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Abstract. For two normal edge-transitive Cayley graphs on groups H and K which have no

common direct factor and gcd(|H/H ′|, |Z(K)|) = 1 = gcd(|K/K′|, |Z(H)|), we consider four

standard products of them and it is proved that only tensor product of factors can be normal

edge-transitive.
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1. Introduction

Let Γ = (V,E) be a simple graph where V is the set of vertices and E is the set of
edges of Γ. An edge joining the vertices u and v is denoted by {u, v}. The group of
automorphisms of Γ is denoted by Aut(Γ), which acts on vertices, edges and arcs of Γ. If
Aut(Γ) acts transitively on vertices, edges or arcs of Γ, then Γ is called vertex-transitive,
edge-transitive or arc-transitive, respectively. If Γ is vertex and edge-transitive but not
arc-transitive, then Γ is called 1

2 arc-transitive.
There are four standard products of graphs. (see [5], [4], [16] and [17].)

Definition 1.1 Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be two simple graphs, then the

Cartesian product, tensor product, strong product and lexicographic product of Γ1 and
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Γ2 denoted by Γ1□Γ2, Γ1 × Γ2, Γ1 ⊠ Γ2 and Γ1 ⊙ Γ2 respectively, is a graph with vertex

set V = V1 × V2 and two vertices (v1, v2) and (u1, u2) are adjacent if one of the relevant

conditions happen.

• Cartesian product iff (v1 = u1 and (v2, u2) ∈ E2) or ((v1, u1) ∈ E1 and v2 = u2).

• tensor product iff (v1, u1) ∈ E1 and (v2, u2) ∈ E2.

• strong product iff (v1 = u1 and (v2, u2) ∈ E2) or ((v1, u1) ∈ E1 and v2 = u2) or

((v1, u1) ∈ E1 and (v2, u2) ∈ E2).

• lexicographic product iff ((v1, u1) ∈ E1) or (v1 = u1 and (v2, u2) ∈ E2).

Let G be a finite group and S be an inverse closed subset of G which does not contain
the identity element of the group G, i.e. S = S−1, such that 1 /∈ S. The Cayley graph
Γ = Cay(G,S) on G with respect to S is a graph with vertex set G and edge set
{{g, sg} | g ∈ G, s ∈ S}. Γ is connected if and only if G =< S >. For g ∈ G define the
mapping ρg : G −→ G by ρg(x) = xg, x ∈ G. Clearly, ρg ∈ Aut(Γ) for every g ∈ G, thus
R(G) = {ρg | g ∈ G} is a regular subgroup of Aut(Γ) isomorphic to G, forcing Γ to be a
vertex-transitive graph.

Let Γ = Cay(G,S) be a Cayley graph of a finite group G on S. Let Aut(G,S) = {α ∈
Aut(G) | Sα = S} and A = Aut(Γ). Then the normalizer of R(G) in A is equal to

NA(R(G)) = R(G)⋊Aut(G,S),

where ⋊ denotes the semi-direct product of two groups ([7]).
A Cayley graph Γ = Cay(G,S) is called normal if R(G) is a normal subgroup of

Aut(Γ). This concept was first introduced with Xu [15].
Therefore according to [7], Γ = Cay(G,S) is normal if and only if A := Aut(Γ) =

R(G) ⋊ Aut(G,S), and in this case A1 = Aut(G,S) where A1 is the stabilizer of the
identity element of G under A. The normality of Cayley graphs has been extensively
studied from different points of views by many authors. Wang et.al [14] obtained all
disconnected normal Cayley graphs. Therefore, it suffices to study the connected Cayley
graphs when one investigates the normality of Cayley graphs, which we use in this paper.

Therefore throughout the paper a Cayley graph is Γ = Cay(G,S), where G is a finite
group and S is a non-empty generating subset of G such that 1 /∈ S and S = S−1, and
1 denotes the identity element of the relevant group. We also denote Aut(Γ) by A.

Definition 1.2 A Cayley graph Γ is called normal edge-transitive or normal arc-

transitive if NA(R(G)) acts transitively on the set of edges or arcs of Γ respectively.

If Γ is normal edge-transitive, but not normal arc-transitive, then it is called normal 1
2

arc-transitive Cayley graph.

Edge-transitivity of Cayley graphs of small valency have received attention in the
literature. A relation between regular maps and edge-transitive Cayley graphs of valency
4 is studied in [12], and Li et.al [11] characterized edge-transitive Cayley graphs of valency
4 and odd order. Houlis [9] classified normal edge-transitive Cayley graphs of groups Zpq

where p and q are distinct primes. Normal edge-transitive Cayley graphs on some abelian
groups of valency at most 5 have been studied by Alaeiyan [1] . Edge-transitive Cayley
graphs of valency four on non-abelian simple groups are studied in [6]. Besides, Darafsheh
et.al in [2] classified all normal edge-transitive Cayley graphs of non-abelian groups of
order 4p, for prime p.

In this paper, we consider the standard products of normal edge-transitive graphs. We
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prove that only tensor product of two normal edge-transitive Cayley graphs is normal
edge-transitive under some conditions.

2. Preliminary Results

Keeping fixed terminologies used in section 1, we mention a few results whose proofs can
be found in the literature.

The following result is proved in [15] and [7].

Result 2.1 Let Γ = Cay(G,S), then the followings hold:

(1) NA(R(G)) = R(G)⋊Aut(G,S)
(2) R(G)⊴A if and only if A = R(G)⋊Aut(G,S)
(3) Γ is normal if and only if A1 = Aut(G,S)

The result that we will use in our investigation of normal edge-transitive Cayley graph
is the following that makes it possible to characterize normal edge-transitivity in terms
of the action of Aut(G,S) on S (see [13]).

Result 2.2 Let Γ = Cay(G,S) be a connected Cayley graph (undirected) on S. Then Γ
is normal edge-transitive if and only if Aut(G,S) is either transitive on S, or has two
orbits in S in the form of T and T−1 where T is a non-empty subset of S such that
S = T ∪ T−1.

For a general graph Γ = (V,E), if v is a vertex in Γ, then Γ(v) denotes the set of the
so called neighbors of v, i.e. Γ(v) = {u ∈ V | {u, v} ∈ E}. The following result which
can be deduced from a result in [8] characterizes normal arc-transitive Cayley graphs in
terms of the action of Aut(G,S) on S.

Result 2.3 Let Γ = Cay(G,S) be a connected Cayley graph (undirected) on S. Then Γ
is normal arc-transitive if and only if Aut(G,S) acts transitively on S.

The next theorem is proved in [3]

Result 2.4 Let G = H×K, where H and K be two groups with no common direct factor
and gcd(|H/H ′|, |Z(K)|) = 1 = gcd(|K/K ′|, |Z(H)|), then AutG = AutH ×AutK.

The following result shows that all four kinds of product of two Cayley graphs are also
a Cayley graph [10].

Result 2.5 Let Γ1 = Cay(H,S) and Γ2 = Cay(K,T ) be two Cayley graphs, Γ□ = Γ1□Γ2,
Γ× = Γ1 × Γ2, Γ⊠ = Γ1 ⊠ Γ2 and Γ⊙ = Γ1 ⊙ Γ2, then Γ□, Γ×, Γ⊠ and Γ⊙ all are Cayley
graphs on the group G = H × K relative to the sets S□, S×, S⊠ and S⊙ respectively,
where

(1) S□ = ({1H} × T ) ∪ (S × {1K})
(2) S× = S × T
(3) S⊠ = ({1H} × T ) ∪ (S × {1K}) ∪ (S × T )
(4) S⊙ = (S ×K) ∪ ({1H} × T )
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3. Products of normal edge-transitive Cayley graphs

Now we can focus on the Cayley graphs which arise from product of normal edge-
transitive Cayley graphs. But from result 2.3, it is convenient if we can describe the
automorphism group of the group Aut(G,S∗) with the automorphism groups Aut(H,S)
and Aut(K,T ), where * can be replaced by □,⊠,× and ⊙.

Lemma 3.1 Let G, H and K be groups which satisfy the assumption in Result 2.4, S

and T two closed inverse subset of H and K, respectively which does not contain identity

of the correspoding group, and G = H ×K. Then

Aut(G,S∗) = Aut(H,S)×Aut(K,T ),

where ∗ ∈ {□,⊠,×,⊙}.

Proof. With the assumption in the Result 2.5 and Result 2.4, we can deduce that

AutG = AutH ×AutK. i.e.

Aut(G) = {σ = (α, δ)|α ∈ Aut(H), δ ∈ Aut(K)}.

Since Aut(G,S∗) = {σ ∈ Aut(G)|σ(S∗) = S∗} and from Result 2.5, if σ ∈ Aut(G,S∗)

we can distinguish four cases of ∗ in the following:

(1) Cartesian product: For (1H , t) ∈ {1H} × T ⊂ S□ we have

σ((1, t)) = (α, δ)(1, t) = (1, δ(t)) ∈ S□ = ({1H} × T ) ∪ (S × {1K}).

1 /∈ S implies (1, δ(t)) ∈ {1H} × T , thus δ(t) ∈ T , .i.e. δ ∈ Aut(K,T ) and

σ ∈ Aut(H)×Aut(K,T ). But for s ∈ S we have (s, 1T ) ∈ S × {1K} ⊂ S□ which

include similarly that σ ∈ Aut(H,S)×Aut(K). Therefore

σ ∈ (Aut(H,S)×Aut(K)) ∩ (Aut(H)×Aut(K,T )),

which yields σ ∈ Aut(H,S)×Aut(K,T ).

(2) tensor product: For g = (s, t) ∈ S× = S × T we have

σ(g) = (α, δ)(s, t) = (α(s), δ(t)) ∈ S ×K,

implies α(h) ∈ H and δ(t) ∈ T , i.e. σ ∈ Aut(H,S)×Aut(K,T ).

(3) strong product: Comes from the cases Cartesian product and strong product, since

S⊠ = S□ ∪ S× and the fact that neither S nor T contains the identity element.

(4) lexicographic product: For s ∈ S and k ∈ K we have

σ(s, k) = (α, δ)(s, k) = (α(s), δ(k)),
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but α ∈ Aut(H) and 1H /∈ S, implies α(s) ̸= 1H , i.e. σ(s, k) ∈ S × K, hence

α ∈ Aut(H,S).

For (1H , t) ∈ {1H} × T , we have σ(1, t) = (1, δ(t)) ∈ {1H} × T , thus δ(t) ∈ T

and therefore δ ∈ Aut(K,T ).

Conversely, if σ ∈ Aut(H,S) × Aut(K,T ), it is easy to see in any cases σ ∈ Aut(G,S∗)

■

Now, we want to find out when the product of two normal edge-transitive Cayley
graphs is also normal edge-transitive.

Theorem 3.2 Let G, H, K, S and T be the ones mentioned in Lemma 3.1, Γ1 =

Cay(H,S) and Γ2 = Cay(K,T ). Then the Cartesian product, strong product and lexi-

cographic product of Γ1 and Γ2 all are non normal edge-transitive Cayley graphs.

Proof. Let Γ□, Γ⊠ and Γ⊙ be the Cartesian product, strong product and lexicographic

product of the Cayley graphs Γ1 and Γ2, respectively. By result 2.2, Γ∗ is normal edge-

transitive if and only if Aut(G,S∗) acts transitively on S∗ or S∗ = T∗ ∪ T−1
∗ where

Aut(G,S∗) acts transitively on T∗, where ∗ ∈ {□,⊠,⊙}. Now in each product we prove

there is a contradiction to normal edge-transitivity of Γ∗. Assume Γ∗ is normal edge-

transitive, then we have the followings:

(1) Cartesian product: For (1H , t), (s, 1K) ∈ S□, since (1H , t)−1 = (1H , t−1) ̸=
(s, 1K), thus some σ ∈ Aut(G,S□) should sends (1H , t) to (s, 1K) which is im-

possible since by Lemma 3.1, σ = (α, δ), thus σ(1H , t) = (1H , δ(t)) ̸= (s, 1H).

(2) strong product: Similar to Cartesian product.

(3) lexicographic product: Similar argument of Cartesian product can occur for

(s, k), (1H , t) ∈ S⊙

■

By Theorem 3.2, three kinds of product of two normal edge-transitive Cayley graph can
not be normal edge-transitive. But tensor product of them can be normal edge-transitive.
In the next Theorem, we find out the conditions under which this can happen.

Theorem 3.3 Let Γ1 and Γ2 be two Cayley graphs with the assumptions in Theorem

3.2. Then

(I) Γ1 × Γ2 is normal arc-transitive iff Γ1 and Γ2 are normal arc-transitive .

(II) Γ1 × Γ2 is normal half arc-transitive iff one of Γ1 and Γ2 is normal arc-transitive

and the other one is half arc-transitive.

(III) If Γ1 and Γ2 both are normal half arc-transitive, then Γ1 × Γ2 is not normal

edge-transitive.

Proof. We consider three cases

Case 1. Let Γ1 and Γ2 be normal arc-transitve and (s, t), (s′, t′) ∈ S× = S×T . By Result

2.3 there exist α ∈ Aut(H,S) and δ ∈ Aut(K,T ) such that α(s) = s′ and δ(t) = t′.
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By Lemma 3.1, σ = (α, δ) ∈ Aut(G,S×) satisfies the condition σ(s, t) = (s′, t′), i.e.

Γ× = Γ1 × Γ2 is normal arc-transitive.

Conversely, suppose Γ× is normal arc-transitive, s, s′ ∈ S and t, t′ ∈ T . By Result 2.3

there exists σ ∈ Aut(G,S×) which sends (s, t) to (s′, t′). By Result 3.1, α ∈ Aut(H,S)

and δ ∈ Aut(K,T ) exists which send s to s′ and t to t′, respectively. By implying Lemma

2.3, it is easy to verify Γ1 and Γ2 be two normal arc-transitive .

Case 2. Without lost of generality let Γ1 is normal arc-transitive and Γ2 is normal half

arc-transitive. Then By Result 2.3 and Result 2.2 we conclude that T = W ∪W−1 and

Aut(H,S) acts transitively on S as well as Aut(K,T ) on W . Now, we can deduce that

S×T is also the distinct union of S×W and S×W−1. Similarly, in the case (1) one can

verify that Aut(Γ×, S×) acts transitively on S × W as well as S × W−1 implying that

Γ1 × Γ2 is normal half arc-transitive.

Conversely, if Γ× is normal half arc-transitive, by Results 2.2 and 2.3 we can write

S × T in the form of X ∪ X−1 where X and X−1 are subsets of S × T and orbits of

Aut(G,S×) as well. Set V := π1(X) and W := π2(X) where πi is the projective function

form S × T into S or T , resprectively. For s1, s2 ∈ V , there are t1, t2 ∈ W such that

(s1, t1), (s2, t2) ∈ X and hence for some σ = (α, δ), we have σ(s1, t1) = (s2, t2). Now if we

define η = (α, id) ∈ Aut(G,S×), then we observe that η(s1, t1) = (s2, t2), i.e. (s2, t1) ∈ X.

Hence for all t ∈ W we have V × {t} ∈ X and we can similarly proof that for all s ∈ V

we have {s} ×W ∈ X, i.e. V ×W ∈ X, and therefore X = V ×W .

S × T is the disjoint union of X and X−1 yields that V = V −1 and W ∩W−1 = ∅ or

vise versa. In the first case, Aut(G,S×) acts transitively on S × T . By the Lemma 3.1

we conclude that Γ1 is arc-transitive and Γ2 is half transitive Cayley graph. The proof

of latter case is similar.

Case 3. If Γ is normal edge-transitive, then Γ is normal arc-transitive or normal half

arc-transitive. By case (1) and case (2) the proof is obvious. ■
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