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Abstract. In this paper, we intend to solve special kind of ordinary differential equations which is called
Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct
a stochastic linear equation system from this equation which its solution is based on computing fundamental
matrix of this system and then, this S.D.E. is solved by numerically methods. Moreover, its asymptotic
stability and statistical concepts like expectation and variance of solutions are discussed. Finally, the attained
solutions of these S.D.E.s compared with exact solution of corresponding differential equations.
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1. Introduction to Heun equation

Most of the known theoretical issues in physics are being involved in analyzing and solv-
ing an enormous number of differential equations (O.D.E. or P.D.E.). The classification
of differential equations is done according to their singularity structure around their sin-
gular points [10], [13]. In physics, one of the applied typical equations are the following
hypergeometric Heun equation:

z(1− z)
d2w

dz2
+ (c− (l + a+ b)z)

dw

dz
− abw = 0. (1)

As we know, this equation has three regular singular points, at zero, one and infinity.
Jacobi, Legendre, Bessel, Laguerre and Hermite equations are special cases of this second
order equation and can be changed to this type.
In mathematics, the local Heun equation was introduced by M. Karl and L. Heun[11]. The
local Heun function is called a Heun function (HF ), if it is also regular at z = 1, and is
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called a Heun polynomial(HP ), if it is regular at all three finite singular pointsz = 0, 1, a.
Heun’s equation is a second-order linear ordinary differential equation of the form

d2w

dz2
+ [

γ

z
+

δ

z − 1
+

ϵ

z − a
]
dw

dz
+

αβz − q

z(z − 1)(z − a)
w = 0. (2)

The condition ϵ = α + β − γ − δ + 1 is necessary to ensure regularity of the point at
∞. The complex number q is named the accessory parameter. Heun’s equation has four
regular singular points:z = 0, 1, a and z = ∞ with exponents (0, 1−γ), (0, 1−δ), (0, 1−
ϵ), and(a, β). For more information regarding Heun equation, their various solutions and
it’s applications to theoretical physics issues, you can refer to [7–9, 14]. In this paper, we
intend to solve the following stochastic Heun equation:{

y′′ +
(
α+ β+1

x + γ+1
x−1

)
y′ +

(µ
x + ν

x−1

)
y = ξ,

y(0) = y0, y′(0) = y1.

such that α, β, γ, µ, ν and ξ, could be coefficients of Gaussian random variables which is
named Wiener process or Brownian motion.
In general case, these equations have power series solutions with simple relations between
continuous coefficients and can be generally represented in terms of simple integral trans-
forms. In the case of nonlinear problem, we often utilize one form of the Painleve equa-
tion which is known as a linear second order differential equations [12]. As an applied
method, because of having stochastic behavior of more physical phenomenons, we con-
sider S.D.E. form of these equations and start to solve and analyze them.
This paper is organized as follow. In section 2, we consider the stochastic linear equation
system of Heun equation which has been mentioned in various books like [4] and [3]. Af-
terwards, by construction fundamental matrix for this system we solve it numerically by
Rung −Kutta method. In section 3, we consider two second order S.D.E. examples of
Heun equation and solve them by mentioned method form section 2 and stochastic numer-
ical simulation like predictor-corrector EulerMaruyama (E.M.) and Milstein′method
[2]. Also, we find expectation, variance and figure of these equations answers. In section
4, the conclusion of this paper has been said and finally, in section 5, Mathlab code of
these examples has been brought.

2. Making Stochastic Differential Equation System

In general Case, consider the second order liner S.D.E.

y′′ = (A(t) + α(t)ξ1)y
′ + (B(t) + β(t)ξ2)y + (C(t) + γ(t)ξ3).

which variables ξi(i = 1, 2, 3), are Gaussian random variables and they are named ”white
noise” who considered as derivation of Wiener process respect to time (i.e.dWi(t)

dt = ξi).
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The Wiener processes corresponding to following definition have some properties.

DEFINITION 2.1 A m-dimensional vector W (t) of stochastic processes Wi(t), (i =
1, 2, ...,m) is named Wiener process or Brownian motion if;
(a) W (0) = 0 a.s. (almost sure with probability one),
(b) W (t)−W (s) is normal distribution (i.e.W ∼ N(0, t− s)), for all 0 ⩽ s ⩽ t
(c) for times 0 ⩽ t1 ⩽ t2 ⩽ ... ⩽ tn, the random variables W (t1),W (t2) −
W (t1), ...,W (tn)−W (tn−1) are independent increments.

From this definition, it could be concluded that

E[Wi(t)] = 0, E[W 2
i (t)] = t for i = 1, 2, ...,m. (3)

Now, the above S.D.E. could be written as following Linear system:

y′1 = y2, y′2 = (A(t) + α(t)ξ1)y2 + (B(t) + β(t)ξ2)y1 + (C(t) + γ(t)ξ3) (4)(
y1
y2

)′
=

((
0 1

B(t) A(t)

)(
y1
y2

)
+

(
0

C(t)

))
+

((
0 0

β(t)y1 α(t)y2

)(
0 0

λγ(t) (1− λ)γ(t)

))(
ξ1
ξ2

)
(5)

In this case, because of linear combination of normal random variables is again a normal
random variable with mean and variance equal to corresponding linear their combination
respectively, so we have put ξ3 as a convex Combination of ξ1, ξ2. Thus, this equation
matrix form is made as follows:

dy = (D(t).y + C(t))dt+ (F (t).y + E(t))dW. (6)

such that ξi = dWi

dt (i = 1, 2, 3), and Wi is Wiener process.
Now, we intend to address the constriction of this problem solutions. At First, we prove

the existence and uniqueness theorem for this linear S.D.E.s system. A complete proof of
this fundamental theorem in stochastic differential equations could be found in text books
like [6] and [5].

THEOREM 2.2 Suppose that D(t).y + C(t) : Rn × [0, T ] → Rn and F (t).y + E(t) :
Rn × [0, T ] → Mm×n are continuous and satisfy in the following properties(Mm×n, is
the set of m× n-dimensional matrixes in Rn ):

(1) ∥D(t).(y(t)− ŷ(t))∥ ⩽ L.∥y(t)− ŷ(t)∥, (Lipshitz inequality) (7)

∥F (t).(y(t)− ŷ(t)∥ ⩽ L.∥y(t)− ŷ(t)∥. (8)
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(2) ∥D(t).y + C(t)∥ ⩽ L.|1 + ∥y∥|, (9)

∥F (t).y + E(t)∥ ⩽ L.|1 + ∥y∥|. (10)

for all 0 ⩽ t ⩽ T, and y, ŷ, x ∈ Rn. For some suitable L ∈ R and let y0 ∈ Rn is a random
variable such that: E[y20] < ∞. Hence, There exist a unique solution y ∈ L2

n(0, T ) of
S.D.E.: {

dy = (D(t).y + C(t))dt+ (F (t).y +E(t))dW,

y(0) = y0. (0 ⩽ t ⩽ T )
(11)

Where W , is a m-dimensional Brownian motion.

Remark 1 According to [6] and [1], if we have the inequality:

Sup
0⩽t⩽T

{∥C(t)∥, ∥E(t)∥, ∥D(t)∥, ∥F (t)∥} < ∞. (12)

then D(t).y + C(t) and F (t).y + E(t) satisfy the hypotheses which have been posed
in existence and uniqueness above theorem for linear S.D.E. provided E[y20] < ∞. In
special Case, if C,D,E, and F, have continuous elements in [0, T ], they get their finite
maximum values in this interval.

On account of existence and uniqueness solution of linear S.D.E., for instance in narrow
sense, the linear S.D.E. and its explicit solution is :{

dy = (D(t).y + C(t))dt+ E(t).dW,

y(0) = y0
(13)

y(t) = Φ(t)
(
y0 +

∫ t

0
Φ(s)−1(C(s)ds+E(s)dW )

)
, (14)

where Φ(0) is the fundamental matrix of the following O.D.E. system [1]:

dΦ

dt
= D(t).Φ0, Φ(c) = I.

In other words, we have:(
Φ̇11 Φ̇12

Φ̇21 Φ̇21

)
=

(
Φ21 Φ22

B(t)Φ11 +A(t)Φ21 B(t)Φ21 +A(t)Φ22

)
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and Φij(0) = δij =

{
1, i = j

0, i = j
.

Consequently it turns out two send-order equations by different initial Conditions:{
Φ̈11 = B(t)Φ11 +A(t)Φ̇11

Φ11(0) = 1, Φ̇11(0) = 0
,

{
Φ̈12 = B(t)Φ12 +A(t)Φ̇12

Φ12(0) = 0, Φ̇12(0) = 1
(15)

so the explicit solution attains so(
y1
ẏ1

)
=

(
Φ11 Φ12

Φ̇11 Φ̇12

)(
y(0)

y′(0)

)
+

∫ t

0

1

detΦ

(
Φ̇12 −Φ12

−Φ̇11 Φ11

)
(

0

C(s)

)
ds+

(
0 0

λγd(t) (1− λ)γ(t)

)(
dW2

dW1

)
.

Therefore we should have this equality for equation solution:

y1 = y = Φ11y(0) + Φ12y
′(0) + Φ11

∫ t

0

1

detΦ
(−Φ12)(C(s)ds

+ λγ(s)dW2 + (1− λ)γ(s)dW1) (16)

+Φ12

∫ t

0

1

detΦ
(Φ11)(C(s)ds+ λγ(s)dW2 + (1− λ)γ(s)dW1).

The equation (15) are second-order Linear O.D.E. we could solve them by various meth-
ods like series solution respect to nonsingular point or Frobinious series respect to reg-
ular points. Also, we could apply sinc method to solve directly this equation or convert it
to a Linear system equation and solve it by 4th-order Rung − kutta method.

afterwards, we decide to Compute from equality (16) that it could be done by numerical
methods like E.M. predictor-corrector E.M. and milstein. Also in matrix form which is
convenient for Matlab software, we could get the following recursive procedure.

y(t) = Φ(t)
(
y0 +

∫ t

0
Φ(s)−1(C(s)ds+ E(s)dWs)

)
Φ−1(ti+1).y(ti+1) = y0 +

∫ ti+1

0 Φ(s)−1(C(s)ds+E(s)dWs)
)

Φ−1(ti)y(ti) = y0 +
∫ ti
0 Φ(s)−1(C(s)ds+ E(s)dWs)

)
Consequently, we get:

y(ti+1) = y(i+ 1) = Φ(ti+1)
(
Φ−1(ti)yi +

∫ ti+1

ti

Φ(s)−1(C(s)ds+ E(s)dWs)
)
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y(i+ 1) = Φ(ti+1)Φ(ti)
−1(yi + C(ti)∆ti +E(ti)∆Wi) (17)

such that;

δWi = W (ti+1)−W (ti) ∼=
√

δtiξi (ξi ∼ N(0, 1))

The last approximation has been concluded from independent increment property Of
Wiener process (for all t, s ∈ [0, T ]; W (t)−W (s) = W (t− s) ∼ N(0, t− s).)

Of course, W (t) could be computed by an infinite series of Haar function with stan-
dard Gaussian have been written based on this approximation. Although, it could be done
according relation (12). Finally, this issue should be said that for almost each W , the
random trajectories of S.D.E.{

dy = (D(t).y + C(t))dt+ (F (t).y +E(t))dW,

y(0) = y0 + ξ.

Converge uniformly on interval [0, T ] as

{
ξ → 0,

ϵ = F (t).y + E(t) → 0
, will be caused

the trajectories of deterministic O.D.E.

{
ẏ = D(t).y + C(t)

y(0) = y0.

In general case, the following theorem indicates this asymptotic stability for linear
stochastic systems against corresponding ordinary equation system is satisfactory. The
up coming theorem was proved in [5].

THEOREM 2.3 (Dependence on Parameters)
Suppose for k = 1, 2, · · · that Dk(t) + Ck(t) and F k(t)y + Ek(t) satisfy the hypothesis
of existence and uniqueness theorem, with the same constant L which said as a real bond
in theorem. Moreover

lim
k→∞

E(∥yk0 − y0∥) = 0,

and for each M > 0, such that ∥y∥ ⩽ M ,

lim
k→∞

max
0⩽t⩽T

(
∥Dk(t)−D(t)∥+∥Ck(t)−C(t)∥+∥F k(t)−F (t)∥+∥Ek(t)−E(t)∥

)
= 0.

Finally, suppose that yk(0) solves:{
dyk = (Dk(t) + Ck(t))dt+ (F k(t)y + Ek(t))dW

yk(0) = yk0
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Then the sequence {yk(t)}∞k=1, in interval[0, T ] intends almost sure to y(t). That is

lim
k→∞

E
(
max
0⩽t⩽T

∥yk(t)− y(t)∥2
)
= 0,

where y is the unique solution of{
dy = (D(t).y + C(t))dt+ (F (t).y +E(t))dW,

y(0) = y0.

Remark 2 According to asymptotic stability and solution of linear S.D.E. we could solve
any nonhomogeneous linear O.D.E. by its correspond S.D.E. In addition, the analytic
solution and least square error of O.D.E. Could be found in bused on expectation and
variance of S.D.E. solution

3. Examples

In this section, we discuss two second order stochastic differential equation which are
especial cases of Heun equation. About each one of them, we find expectation, variance
and by computing a great number of their stochastic solutions, according to Strong Law
of Large Numbers theorem in statistics, we could draw a good approximate for the
solution of corresponding O.D.E.

Example 3.1 Consider the following S.D.E.{
y′′ = 2y′ − y + t.ξ,

y(0) = y′(0) = 1.
(18)

by making equivalent S.D.E.system, we have

ẏ = D(t)ydt+E(t)dW.

that; D(t) =

(
0 1
−1 2

)
, E(t)

(
0
t

)
, S = dW

dt is white noise and W , is Gaussian random

variable (W ∼ N(0, t)) which is named Wiener process.{
Φ̇ = D(t).Φ

Φ(0) = I
→

{
Φ̈11 = 2Φ̇11 − Φ11

Φ11(0) = 1, Φ̇11 = 0
,

{
Φ̈12 = 2Φ̇12 − Φ12

Φ12(0) = 0, Φ̇12(0) = 1

with direct Computation we have:

Φ11 = et − tet , Φ12 = tet
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Figure 1. The exact solution with mean of M = 100 numerical solution by E.M.
Method with N = 28 subinterval of [0, 1] and also 5 individual numerical solution has
been shown. In this case the least square error is 0.0435.

Thus, S.D.E. solution will be as following:

y = Φ.(y0 +

∫ t

0
Φ−1(s).

(
0

s

)
.dW (s))

= et
(
1− t t
−t 1 + t

)((1
1

)
+

∫ t

0
e−s

(
s+ 1 −s
s 1− s

)(
0

s

)
sW (s)

)
Therefore, final solution of S.D.E. (i.e.y = y1) is:

y1 = y = et + (1− t).et.

∫ t

0
−s2.e−sdW + t.et.

∫ t

0
((−s).s.e−sdW.

Because of expectation of itô integral in zero, thus we will have the following results

E[y] = 0, var(y) = E[y2]−E2[y] = t(1−t)e2t.E
[ ∫ t

0
−s2.e−sdW.

∫ t

0
s(1−s)e−sdW

]
and with attention to property of it 0̂ internal products

E
[ ∫ t

0
F (x, t)dW.

∫ t

0
G(x, t)dW

]
= E

[ ∫ t

0
F (x, t).G(x, t)dt

]
,
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we have

V ar(y) = t(1− t)e2t.

∫ t

0
s3(s− 1)e−2sdt.

Also, with asymptotic stability of equations, when t → 0, the exact solution of O.D.E.

system:

{
y′′ = 2y′ − y,

y(0) = y′(0) = 1.
is y = E[y] = et.

Example 3.2 Consider the following differential equation with noise{
(1− x2)y′′ − 2xy′ + n(n+ 1)y = f(x)ξ1 + g(x),

y(0) = y0, y
′(0) = y1.

the equivalent system equation is dy = (D(t)y + C(t))dt+ E(t)dWt, such that:

D(t) =

(
0 1

−n(n+1)
1−t2

2t
1−t2

)
, C(t) =

(
0

g(t)

)
, E(t) =

(
0

f(t)

)
, y =

(
y
y′

)
and ξt =

dW
dt .

According to linear S.D.E. solution, the answer is

y = Φ(t)
((y0

y1

)
+

∫ t

0
Φ−1(t)(C(s)ds+ E(s)dWs)

)
, (19)

Φ̇(t) = D(t).Φ(t), Φ(0) = I. (20)

Consequently, two second order equations get from this system equation.

{
Φ′′
1i =

2t
1−t2Φ

′
1i −

n(n+1)
1−t2 Φ1i, (i = 1, 2)

Φ1i(0) = δ1i, Φ
′
1i(0) = δ2i.

(21)

We could solve these O.D.E.s by different methods like series solution, since functions.
Also, this equation system could be solved by numerical methods of equation system like
Rung − kutta from 4th order. Thus, recursive relation for (19) is as follows:

yi+1 = Φi+1.Φ
−1
i

(
yi + C(ti)∆ti + E(ti)∆Wi.

)
The equations (21) are n− th order legendre equations. For instance, in case n = 2:{

Φ′′
11 =

2t
1−t2Φ

′
11 − 6

1−t2Φ11

Φ11(0) = 1,Φ′
11(0) = 0

→ Φ11(t) = −3t2 + 1 (22)

{
Φ′′
12 =

2t
1−t2Φ

′
12 − 6

1−t2Φ12

Φ12(0) = 0,Φ′
12(0) = 1

→ Φ12(t) = t− 2

3
t3 +

1

5
t5 + 0(t7) (23)
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Figure 2. The exact solution with mean of M = 100 numerical solution by E.M.
Method with N = 29 subinterval of [0, 1] and also 5 individual numerical solution has
been shown.In this case the least square error is 0.0234.

If we consider the following S.D.E:{
(1− t2)y′′ − 2ty′ + 6y = 4t+ ξ

y(0) = −1
2 , y

′(0) = 0.

it could be verified by Laplace transform method that y = yh + yp = 1
2(3t

2 − 1) + t
is the exact solution of corresponding O.D.E., without white noise. On the other hand,
S.D.E. solution is as follow:

y =

(
y

y′

)
= Φ.

((−1
2

0

)
+

∫ t

0
Φ−1(s).

[( 0

4s

)
ds+

(
0

1

)
dWs

])
In this equality, for instance if g(t) = 0, we get y = −1

2(−3t2 + 1) + (t − 2
3 t

3 +
1
5 t

5).W (t).

Finally, E[y] = −1
2 (−3t2 + 1) and var(y) = t2

(
1 − 2

3 t
2 + 1

5 t
4
)

. We can see this
situation in corresponding graph.

We have indicated the maximum absolute errors in numerical solution of this exam-
ple. In the corresponding table for different numbers of N , the values ∥LEN

EM (h)∥ and
∥LEN

M (h)∥, are least squares errors for E.M. and Milstein methods
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Table 1. Generated errors based on Numerical meth-
ods E.M. andMilstein

N ∥EN
EM (h)∥a ∥EN

M (h)∥b

27 5.3× 10−2 3.29× 10−2

28 2.40× 10−2 2.19× 10−2

29 2.32× 10−2 1.5× 10−2

210 2.15× 10−2 4.32× 10−3

aleast squares error for E.M. method.
bleast squares error for Milstein method

4. Conclusion

According to this paper, we indicated that it could be analyzed stability and solved
linear S.D.E. or even linear O.D.E. from different orders by converting them to linear
system equation and producing some independent noise in various coefficient. By this
method we could also solve the linear differential equations even with nonhomogeneous
part by stochastic differentials system.

5. Appendix: Matlab Codes

Matlab Code of first example has been brought in the following. For more details
and any other question about Matlab codes of the above examples, you could have a
connection with authors.
clear all
clc
W(1)=0;
n=8; M=2; K=100;
N = 2ˆn;
randn(’state’,100);
a=randn(1,2*N+1);
Xtrue = ones(M,N+1);
Xzero = ones(M,N+1); % problem parameters
T = 1; dt = T/N;
t=[0:dt:T];
Xtrue(1,:) =exp(t); %+([0:dt:T])
R = 1; Dt = R*dt; L = N/R; % L EM steps of size Dt = R*dt
%Xem = zeros(M,N+1); % preallocate for efficiency
Xtemp = zeros(M,N+1);
Xtemp(:,1)=1;
E=zeros(M,N+1);
Z=zeros(K,N+1)
E(2,:)=4*t;
for i=1:K
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dW = sqrt(dt)*randn(1,N); % Brownian increments
W = cumsum(dW); % discretized Brownian path
for j = 1:L
Winc = sum(dW(R*(j-1)+1:R*j));

Xtemp(:,j+1)= phiexp(t,j+1,n)*inv(phiexp(t,j,n))*...
(Xtemp (:,j)+E(:,j)*Winc);
end
Z(i,:)=Xtemp(1,:);
end
meanZ=mean(Z);
plot([0:Dt:T],[meanZ(1,:)],’b’), hold on
plot([0:Dt:T],[Xtrue(1,:)],’g’), hold on
plot([0,t],[-0.5*ones(5,1),Z(1:5,:)],’r--’),
hold off % 5 individual paths
xlabel(’t’,’FontSize’,12)
ylabel(’X’,’FontSize’,16,’Rotation’,0,’Horizontal’,’right’)
emerr=norm((meanZ(1,:)-Xtrue(1,:)),’inf’)% emerr= 0.435%
Also the source of function ”phiexp” which has been utilized in this code is as follow:
function F=phi(t,j,n);
N=2ˆn;
T = 1; dt = T/N;
t=[0:dt:T];
F(1,1)=(1-t(j))*exp(t(j));
F(1,2)=t(j)*exp(t(j));
F(2,1)=-t(j)*exp(t(j));
F(2,2)=(1+t(j))*exp(t(j));
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