, d, τ).

Theorem 1.2 Let (X, d) be a metric space and τ be a Lipschitz involution on (X, d).

Suppose that A = Lip(X, d, τ) and B = Lip(X, d) (A = lip(X, d, τ) and B = lip(X, d),

respectively). Then:

(i) A is a self-adjoint real subalgebra of Cb(X, τ) and B, 1X ∈ A and iX /∈ A.

(ii) B = A⊕ iA.

(iii) For all f, g ∈ A we have

max{∥f∥X,L, ∥g∥X,L} ⩽ C∥f + ig∥X,L ⩽ 2Cmax{∥f∥X,L, ∥g∥X,L},

where C ⩾ 1 and d(τ(x), τ(y)) ⩽ Cd(x, y) for all x, y ∈ X.

(iv) A is closed in (B, ∥ · ∥X,L) and so (A, ∥ · ∥X,L) is a real Banach space.

(v) f ◦ϕ ∈ A for all f ∈ A whenever ϕ : X −→ X is a Lipschitz mapping from (X, d)

into (X, d) with ϕ ◦ τ = τ ◦ ϕ.
(vi) A = LipR(X, d)(A = lipR(X, d), respectively), if τ is the identity map on X.

Note that lip(X, d, τ) is a real subalgebra of Lip(X, d, τ) and a closed set in
(Lip(X, d, τ), ∥ · ∥X,L).

Real Lipschitz algebras Lip(X, d, τ) and lip(X, d, τ) were first introduced in [1], when-
ever (X, d) is a compact metric space. In this case, Ebadian and Ostadbashi [3] char-
acterized compact endomorphisms of real Lipschitz algebras Lip(X, d, τ) with the norm
∥ · ∥Lip(X,d) and determined their spectra.

Let (X, d) be a pointed metric space with a base point e ∈ X, τ be a base point-
preserving Lipschitz involution on (X, d) and σ be the algebra involution induced by τ
on Cb(X). Then L(X,d)(σ(f)) ⩽ CL(X,d)(f) for all f ∈ Lip0(X, d), where C ⩾ 1 and
d(τ(x), τ(y)) ⩽ Cd(x, y) for all x, y ∈ X. Therefore, σ(Lip0(X, d)) = Lip0(X, d). We now
define

Lip0(X, d, τ) = {f ∈ Lip0(X, d) : σ(f) = f}.

In fact, Lip0(X, d, τ) = Lip0(X, d) ∩ C(X, τ).
In the following result, we give some properties of Lip0(X, d, τ).

Theorem 1.3 Let (X, d) be a pointed metric space and τ be a base point preserving

Lipschitz involution on (X, d). Then:
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(i) Lip0(X, d, τ) is a self-adjoint real subspace of Cb(X, τ) and Lip0(X, d), 1X /∈
Lip0(X, d, τ) and iX /∈ Lip0(X, d, τ).

(ii) Lip0(X, d) = Lip0(X, d, τ)⊕ i Lip0(X, d, τ).

(iii) For all f, g ∈ Lip0(X, d, τ) we have

max{L(X,d)(f), L(X,d)(g)} ⩽ CL(X,d)(f + ig)

⩽ 2Cmax{L(X,d)(f), L(X,d)(g)},

where C ⩾ 1 and d(τ(x), τ(y)) ⩽ Cd(x, y) for all x, y ∈ X.

(iv) Lip0(X, d, τ) is closed in (Lip0(X, d), L(X,d)(·)) and so Lip0(X, d, τ) with the norm

L(X,d)(·) is a real Banach space.

(v) f ◦ ϕ ∈ Lip0(X, d, τ) for all f ∈ Lip0(X, d, τ), whenever ϕ : X −→ X is a base

point preserving Lipschitz mapping from (X, d) into (X, d) with ϕ ◦ τ = τ ◦ ϕ.
(vi) Lip0(X, d, τ) = Lip0,R(X, d), if τ is the identity map on X.

In Section 2, we characterize compact composition operators on real Lipschitz spaces
(Lip(X, d, τ), ∥ · ∥X,L), (lip(X, d, τ), ∥ · ∥X,L) and (Lip0(X, d, τ), L(X,d)(·)) and in Section
3 we determine the spectrum of compact composition operators on real Lipschitz spaces
(Lip(X, d, τ), ∥ · ∥X,L) and (lip(X, d, τ), ∥ · ∥X,L), whenever (X, d) is a metric space, not
necessarily compact and τ is a Lipschitz involution on (X, d). In fact, we extend basic
results of [3] and [4].

2. Compact composition operators

Let X be a real linear space. The complexification of X is the complex linear space
XC := X⊕ iX with addition and scalar multiplication defined by

(x1 + iy1) + (x2 + iy2) = (x1 + x2) + i(y1 + y2) (x1, y1, x2, y2 ∈ X).

(α+ iβ)(x+ iy) = (αx− βy) + i(βx+ αy) (α, β ∈ R, x, y ∈ X).

Let (X, ∥ · ∥) be a real Banach space. By a modification of [2, Proposition I.13.3], there
exists a norm ∥| · |∥ on XC such that ∥|x+ i0|∥ = ∥x∥ for all x ∈ X, and

max{∥x∥, ∥y∥} ⩽ ∥|x+ iy|∥ ⩽ 2max{∥x∥, ∥y∥},

for all x, y ∈ X, and so (XC, ∥| · |∥) is a complex Banach space.

Theorem 2.1 Let (X, ∥ · ∥) be a real Banach space, XC be the complexification of X

and ∥| · |∥ be a norm on XC with ∥|f |∥ = ∥f∥ for all f ∈ X and C be a positive costant

satisfying

max{∥f∥, ∥g∥} ⩽ C∥|f + ig|∥ ⩽ 2Cmax{∥f∥, ∥g∥},

for all f, g ∈ X. Let T ∈ BLR(X,X) and T
′
: XC −→ XC be the mapping defined by

T
′
(f + ig) = Tf + iTg (f, g ∈ X). Then:
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(i) T
′ ∈ BLC(XC,XC) and ∥T ′∥ ⩽ 2C∥T∥.

(ii) T
′
is compact if and only if T is compact.

(iii) T
′
is invertible in BLC(XC,XC) if and only if T is invertible in BLR(X,X).

(iv) T
′
= IXC if and only if T = IX.

(v) σ(T
′
) ∩ R = σ(T ).

Proof. Clearly T
′
is a complex linear map from XC into XC. Since

|∥T ′
(f + ig)∥| = |∥Tf + iTg∥| ⩽ |∥Tf∥|+ |∥Tg∥|

= ∥Tf∥+ ∥Tg∥ ⩽ ∥T∥∥f∥+ ∥T∥∥g∥

⩽ 2∥T∥max{∥f∥, ∥g∥} ⩽ 2∥T∥C|∥f + ig∥|

for all f, g ∈ X, we deduce that T
′ ∈ BLC(XC,XC) and |∥T ′∥| ⩽ 2C∥T∥. Hence, (i) holds.

To prove (ii), we first assume that T
′
is compact. Let {fn}∞n=1 be a bounded sequence

in (X, ∥ · ∥). Since ∥fn∥ = |∥fn∥| for all n ∈ N, we deduce that {fn}∞n=1 is a bounded

sequence in (XC, |∥ · ∥|). The compactness of T
′
implies that there exists a subsequence

{fnk
}∞k=1 of {fn}∞n=1 such that {T ′

fnk
}∞k=1 is a Cauchy sequence in (XC, |∥ · ∥|). Since

∥Tfnj
− Tfnk

∥ = |∥T ′
fnj

− T
′
fnk

∥|

for all j, k ∈ N, we conclude that {Tfnk
}∞k=1 is a Cauchy sequence in (X, ∥ · ∥). The

completeness of (X, ∥ · ∥) implies that {Tfnk
}∞k=1 is convergence in (X, ∥ · ∥). Therefore,

T is compact.

We now assume that T is compact. Let {hn}∞n=1 be a bounded sequence in (XC, |∥ · ∥|).
Since XC = X⊕ iX, there exists unique elements fn, gn ∈ X such that hn = fn + ign for

all n ∈ N. Since

max{∥fn∥, ∥gn∥} ⩽ C∥fn + ign∥

for all n ∈ N, we deduce that {fn}∞n=1 and {gn}∞n=1 are bounded sequences in (X, ∥ · ∥).
The compactness of T implies that there exist strictly increasing functions p : N −→ N
and q : N −→ N and elements f and g in X such that

lim
k→∞

∥fp(k) − f∥ = 0, lim
k→∞

∥gq(k) − g∥ = 0.

For each k ∈ N, set nk = q(p(k)). Clearly, {fnk
}∞k=1 is a subsequence {fn}∞n=1,

lim
k→∞

∥Tfnk
− f∥ = 0, {gnk

}∞k=1 is a subsequence {gn}∞n=1 and lim
k→∞

∥Tgnk
− g∥ = 0.

Clearly {hnk
}∞k=1 is a subsequence of {hn}∞n=1, f + ig ∈ XC and

|∥T ′
hnk

− (f + ig)∥| ⩽ 2max{∥Tfnk
− f∥, ∥Tgnk

− g∥}

for all k ∈ N. Thus, lim
k→∞

|∥T ′
hnk

− (f + ig)∥| = 0. Therefore, T
′
is compact. Hence (ii)
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holds.

To prove (iii), we first assume that T
′
is invertible in BLC(XC,XC). Then there exists

(T
′
)−1 ∈ BLC(XC,XC) such that T

′ ◦ (T
′
)−1 = (T

′
)−1 ◦ T ′

= IXC . We now define the

maps Ψ1 : X −→ XC and P1 : XC −→ X by

Ψ1(f) = f + i0 (∀f ∈ X) and P1(f + ig) = f (∀f, g ∈ X).

We can easily show that

Ψ1 ∈ BLR(X,XC), ∥Ψ1∥ ⩽ 2C, P1 ∈ BLR(XC,X) and ∥P1∥ ⩽ C.

Moreover, Ψ1 ◦ T = T
′ ◦Ψ1 and T ◦ P1 = P1 ◦ T

′
. Now, we have

(P1 ◦ (T
′
)−1 ◦Ψ1) ◦ T = IX = T ◦ (P1 ◦ (T

′
)−1 ◦Ψ1).

Therefore, T is invertible in BLR(X,X) and T
−1 = P1 ◦ (T

′
)−1 ◦Ψ1.

We now assume that T is invertible in BLR(X,X). Then there exists T−1 ∈ BLR(X,X)

such that T ◦ T−1 = T−1 ◦ T = IX. We now define the map (T−1)
′
: XC −→ XC by

(T−1)
′
(f + ig) = T−1f + iT−1g (∀f, g ∈ X).

Then (T−1)
′ ∈ BLC(XC,XC) and ∥(T−1)

′∥ ⩽ 2C∥T−1∥. Moreover,

(T−1)
′ ◦ T ′

= T
′ ◦ (T−1)

′
= IXC .

Therefore, T
′
is invertible in BLC(XC,XC) and (T

′
)−1 = (T−1)

′
. Hence, (iii) holds.

The proof of (iv) is obvious. From (iii) and (iv), we deduce that (v) holds. ■

Compact composition operators on Lipschitz spaces (LipK(X, d), ∥·∥X,L) characterized
in [4] as the following.

Theorem 2.2 (see [4, Theorem 1.1]). Let (X, d) be a metric space and let ϕ : X −→
X be a Lipschitz mapping from (X, d) into (X, d). Then the composition operator

Cϕ,LipK(X,d) : LipK(X, d) −→ LipK(X, d) is compact if and only if ϕ is supercontrative

and ϕ(X) is totally bounded in (X, d).

In the following result, we characterize compact composition operators on real lipschitz
spaces (Lip(X, d, τ), ∥ · ∥X,L).

Theorem 2.3 Let (X, d) be a metric space, τ be a Lipschitz involution on (X, d) and

ϕ : X −→ X be a Lipschitz mapping from (X, d) into (X, d) such that ϕ ◦ τ = τ ◦ ϕ.
Then the composition operator Cϕ,Lip(X,d,τ) : Lip(X, d, τ) −→ Lip(X, d, τ) is compact if

and only if ϕ is supercontractive and ϕ(X) is totally bounded in (X, d).

Proof. Since τ is a Lipschitz involution on (X, d), by Theorem 1.2, we deduce that
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Lip(X, d) = Lip(X, d, τ)⊕ i Lip(X, d, τ), there exists a constant C ⩾ 1 such that

max{∥f∥X,L, ∥g∥X,L} ⩽ C∥f + ig∥X,L ⩽ 2Cmax{∥f∥X,L, ∥g∥X,L},

for all f, g ∈ Lip(X, d, τ) and Lip(X, d, τ) is a real Banach space. Hence, by Theorem

2.1, the compactness of Cϕ,Lip(X,d,τ) : Lip(X, d, τ) −→ Lip(X, d, τ) is equivalent to the

compactness of (Cϕ,Lip(X,d,τ))
′
: Lip(X, d) −→ Lip(X, d) which is defined by

(Cϕ,Lip(X,d,τ))
′
(f + ig) = Cϕ,Lip(X,d,τ)(f) + iCϕ,Lip(X,d,τ)(g)

for all f, g ∈ Lip(X, d, τ).

Since

(Cϕ,Lip(X,d,τ))
′
(f + ig) = (f ◦ ϕ) + i(g ◦ ϕ)

= (f + ig) ◦ ϕ

= Cϕ,Lip(X,d)(f + ig)

for all f, g ∈ Lip(X, d, τ), we conclude that

(Cϕ,Lip(X,d,τ))
′
= Cϕ,Lip(X,d).

Thus, the compactness of Cϕ,Lip(X,d,τ) : Lip(X, d, τ) −→ Lip(X, d, τ) is equivalent to

the compactness of Cϕ,Lip(X,d) : Lip(X, d) −→ Lip(X, d), and this is equivalent to ϕ

is supercontractive from (X, d) into (X, d) and ϕ(X) is totally bounded in (X, d) by

Theorem 2.2. Hence, the proof is complete. ■

Note that Theorem 2.3 is a generalization of Theorem 2.2, whenever K = R.
We now show that the class of real Lipschitz spaces (Lip(Y, ρ, τ), ∥ · ∥Y,L) is larger

than the class of complex Lipschitz spaces (Lip(X, d), ∥ · ∥X,L) regarded as real Lipschitz
spaces (Theorem 2.4, below), and the class of compact composition operators on real
Lipschitz spaces (Lip(Y, ρ, τ), ∥ · ∥Y,L) is larger than the class of compact composition
operators on complex Lipschitz spaces (Lip(X, d), ∥ · ∥X,L) (Theorem 2.5, below).

Theorem 2.4 Let (X, d) be a metric space. Suppose that Y = X × {0, 1} and ρ is the

metric on Y defined by

ρ((x1, j1), (x2, j2)) = max{d(x1, x2), |j1 − j2|}.

Let τ : Y −→ Y be the self-map on Y defined by

τ(x, 0) = (x, 1) (x ∈ X), τ(x, 1) = (x, 0) (x ∈ X).

Then:

(i) τ is a Lipschitz involution on (Y, ρ).
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(ii) The map Λ : Lip(X, d) −→ Lip(Y, ρ, τ) defined by

(Λf)(x, 0) = f(x) (f ∈ Lip(X, d), x ∈ X),

(Λf)(x, 1) = f(x) (f ∈ Lip(X, d), x ∈ X),

is an injective bounded real-linear operator from (Lip(X, d), ∥ · ∥X,L) regarded as

a real Banach space onto (Lip(Y, ρ, τ), ∥ · ∥Y,L), satisfying

∥f∥X,L ⩽ ∥Λf∥Y,L ⩽ 2∥f∥X,L

for all f ∈ Lip(X, d).

Proof. Clearly, τ(τ(x, j)) = (x, j) for all (x, j) ∈ Y , and

ρ(τ(x1, j1), τ(x2, j2)) = ρ((x1, j1), (x2, j2))

for all (x1, j1), (x2, j2) ∈ Y . Hence, (i) holds.

It is easy to see that Λ is well-defined and a real-linear operator from Lip(X, d), regarded

a real Banach space, into Lip(Y, ρ, τ). Let g ∈ Lip(Y, ρ, τ). We define the function f :

X −→ C by f(x) = g(x, 0). Then f ∈ Cb(X), ∥f∥X ⩽ ∥g∥Y and L(X,d)(f) ⩽ L(Y,ρ)(g).

Hence, f ∈ Lip(X, d). Moreover,

(Λf)(x, 0) = f(x) = g(x, 0),

(Λf)(x, 1) = f(x) = g(x, 0) = (g ◦ τ)(x, 0)

= g(τ(x, 0)) = g(x, 1)

for all x ∈ X. Therefore, Λ(f) = g and so Λ is onto.

Let f ∈ Lip(X, d). Clearly, ∥f∥X = ∥Λf∥Y . Let x1, x2 ∈ X with x1 ̸= x2. Then

|f(x1)− f(x2)| = |(Λf)(x1, 0)− (Λf)(x2, 0)|

⩽ L(Y,ρ)(Λf)ρ((x1, 0), (x2, 0))

= L(Y,ρ)(Λf)d(x1, x2).

Hence, L(X,d)(f) ⩽ L(Y,ρ)(Λf). Therefore,

∥f∥X,L ⩽ ∥Λf∥Y,L.
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Now, let (x1, j1), (x2, j2) ∈ Y with (x1, j1) ̸= (x2, j2). If j1 = j2, then

|(Λf)(x1, j1)− (Λf)(x2, j2)| = |f(x1)− f(x2)|

⩽ L(X,d)(f)d(x1, x2)

⩽ 2∥f∥X,Lρ((x1, j1), (x2, j2)),

and if j1 ̸= j2, then

|(Λf)(x1, j1)− (Λf)(x2, j2)| = |f(x1)− f(x2)|

⩽ 2∥f∥X |j1 − j2|

⩽ 2∥f∥X,Lρ((x1, j1), (x2, j2)).

Thus,

L(Y,ρ)(Λf) ⩽ 2∥f∥X,L.

On the other hand, we have

∥Λf∥Y = ∥f∥X ⩽ 2∥f∥X,L.

Therefore,

∥Λf∥Y,L ⩽ 2∥f∥X,L.

Hence, (ii) holds. ■

Theorem 2.5 Let (X, d) be a metric space, Y = X×{0, 1}, ρ be the metric on Y defined

by ρ((x1, j1), (x2, j2)) = max{d(x1, x2), |j1 − j2|} and τ be the Lipschitz involution on

(Y, ρ) defined by

τ(x, 0) = (x, 1), τ(x, 1) = (x, 0), (x ∈ X).

Let ϕ : X −→ X be a Lipschitz mapping from (X, d) into (X, d) and let ψ : Y −→ Y be

the self-map on Y defined by

ψ(x, 0) = (ϕ(x), 0), ψ(x, 1) = (ϕ(x), 1) (x ∈ X),

Then:

(i) ψ is a Lipschitz mapping from (Y, ρ) into (Y, ρ) such that ψ ◦ τ = τ ◦ ψ.
(ii) The composition operator Cϕ,Lip(X,d) : Lip(X, d) −→ Lip(X, d) is compact if

and only if the composition operator Cψ,Lip(Y,ρ,τ) : Lip(Y, ρ, τ) −→ Lip(Y, ρ, τ) is

compact.
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Proof. Clearly, (i) holds.

Let Λ : Lip(X, d) −→ Lip(Y, ρ, τ) defined by

(Λf)(x, 0) = f(x), (Λf)(x, 1) = f(x) (x ∈ X).

By Theorem 2.4, Λ is an injective bounded real-linear operator from Lip(X, d) with the

norm ∥ · ∥X,L regarded as a real Banach space, onto the real Banach space Lip(Y, ρ, τ)

with the norm ∥ · ∥Y,L. We can easily show that

Λ ◦ Cϕ,Lip(X,d) = Cψ,Lip(Y,ρ,τ) ◦ Λ. (1)

According to Λ ∈ BLR(Lip(X, d), Lip(Y, ρ, τ)) and (1), we deduce that the opera-

tor Cϕ,Lip(X,d) : Lip(X, d) −→ Lip(X, d) is compact if and only if Cψ,Lip(Y,ρ,τ) :

Lip(Y, ρ, τ) −→ Lip(Y, ρ, τ) is compact. Hence, (ii) holds. ■

According to Theorems 2.4 and 2.5, it is clear that Theorem 2.3 is also a generalization
of Theorem 2.2, whenever K = C.

In [4], Jiménez-Vargas and Villegas-Vallecillos obtained the analogous result for com-
pact composition operators on little Lipschitz spaces (lipK(X, d), ∥ · ∥X,L) that satisfy a
kind of uniform separation property.

Definition 2.6 (see [4, Definition 1.1]). Let (X, d) be a metric space, not assumed to be

compact. It is said that a linear subspace M of LipK(X, d) separates the points uniformly

on bounded subsets of X if for each bounded set K ⊆ X, there exists a constant a ⩾ 1

(which may depend on K) such that for every x, y ∈ K, some f ∈ M satisfies ∥f∥X,L ⩽ a

and |f(x)− f(y)| = d(x, y).

Note that lipK(X, d) satisfies aforementioned uniform separation property when (X, d)
is uniformly discrete (that is, inf{d(x, y) : x ̸= y} > 0), or when (X, d) is a totally
disconnected metric space [10, Example 3.1.6].

Theorem 2.7 (see [4, Theorem 1.3]). Let (X, d) be a metric space and ϕ : X −→ X be

a bounded Lipschitz mapping from (X, d) into (X, d). Assume that lipK(X, d) separates

points uniformly on bounded subsets of X. Then the composition operator Cϕ,lipK(X,d) :

lipK(X, d) −→ lipK(X, d) is compact if and only if ϕ is supercontractive and ϕ(X) is

totally bounded in (X, d).

In the following result, we characterize compact composition operators on real little
Lipschitz spaces (lip(X, d, τ), ∥ · ∥X,L) when lip(X, d) satisfies aforementioned uniform
separation property.

Theorem 2.8 Let (X, d) be a metric space, τ be a Lipschitz involution on (X, d) and

ϕ : X −→ X be a Lipschitz mapping from (X, d) into (X, d) with ϕ ◦ τ = τ ◦ ϕ.
Suppose that lip(X, d) separates points uniformly on bounded subsets of X. Then the

composition operator Cϕ,lip(X,d,τ) : lip(X, d, τ) −→ lip(X, d, τ) is compact if and only if

ϕ is supercontractive and ϕ(X) is totally bounded in (X, d).
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Proof. Since τ is a Lipschitz involution on (X, d), by Theorem 1.2, we deduce that

lip(X, d) = lip(X, d, τ)⊕ i lip(X, d, τ), there exists a constant C ⩾ 1 such that

max{∥f∥X,L, ∥g∥X,L} ⩽ C∥f + ig∥X,L ⩽ 2Cmax{∥f∥X,L, ∥g∥X,L}

for all f, g ∈ lip(X, d, τ) and lip(X, d, τ) with the norm ∥ · ∥X,L is a real Banach space.

Hence, by Theorem 2.1, the compactness of the operator Cϕ,lip(X,d,τ) : lip(X, d, τ) −→
lip(X, d, τ) is equivalent to the compactness of the operator (Cϕ,lip(X,d,τ))

′
: lip(X, d) −→

lip(X, d) which is defined by

(Cϕ,lip(X,d,τ))
′
(f + ig) = Cϕ,lip(X,d,τ)(f) + iCϕ,lip(X,d,τ)(g)

for all f, g ∈ lip(X, d, τ). It is easy to see that

(Cϕ,lip(X,d,τ))
′
= Cϕ,lip(X,d).

Since lip(X, d) separates the points uniformly on bounded subsets of X and ϕ is a

bounded Lipschitz mapping from (X, d) into (X, d), by Theorem 2.7, the compactness of

Cϕ,lip(X,d) is equivalent to ϕ is supercontractive and ϕ(X) is totally bounded in (X, d).

Hence, the proof is complete. ■

Note that Theorem 2.8 is a generalization of [4, Theorem 1.3] whenever K = R.
We now show that the class of real little Lipschitz space lip(Y, ρ, τ) with the norm

∥ · ∥Y,L is larger than the class of complex little Lipschitz spaces lip(X, d) with the
norm ∥ · ∥X,L regarded as real Lipschitz spaces (Theorem 2.9, below) and the class of
compact composition operators on (lip(Y, ρ, τ), ∥·∥Y,L) is larger than the class of compact
composition operators on (lip(X, d), ∥ · ∥X,L) (Theorem 2.10, below).

Theorem 2.9 Let (X, d) be a metric space, Y = X×{0, 1} , ρ be the metric on Y defined

by ρ((x1, j1), (x2, j2)) = max{d(x1, x2), |j1 − j2|} and τ be the Lipschitz involution on

(Y, ρ) defined by

τ(x, 0) = (x, 1), τ(x, 1) = (x, 0) (x ∈ X).

Then the map Γ : lip(X, d) −→ lip(Y, ρ, τ) defined by

(Γf)(x, 0) = f(x), (Γf)(x, 1) = f(x) (f ∈ lip(X, d), x ∈ X),

is an injective real-linear operator from (lip(X, d), ∥ · ∥X,L) regarded as a real Banach

space onto (lip(Y, ρ, τ), ∥ · ∥Y,L) satisfying

∥f∥X,L ⩽ ∥Γf∥Y,L ⩽ 2∥f∥X,L,

for all f ∈ lip(X, d).
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Proof. Let Λ : Lip(X, d) −→ Lip(Y, ρ, τ) defined by

(Λf)(x, 0) = f(x), (Λf)(x, 1) = f(x) (f ∈ Lip(X, d), x ∈ X).

By Theorem 2.4, Λ is an injective bounded real-linear operator from Lip(X, d) with the

norm ∥ · ∥X,L regarded as a real Banach space onto Lip(Y, ρ, τ) with the norm ∥ · ∥Y,L
satisfying

∥f∥X,L ⩽ ∥Λf∥Y,L ⩽ 2∥f∥X,L

for all f, g ∈ Lip(X, d). We claim that

Λ(lip(X, d)) = lip(Y, ρ, τ). (2)

Let f ∈ lip(X, d). Then f ∈ Lip(X, d) and so Λf ∈ Lip(Y, ρ, τ). Let ε > 0 be given. There

exists δ0 > 0 such that
|f(x1)− f(x2)|

d(x1, x2)
< ε, whenever x1, x2 ∈ X and 0 < d(x1, x2) < δ0.

Set δ = min{δ0, 1/2}. If (x1, j1), (x2, j2) ∈ Y with 0 < ρ((x1, j1), (x2, j2)), then 0 <

d(x1, x2) < δ0 and j1 = j2, so we have

|(Λf)(x1, j1)− (Λf)(x2, j2)|
ρ((x1, j1), (x2, j2))

=
|f(x1)− f(x2)|

d(x1, x2)
< ε.

Thus, Λf ∈ lip(Y, ρ, τ).

Now, let g ∈ lip(Y, ρ, τ). Then g ∈ Lip(Y, ρ, τ) and so there exists f ∈ Lip(X, d)

such that Λf = g. Let ε > 0 be given. Then there exists δ > 0 such that
|g(x1, j1)− g(x2, j2)|
ρ((x1, j1), (x2, j2))

< ε, whenever (x1, j1), (x2, j2) ∈ Y and 0 < ρ((x1, j1), (x2, j2)) < δ.

If x1, x2 ∈ X with 0 < d(x1, x2) < δ, then (x1, 0), (x2, 0) ∈ Y with 0 < ρ((x1, 0), (x2, 0)) <

δ, and so

|f(x1)− f(x2)|
d(x1, x2)

=
|(Λf)(x1, 0)− (Λf)(x2, 0)|

ρ((x1, 0), (x2, 0))
< ε.

Thus, f ∈ lip(X, d) implies that g ∈ Λ(lip(X, d)). Hence, our claim is justified.

From (2) and definitions of Γ and Λ, we conclude that Γ is well- defined and Γ =

Λ|lip(X,d). According to (2) and the above mentioned properties of Λ, we conclude that

Γ satisfies the required conditions. ■

Theorem 2.10 Let (X, d) be a metric space, Y = X × {0, 1}, ρ be the metric on Y

defined by ρ((x1, j1), (x2, j2)) = max{d(x1, x2), |j1−j2|} and τ be the Lipschitz involution

on (Y, ρ) defined by

τ(x, 0) = (x, 1), τ(x, 1) = (x, 0) (x ∈ X).
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Let ϕ be a bounded Lipschitz mapping from (X, d) into (X, d) and the map ψ : Y −→ Y

defined by

ψ(x, 0) = (ϕ(x), 0), ψ(x, 1) = (ϕ(x), 1) (x ∈ X),

Then:

(i) ψ is a bounded Lipschitz mapping from (Y, ρ) into (Y, ρ) such that ψ ◦ τ = τ ◦ψ.
(ii) The composition operator Cϕ,lip(X,d) : lip(X, d) −→ lip(X, d) is compact if and

only if the composition operator Cψ,lip(Y,ρ,τ) : lip(Y, ρ, τ) −→ lip(Y, ρ, τ) is com-

pact.

Proof. By part (i) of Theorem 2.5, ψ is a Lipschitz mapping from (Y, ρ) onto (Y, ρ) such

that ψ ◦ τ = τ ◦ ψ. Since ϕ is bounded, there exists x1 ∈ X and δ1 > 0 such that

ϕ(X) ⊆ {x ∈ X : d(x, x1) < δ1}.

We assume that y1 = (x1, 0) and γ1 = 1 + δ1. It is easy to see that

ψ(Y ) ⊆ {y ∈ Y : ρ(y, y1) < γ1}.

Therefore, ψ is bounded. Hence, (i) holds.

Let Γ : lip(X, d) −→ lip(Y, ρ, τ) defined by

(Γf)(x, 0) = f(x), (Γf)(x, 1) = f(x) (f ∈ lip(X, d), x ∈ X).

By Theorem 2.9, Γ is an injective bounded real linear operator from lip(X, d) with the

norm ∥ · ∥X,L regarded as a real Banach space onto real Banach space lip(Y, ρ, τ) with

the norm ∥ · ∥Y,L. We can easily show that

Γ ◦ Cϕ,lip(X,d) = Cψ,lip(Y,ρ,τ) ◦ Γ. (3)

According to Γ ∈ BLR(lip(X, d), lip(Y, ρ, τ)) and (2.3) , we deduce that the operator

Cϕ,lip(X,d) : lip(X, d) −→ lip(X, d) is compact if and only if Cψ,lip(Y,ρ,τ) : lip(Y, ρ, τ) −→
lip(Y, ρ, τ) is compact. Hence, (iii) holds. ■

According to Theorems 2.9 and 2.10, it is clear that Theorem 2.8 is also a generalization
of [4, Theorem 1.3], whenever K = C.

The following result is concerning the compactness of composition operators on Lips-
chitz spaces Lip0,K(X, d) obtained by Jiménez-Vargas and Villegas-Vallecillos [4].

Theorem 2.11 (see [4, Theorem 1.2]). Let (X, d) be a base pointed metric space and

ϕ : X −→ X be a base point preserving Lipschitz mapping from (X, d) into (X, d). Then

the composition operator Cϕ,Lip0,K(X,d) : Lip0,K(X, d) −→ Lip0,K(X, d) is compact if and

only if ϕ supercontractive and ϕ(X) is totally bounded in (X, d).
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In the following result, we characterize compact composition operators on real Lipschitz
spaces Lip0(X, d, τ).

Theorem 2.12 Let (X, d) be a base pointed metric space, τ be a base point preserving

Lipschitz involution on (X, d) and ϕ : X −→ X be a base point preserving Lipschitz

mapping from (X, d) into (X, d) satisfying ϕ ◦ τ = τ ◦ ϕ. Then the composition operator

Cϕ,Lip0(X,d,τ) : Lip0(X, d, τ) −→ Lip0(X, d, τ) is compact if and only if ϕ is supercontrac-

tive and ϕ(X) is totally bounded in (X, d).

Proof. Since τ is a Lipschitz involution on (X, d), by Theorem 1.3, we deduce that

Lip0(X, d) = Lip0(X, d, τ)⊕ i Lip0(X, d, τ), there exists a constant C ⩾ 1 such that

max{L(X,d)(f), L(X,d)(g)} ⩽ CL(X,d)(f + ig)

⩽ 2Cmax{L(X,d)(f), L(X,d)(g)}

for all f, g ∈ Lip0(X, d, τ), and (Lip0(X, d, τ), L(X,d)(·)) is a real Banach space. Hence,

by Theorem 2.1, the compactness of Cϕ,Lip0(X,d,τ) : Lip0(X, d, τ) −→ Lip0(X, d, τ) is

equivalent to the compactness of (Cϕ,Lip0(X,d,τ))
′
: Lip0(X, d) −→ Lip0(X, d) which is

defined by

(Cϕ,Lip0(X,d,τ))
′
(f + ig) = Cϕ,Lip0(X,d,τ)(f) + iCϕ,Lip0(X,d,τ)(g)

for all f, g ∈ Lip0(X, d, τ). It is easy to see that

(Cϕ,Lip0(X,d,τ))
′
= Cϕ,Lip0(X,d).

Therefore, the compactness of Cϕ,Lip(X,d,τ) : Lip(X, d, τ) −→ Lip(X, d, τ) is equivalent

to the compactness of Cϕ,Lip0(X,d) : Lip0(X, d) −→ Lip0(X, d) and this is equivalent to ϕ

is supercontractive and ϕ(X) is totally bounded in (X, d). Hence, the proof is complete.

■

Note that Theorem 2.12 is a generalization of Theorem 2.11 whenever K = R.

3. Spectra of compact composition operators

We recall that if Y is a nonempty set, n ∈ N and ψ : Y −→ Y is a self-map of Y , then
a point y0 ∈ Y is called a fixed point of ψ of order n if ψ(y0) = y0 whenever n = 1, and
ψn(y0) = y0 and ψk(y0) ̸= y0 for all k ∈ {1, ..., n− 1} whenever n ⩾ 2.

Let (X, d) be a metric space and the metric space (X̃, d̃) be the completion of (X, d).

It is known [10, Proposition 1.7.1] that if (Y, ρ) is a complete metric space, then every

Lipschitz mapping ϕ : X −→ Y from (X, d) into (Y, ρ) has a unique Lipschitz extension

ϕ̃ : X̃ −→ Y from (X̃, d̃) into (Y, ρ), and

sup{ρ(ϕ̃(x̃), ϕ̃(ỹ))
d̃(x̃, ỹ)

: x̃, ỹ ∈ X̃, x̃ ̸= ỹ} = sup{ρ(ϕ(x), ϕ(y))
d(x, y)

: x, y ∈ X,x ̸= y}.
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Jiménez-Vargas and Villegas-Vallecillos [4] determined spectra of compact compo-
sition operators on Lipschitz spaces (LipK(X, d), ∥ · ∥X,L) and little Lipschitz spaces
(lipK(X, d), ∥ · ∥X,L) as the following.

Theorem 3.1 (see [4, Theorem 1.4]). Let (X, d) be a metric space, ϕ : X −→ X is a

Lipschitz mapping from (X, d) into (X, d), ϕ̃ : X̃ −→ X̃ its extension to the completion

(X̃, d̃) of (X, d) and A the set of all n ∈ N such that ϕ̃ has a fixed point of order n.

(i) If Cϕ,LipK(X,d) : LipK(X, d) −→ LipK(X, d) is a compact operator, then A is finite

and

σ(Cϕ,LipK(X,d)) \ {0} =
∪
n∈A

{λ ∈ K : λn = 1}.

Moreover, if X is infinite and connected in (X, d), then

σ(Cϕ,LipK(X,d)) = {0, 1}.

(ii) Assume that ϕ is bounded and lipK(X, d) separates points uniformly on bounded

subsets of X. If Cϕ,lipK(X,d) : lipK(X, d) −→ lipK(X, d) is compact, then A is finite

and

σ(Cϕ,lipK(X,d)) \ {0} =
∪
n∈A

{λ ∈ K : λn = 1}.

Moreover, if X is infinite and connected in (X, d), then

σ(Cϕ,lipK(X,d)) = {0, 1}.

In the following theorem, we determine spectra of compact composition operators on
Lip(X, d, τ) and lip(X, d, τ).

Theorem 3.2 Let (X, d) be a metric space, τ a topological involution onX, ϕ : X −→ X

a Lipschitz mapping from (X, d) into (X, d) with ϕ ◦ τ = τ ◦ ϕ, ϕ̃ the unique Lipschitz

extension to completion (X̃, d̃) of (X, d) and A the set of all n ∈ N such that ϕ̃ has a

fixed point of order n.

(i) If Cϕ,Lip(X,d,τ) : Lip(X, d, τ) −→ Lip(X, d, τ) is a compact operator, then A is

finite and

σ(Cϕ,Lip(X,d,τ)) \ {0} =
∪
n∈A

{λ ∈ R : λn = 1}.

Moreover, if X is infinite and connected in (X, d), then

σ(Cϕ,Lip(X,d,τ)) = {0, 1}.
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(ii) Assume that ϕ is bounded and lip(X, d) separates points uniformly on bounded

subsets of X. If Cϕ,lip(X,d,τ) : lip(X, d, τ) −→ lip(X, d, τ) is compact, then A is

finite and

σ(Cϕ,lip(X,d,τ)) \ {0} =
∪
n∈A

{λ ∈ R : λn = 1}.

Moreover, if X is infinite and connected in (X, d), then

σ(Cϕ,lip(X,d,τ)) = {0, 1}.

Proof. Let A = Lip(X, d, τ) and B = Lip(X, d) (A = lip(X, d, τ) and B = lip(X, d),

respectively). Suppose that ϕ is bounded and B separates points uniformly on bounded

subsets of X whenever A = lip(X, d, τ).

Let Cϕ,A : A −→ A be a compact operator. Since τ is a topological involution on

(X, d), by Theorem 1.2, B = A⊕ iA and there exists a constant C ⩾ 1 such that

max{∥f∥X,L, ∥g∥X,L} ⩽ C∥f + ig∥X,L ⩽ 2Cmax{∥f∥X,L, ∥g∥X,L},

for all f, g ∈ A. By Theorem 2.1, (Cϕ,A)
′
: B −→ B is a compact operator and

σ(Cϕ,A) = R ∩ σ((Cϕ,A)
′
).

By the argument given in the proofs of Theorem 2.3 for A = Lip(X, d, τ) and Theorem

2.8 for A = lip(X, d, τ), we have

(Cϕ,A)
′
= Cϕ,B.

Therefore,

σ(Cϕ,A) = R ∩ σ(Cϕ,B). (4)

On the other hand, by Theorem 3.1, we have

σ(Cϕ,B) \ {0} =
∪
n∈A

{λ ∈ C : λn = 1}. (5)

From (4)and (5), we conclude that

σ(Cϕ,A) \ {0} =
∪
n∈A

{λ ∈ R : λn = 1}.

Moreover, if X is infinite and connected in (X, d), then

σ(Cϕ,B) = {0, 1}.
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So by (4), we have

σ(Cϕ,A) = {0, 1}.

Hence, the proof is complete. ■

In the following example which is a modification of [4, Example 1.1], we determine the
spectrum of the compact composition operator Cϕ,Lip(X,d,τ) on Lip(X, d, τ), where τ is a
suitable Lipschitz involution on (X, d).

Example 3.3 Take the sets Z = [−1,−1/2]∪ [1/2, 1] and Y = [−1/2,−1/4]∪ [1/4, 1/2]

endowed, respectively, with the metrics

dZ(x, y) = |x− y|, (∀x, y ∈ Z); dY (x, y) =
√

|x− y|, (∀x, y ∈ Y ).

Let X = Y ∪ Z and let d : X ×X −→ R the distance on X given by

d(x, y) =



dZ(x, y) if x, y ∈ Z;

dY (x, y) if x, y ∈ Y ;

dZ(x,−1/2) + dY (−1/2, y) if x ∈ [−1,−1/2], y ∈ Y ;

dZ(y,−1/2) + dY (−1/2, x) if y ∈ [−1,−1/2], x ∈ Y ;

dZ(x, 1/2) + dY (1/2, y) if x ∈ [1/2, 1], y ∈ Y ;

dZ(y, 1/2) + dY (1/2, x) if y ∈ [1/2, 1], x ∈ Y.

Notice that (X, d) is compact since the topology generated by d is the usual topology

of X. Define the map τ : X −→ X by τ(x) = −x. It is easy to see that

d(τ(x), τ(y)) = d(x, y),

for all x, y ∈ X, and so τ is a Lipschitz involution on (X, d). Consider now ϕ : X −→ X

defined by

ϕ(x) =


−2x if x ∈ Y,

1 if x ∈ [−1,−1/2],

−1 if x ∈ [1/2, 1].

It is not hard to check that ϕ is Lipschitz mapping from (X, d) into (X, d) and ϕ ◦ τ =

τ ◦ ϕ. Thus, Cϕ,Lip(X,d,τ) : Lip(X, d, τ) −→ Lip(X, d, τ) is compact by Theorem 2.3. It is

easy to see that −1 and 1 are fixed point of ϕ of order 2 and if x ∈ X \ {−1, 1}, then x is

not fixed point of ϕ of order n for all n ∈ N. Since (X, d) is a compact metric space, we

deduce that (X̃, d̃) = (X, d) and ϕ̃ = ϕ. Thus, A = {2} and so, by Theorem 3.2, we have

σ(Cϕ,Lip(X,d,τ)) \ {0} =
∪
n∈A

{λ ∈ R : λ2 = 1} = {−1, 1}. (6)
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On the other hand, 0 ∈ σ(Cϕ,Lip(X,d)) since X is infinite. Thus, 0 ∈ R∩ σ(Cϕ,Lip(X,d)).
By the argument given in the proof of Theorem 3.2, we conclude that 0 ∈ σ(Cϕ,Lip(X,d,τ)).

Now, from (6) we have

σ(Cϕ,Lip(X,d,τ)) = {−1, 0, 1}.
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