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Abstract. Here, a new certain class of contractive mappings in the b—metric spaces is intro-
duced. Some fixed point theorems are proved which generalize and modify the recent results
in the literature. As an application, some results in the b—metric spaces endowed with a
partial ordered are proved.
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1. Introduction

The existence of a fixed point is studied by many authors. The notion of b-metric space
was first explained by Bakhtin in [2] and then widely utilized by Czerwik in [6] (this space
is a metric type spaces defined by Khamsi and Hussain [18]). Since then, many researches
deal with fixed point theory for single-valued and multi-valued mappings in b-metric
spaces (see, [3, 6, 7] and references therein). Meanwhile, Samet et al. [30] presented the
notions of a-y-contractive and a-admissible mappings and founded several fixed point
theorems for such mappings outline under the complete metric spaces. Subsequently,
Salimi et al. [28] and Hussain et al. [13] improved the concepts of a-i-contractive and a-
admissible mappings and studied some fixed point theorems. In this paper, a new classes
of contractive mappings is introduced in order to study some fixed point theorems in the
b—metric spaces.
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Definition 1.1 [6] Let X be a nonempty set and s > 1. A function d: X x X — R* is
a b—metric if and only if for all x,y, z € X, the following conditions hold:
(b1) d(z,y) =0iff z =y,
<b2) d(.fl'},y) = d(yw%')a
Then the tripled (X, d, s) is called a b—metric space.
Definition 1.2 [5] Let (X, d) be a b—metric space. A sequence {z,} in X is called:

(a) b-convergent if and only if there exists z € X such that d(x,,x) — 0, as n — +oo.
In this case, we write le Ty = .
n oo

(b) b-Cauchy if and only if d(zy, zm) — 0, as n,m — +o0.

Proposition 1.3 [5, Remark 2.1] In a b—metric space (X, d) the following assertions
hold:

p1- A b-convergent sequence has a unique limit.

p2. Each b-convergent sequence is b-Cauchy.

p3. In general a b—metric is not continuous.

Lemma 1.4 [1] Let (X, d) be a b—metric space with s > 1. Suppose that {z,} and {y,}
are b-convergent to x,y, respectively. Then

1 .. .
?d(x, y) < liminfd(xy,, y,) < limsupd(z,, y,) < SQd(x,y).

n—>=a0 n—o0

In particular, if x = y then l£>n d(xpn,yn) = 0. Moreover, for each z € X
n oo

1
—d(z, z) < liminfd(zy, z) < limsupd(z,, z) < sd(z, 2).
s

f—"+00 n—so0

For more details on b-metric spaces the reader can refer to [7]-[11].
Definition 1.5 [30] Let T be a self-mapping on X and a : X x X — [0,400) be a
function. T" is an a-admissible mapping if
ryyeX, alr,y) 21 = oTz,Ty) > 1.

Definition 1.6 [16] Let 7" be an a-admissible mapping. We say that 7' is a triangular
a-admissible mapping if a(z,y) > 1 and a(y, z) > 1 implies that o(z,z) > 1.

Lemma 1.7 [16] Let T be a triangular a-admissible mapping. Assume that there exists
xo € X such that a(xg, Txo) > 1. Define sequence {x,} by z, = T™z¢. Then

(T, xy) = 1 for all myn € N with m <n.

Definition 1.8 [12] Let av : X x X — [0,00) and T : X — X. We say that T is
an a-continuous mapping if for given x € X and sequence {z,} with =, — z and
a(Tpn, Tnt1) = 1 for all n € N one has Tz, — Tx.

Definition 1.9 Let T be a self-mapping on X and let A : X — [0, 400) be a function.
We say that T is a semi A-subadmissible mapping if

reX, Mzx)<1l = MNTz)<L1l



R.J. Shahkoohi et al. / J. Linear. Topological. Algebra. 04(01) (2015) 65-85. 67

Ezample 1.10 Let T : R — R be defined by Tz = 3. Suppose that A : R — RT is
given by A\(z) = e” for all x € R. Then T is a semi A-subadmissible mapping. Indeed, if

Az) = e? < 1 then x < 0 which implies that Tx < 0. Therefore A\(T'z) = eTr <.

Consistent with Khan et al. [17] we denote by ¥ the set of all function ¢ : [0, +00) —
[0, +00) (which is called an altering distance function) if the following conditions hold:

e ( is continuous and non-decreasing.
e ¢(t) =0 if and only if ¢ = 0.

Motivated by Kumam and Roldén [20] we introduce the following class of mappings
which is suitable for our results.

Let © denote the set of all functions 6 : Rt* — R* satisfying:
(©1) 6 is continuous and increasing in all its variables;
(@2) 9(t1,t2,t3,t4) = 0 iff either t; =0 or t4 = 0.

2. Main Theorems

In this section we stat the Main results. The first theorem is based on [7, Theorem 4]
and [27, Theorem 3.

Theorem 2.1 Let (X,d, s) be a complete b-metric space, T' be a self-mapping on X and
a: X xX —[0,00) and A : X — [0,+00) be two functions. Suppose that the following
assertions hold.

(i) There exists ¢ € X such that a(zg,T'z¢) > 1 and A(xg) < 1.
(ii) T is a-continuous, triangular a-admissible and semi A-subadmissible mapping.
(iii) For all z,y € X with a(z,y) > 1

$(sd(Ta, Ty)) < N@)AW) [ (M (@,9) = (M (w,9))| +0(d(w, Ta), dly, Ty), d(z, Ty), d(y, Tx))

(1)
where ¥, p € ¥, § € © and

M (z,y) = max {d(m, W) d(z, Tx), d(y, Ty), L& TY) 2+$ d(y, T'z) }

Then T has a fixed point.

Proof. Let 29 € X be such that a(xg, Tzg) > 1 and A(xp) < 1. We define a sequence
{z,} as follows

Tp =T 20 =TxpH_1
for all n € N. If z,, = .11 for some n € N then z, = Tz, and so z, is a fixed point of
f- Hence we assume that x,, # z,+1, for all n € N. Since T is a triangular a-admissible
mapping then by Lemma 1.7

a(Tm,xy) =1 for all m,n € N with m < n.

Also, since T' is a semi A-subadmissible mapping and A(zg) < 1 then A(x1) = A\(T'zp) < 1.
Again, since T is semi A-subadmissible, then A\(x2) = A(T'z1) < 1. Continuing this process
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Az,) < 1for all n € NU{0}. Then by (iii),

¢(d(5[;n7 xn-i—l))

I /A

Y

Y(sd(Txp—1,Txy))

A@a-1)A(@n) [$(M (2n-1,20)) = (M (@1, 20)| )
H(d n—1,TTp_1), d(azn,Txn),d(:cn_l,Txn),d(zn,Ta:n_l))

Y(M(2p—1, 7)) — p(M(2p—1, 1))
H(d Tn-1,TTn_1), d(mn,Txn),d(xn_1,Txn),d(xn,Tmn_l))

(Sd(xn) $n+1))

+ /AN + /A

where

M(zn—1,2n) = max § d(Tn—1, ), d(Tn-1,TTn—1), d(Tn, TTy), d(xnithn);;d(zmenil) }

d(Tn_1,Tn
=max { d(Tp—1,2n), d(Zn, Tni1), W}

SA(Tp—1,Tpn)+sd(Tp,Tn
< max d(xn—l’ xn)a d(l'na xn—i—l)y (@nzs )25 ( +1) }

= max < d(Tn—1,%n), d(Tn, Tni1), d(z"‘l’x");d(z"’z"“)}

= max < d(zp—1, Tpn), d(Tn, :L‘n+1)}

and

yd(xp—1, Txy), d(Tn, Tacn_l))
d(l’n_l,$n+1),d($n,$n)) (4)
d(l‘n_l, xn+1), O) = 0.

H(d($n—17Txn—l)7 (xn7T$n>
=0 d(xn_l,xn),d(xn,xn+1),
=0 d($n_1,$n),d(xn,$n+1),

By (2)-(4) and the properties of 1) and ¢ we obtain

(20 < 0w { denor. ), o i) ) = ¢ (M(acn_l, m) .
B PR\

Now if
max {d(wnl, Tn), d(Tp, $n+1)} =d(xn, Tni1),

then by (5)

Y(d(@n, Tnt1)) < P(d(@n, Tny1)) — (M (Tn—1,Tn))
< ¢(d(xn71'n+1))a

which is a contradiction. Hence

max {d(a}nl, Tn), d(Tp, xnﬂ)} =d(Tp—1,%n).
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Therefore

Y(d(@n, Tn+1)) < Y(d(Tn, Tn-1)) — (M (Tn-1,2n)) < P(d(2n, Tn-1)). (6)

Since v is a non-decreasing mapping, then {d(zy, zp4+1) : n € NU{0}} is a non-increasing
sequence of positive numbers. Then there exists r > 0 such that

nh%nolo d(Tp, Tpi1) = 1.

Letting n — oo in (6), we have

W(r) < Y(r) —e(lim M(z,—1,2,)) < (r).

n—o0

Therefore ¢(limy, o0 M (xy—1,2,)) = 0 and hence r = 0, i.e.,

lim d(xy, 2p+1) = 0. (7)

n—oo

Now, we show that {x,} is a b—Cauchy sequence in X. Assume the contrary, that {z,}
is not a b—Cauchy sequence. Then there exists € > 0 and two subsequences {z,,,} and
{zp,} of {z,} such that n; is the smallest index for which

n; > m; > i dna d(zpy,, Tn,) = €. (8)
That is
d(@m,, Tn;—1) <€ (9)

By using (8), (9) and the triangular inequality

€ g d(xmm xnb)
< Sd(xm“xmi—l) + Sd(xmi—ly xn,)
< sd(wpm,, T, —1) + 52d(l’mrla Tp,—1) + 52d(1’ni717 Ty, )-

Now, using (7) and taking the upper limit as i — oo

£ .
— < limsupd(zm, -1, Tn,—1)-
S i—>00

On the other hand
d(xmifla :Eﬂi*l) < Sd(xmifla xml) + Sd(xmﬂxnifl)'
Using (7), (9) and taking the upper limit as i — oo

lim Supd(xM¢—17 x?’bi—l) < es.
T—>00
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Hence

€ .

— < limsupd(zm, -1, Tn,-1) < €8. (10)
S 1—>00

Again using the triangular inequality

d(xmi—la xnl) < Sd($mi—17 xni_l) + Sd(xm—lv xni)a (11)

€ g d(‘rmmxni) g Sd(.f[?mi,.'lfmi_l) + Sd(xmi_17xni) (12)
and

e < d(Tm,, Tn,) < SA(Tym,, Tn,—1) + Sd(Tp,—1, Tn,). (13)

Using (7) and (10) and taking the upper limit as i — oo in (11) and (12) we get
= < limsupd(zm, 1, 2n,) < £5°. (14)
S 1—>00

Again using (7) and (9) and taking the upper limit as ¢ — oo in (13)

< lim Supd(xmuxm—l) <e. (15)

1—00

» | ™

Since a(Tm,—1,Tn;—1) = 1, M(xm,—1) < 1 and A(xp,—1) < 1 then from (iii) we have

V(sd(xm,, Tn,)) = V(sd(Txpm,—1,TTpn,—1))

<A@ D)M @) [P (@ 1,80, 1)) = (M (@1, T,1)|

+0 (d(a:mi_l,Txmi_l), (2,1, T,—1), d(zm, 1, Tn, 1), d(:zni_l,Txmi_l))lt"))
S Y(M(2m,—1,Tn,-1)) — ¢(M (Zm,~1, Tn,—1))

+0 (d(mmi,l,Txmi,l), d(xp,—1,Txn,~1),d(@m,—1, TTpn,-1), d(mni,l,Tsnmi,l))7

where

M(xmi—lv mni—l) = max {d(xm,;—la xni—l)a d(xmi—la Tl'mq,—l)a d(xn,;—h Txni—l)a

A&, 1T, ) +d(T0, 120, 1) }

2s
(17)
= Imax {d(xmi—la mni—l)a d(xmi—lv xmi)a d(.’L’ni_l, xni)7
AT, —1,%0, ) +d(Tm,; Tn; 1) }
2s ’
and
0 (d(xmi—la Txmi—l)v d(xni—lu Txni—l)) d(xmi—la Tim—l)v d(mni—la Txmi—l)) (18)
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Taking the upper limit as ¢ — oo in (17) and (18) and using (7), (10), (14) and (15) we
get

9 9

e fe 5TE
— =min{ —, < limsupM (X, —1, Tn,—1)
s s 2s i—s00

= max{lim supd(zm,—1,Zn,~1), 0,0,
1—>00

lim supd(@,,—1, Tn,) + lim supd(zy,, , Tn,—1)

2s
es®>+¢
< max « €8, =¢€s
2s

So

3 .

) < llmsupM(xmi—17xni—1) < €s, (19)

S 71— 00
and

= limsup0<d(:z:mi_1,a;mi), d(zp,—1,Tn,), d(:z:mi_l,xm),d(xm_l,afmi» =0.
1—+00
Similarly
% < liminf M (2,1, Tn,—1) < €5. (21)
S 1—>00
Now, taking the upper limit as i — oo in (16) and using (8), (19) and (20) we have
Y(es) < Y(slimsupd(zpm,, zn,))
1—>00
< Y(limsupM (T, —1, Tn,—1)) — liminfo(M (2,1, Tn,—1))
i—r00 n——"00
< Y(es) — e(iminf M (2, -1, Tn,—1)),
11— 00
which implies
p(liminf M (2, 1,5, 1)) =0,
11— 00
so liminfM (zy,,—1,2n,—1) = 0, which is a contradiction with (21). So {xn+1} is a

T—>00
b—Cauchy sequence in X. Since X is a complete b—metric space, there exists z* € X
such that x,, — z* as n — oco. Also, from (ii) we know 7' is an a—continuous mapping.

Hence T'x,, — Tz* as n — oo. Then

d(z*,Tx*) < sd(z*, Txy) + sd(Txy, Tx").
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Letting n — oo in the above inequality

d(z*,Tx*) < s lim d(z*,Tx,) + s hm d(Txn,Ta: ) =0.

n—o0

So Tx* = x*. [ ]

For self-mappings that are not continuous or a—continuous we have the following
result.

Theorem 2.2 Let (X,d, s) be a complete b-metric space, T' be a self-mapping on X and
a: X xX —[0,00) and X : X — [0,+00) be two functions. Suppose that the following
assertions hold.

(i) There exists zp € X such that a(zg,Tz¢) > 1 and A(xg) < 1.
(ii) T is a triangular a-admissible and semi A-subadmissible mapping.
(iii) For all z,y € X with a(z,y) > 1

$(sd(Tw, Ty)) < M@)AW) [ (M (@,9)—p(M (w,9))|+0 (d(w, ), d(y, Ty), d(z, Ty),d(y, T)),

where 1, p € U, § € © and

M (z,y) = max {d(x, y),d(z, Tx),d(y, Ty), d(z, Ty) + d(y, Tw) }

2s

(v) If {z,,} be a sequence such that a(z,,x,+1) = 1, AM(z,) < 1 for all n € NU {0} and
Tp — T as n — 00, then a(zy,,xz) > 1 for alln € NU {0} and \(z) < 1

Then T has a fixed point.

Proof. Let xy € X be such that a(zg,Tz¢) > 1 and A\(xo) < 1. Define a sequence {z,}
in X by x, = T"xg = Tx,_1 for all n € N. Following the proof of the Theorem 2.1, we
obtain that {z,} is a b—Cauchy sequence such that a(xy,,zn4+1) = 1 and A(z,) < 1 for
all n € NU{0}. Since X is complete, there exists z* € X such that the sequence {x,}
b-converges to z*. Using the assumption (v), we have a(z,,z*) > 1 for all n € NU {0}
and \(z*) < 1. By (iii)

¢(8d($n+1, Tx* )

Y(sd(Txy, Tx*))

<A@)A@) (M (2, 57)) = (M (0, 27)) |

0(d(xn, Txy,),d(z*, Tx*), d(x,, Tz*), d(z*, TZL‘n)> (22)
Y(M (2, 2%)) — (M (2, "))

+0( d( xn,Txn),d(:c*,Tx*),d(acn,Tm*),d(a:*,Txn)>,

N +

where

M($n, 33*) — max {d(azn, !,L,*)v d(l‘n, Tl‘n), d(x*’ Tm*)’ d(wrn,Taj*)‘f'd(Tx,“x*); (23)

S
= max {d(:cn, z*), d(zp, Tni1), d(z*, Tx*), d@n Tz %Sd(‘r"“’m
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and

0 (d(mn, Txy),d(z*, Tx*), d(x,, Tz*),d(z*, Tﬂ:n)>

(24)
= 0<d(ajn, Tnt1), d(x*, Tx*), d(xy, Tz*), d(z*, :En+1)>.

Letting n — oo in (23) and (24) and using lemma 1.4, we get

d(z*,Tz*)
2s2

= min {d x*, Tx*) d(‘rQSzx )} l;nl_sgopM T, ) (25)

< max {d(z*, Tz*), %} =d(z*,Tz"),

and
H(d(xn,Txn), d(z*, Tx"),d(zy, Tz"), d(x*,Ta:n)) — 0 as n — oo.

Similarly

* T *
d(z”, Ta7) < liminfM (zy,, 2*) < d(a*, Tx"). (26)

252 n—-> 00

Again, taking the upper limit as ¢ — oo in (22) and using lemma 1.4 and (25) we get

Y(d(z*, Tx*) = w(s d(z*, Tz")) < Y(slimsupd(zy41,Tz"))

n—aoo

< ¢Y(limsupM (xy,, %)) — liminf (M (x,, ™))

n—->00 n—=>o00

< 0(d(*, Ta")) — pliminfM (2, 2°)).

Hence, cp(hm 1nfM(acn, *)) = 0. Then, liminfM (x,,2*) = 0 which is a contradiction.

n—-ao0

So, =* —Tx [ ]

Example 2.3 Let X = R be endowed with the b—metric

(lz] + [y)? itz # y
d(z,y) =
0 ifxr=y

for all z,y € X. Define T: X — X, a: X x X — [0,00) and A : X — [0,00) by
(223 + sinx, if x € (—o0,0)
ta?, if z €[0,1)

Ty = alz,y) = {
t, if v €[1,2)

2,if z,y € [0, +00)
0, otherwise

if x € [2,+00)

,
PN
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1, if x € [0, +00)
and \(z) =
222 + 3, otherwise.

Also, define 1, ¢ : [0,00) — [0,400) and 0 : [0, +00)? — [0, +00) by 1(t) = ¢, p(t) = 3t
and 6(t1,to, t3,t4) = min{ty, to, t3,t4}. Clearly (X, d, s) with s = 2 is a complete b—metric
space, ¥, € ¥ and 0 € ©. Let a(z,y) > 1, then z,y € [0,+00). On the other hand,
Tw € [0,+00) for all w € [0,+00). Then «(Tz, Ty) > 1. That is, T is an a-admissible
mapping. Let a(z,y) > 1 and a(y,z) > 1. So z,y,z € [0,400) i.e., a(x,z) > 1. Hence
T is a triangular a-admissible mapping. Also, let A(z) < 1. Thus z € [0, 400). That is,
AMTz) < 1. Thus T is a semi A-subadmissible mapping. Let {x,} be a sequence in X
such that a(zp,xny1) = 1 and A(xy,) < 1 with z,, —  as n — oco. Then, z, € [0,+00)
for all n € N. Also [0,400) is a closed set. Then x € [0, +00). That is a(zy,x) > 1 for
all n € NU {0} and A(z) < 1. Clearly «(0,70) > 1 and A(0) < 1.

Let a(z,y) > 1. So z,y € [0, +00).

Now we consider the following cases:

o Let z,y €0,1) then

(2d(Tx, Ty)) = 2d(Tz, Ty) = 2(32% + Ly?)?

— 1%2(‘%2 4 y2)2

< %(l' + y)2

= %d x,y)

< ZM(xvy)

= ¢Y(M(z,y)) — p(M(z,y))

= @A) [$(M (2,9)) = (M, y))] +0(d(x, Tx), dly, Ty), d(r, Ty), dly, )

e Let z,y € [1,2) then

V(2d(Tz, Ty)) = 2d(Tz, Ty) = 2(%x + 2y)?

= ? +y)?
< %(x +y)?
= %d x,y)
g ZM(xv y)
= (M (z,y)) — (M (z,y))
<A@AW) [$(M (,y) = p(M(z,y))
+0(d(z,Tx),d(y, Ty), d(z, Ty), d(y, Tx))
e Let z,y € [2,00) then
$(2d(Tx, Ty)) = 2d(Tx, Ty) = 2(; + ;)?

/AN /AN
P S N N N N e S
=
s
>

N
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o Let z €[0,1) and y € [1,2) then

¥(2d(Tx, Ty)) = 2d(Tz, Ty) = 2(32% + Ly)?
< 21(%3:2+ ng);
=352 +y
< zz(fﬂ +y)?
= Zd(xa y) < %M([]}, y)
= P(M(z,y)) — p(M(z,y))
= A(@)AW) [$(M(2.9)) - o(M(z,y))
+0(d(x, Tx),d(y, Ty), d(z, Ty),d(y, Tz))

e Let z €[0,1) and y € [2,00) then

$(2d(T, Ty))

‘HI\DM
~—~00
8 8
+ +

AN /AN /AN |
= | =00
PR
8
+
s

)
y)) — o(M(z,y))

(DAW) [$(M(2,9)) = o(M(2,))]
d(z, Tx),d(y, Ty), d(z, Ty),d(y, Tx)).

PR SN
=
8

+
=

o Let z € [1,2) and y € [2,00) then

¥(2d(Tz, Ty)) = 2d(Tz, Ty) = 2(3x + 1)?
< 2(3z + 31)?
= §%(w +y)?
< %(m +y)?
= %d z,y)
< ZM(J;? y)
= (M(z,y)) — p(M(z,y))
<A@AW) [$(M(w,y)) — p(M(2,))

+
=
U
—~
&
~
8
~
L
—~
s
~
<
~
L
—~
8
~
<
—
2
=
~
8
N

Therefore a(z,y) > 1 implies

$(2d(Tz,Ty)) < Mx)Ay) (P(M(2,y)) — <P(M(w7y))] +0(d(z, Tx),d(y, Ty), d(z, Ty), d(y, Tx))

Hence, all conditions of Theorem 2.2 holds and T has a fixed point. Here, x = 0 is a fixed
point of T

Corollary 2.4 Let (X,d, s) be a complete b-metric space, T be a self-mapping on X and
a: X xX —[0,00) and A : X — [0,+00) be two functions. Suppose that the following
assertions hold.
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(i) There exists o € X such that a(zg,Tz¢) > 1 and A(xg) < 1.
(ii) T is a triangular a-admissible and semi A-subadmissible mapping.
(iii) For all z,y € X

b(sa(@,y)d(Te, Ty)) < N@)AY) [P(M (2, 9)—p(M (2,)) | +0(d(z, Tw), d(y, Ty), d(z, Ty), d(y, Tx) )
(27)
where ¥, p € ¥, § € © and

M(z,y) = max {d(w, y). d(z, Tx), d(y, Ty), 28 T9) + Ay, Tz) }

2s

(v) If {z,} is a sequence such that a(x,,zn+1) = 1, A(zy,) < 1 for all n € NU {0} and
Tp — x as n — oo then a(zy,,z) > 1 for all n € NU {0} and A(z) < 1.

Then T has a fixed point.

Proof. Let a(z,y) > 1. Since ¢ is increasing then from (iii)
Y(sd(Tz, Ty)) < Y(sa(z,y)d(Tz, Ty))
<A@A) [P (M (@,9) = ¢(M (2,1))]
+0(d(w, Tx),d(y, Ty), d(z, Ty),d(y, Tx)).

Therefore all conditions of Theorem 2.2 holds and T has a fixed point. [ |

If in Corollary 2.4 we take a(z,y) = 1 for all z,y € X, then we have the following
corollary.

Corollary 2.5 Let (X,d, s) be a complete b-metric space and T be a self-mapping on
X and A : X — [0,400) be a function. Suppose that the following assertions hold.

(i) there exists g € X such that A(zg) < 1,
(ii) T is a semi A-subadmissible mapping,
(iii) for all z,y € X we have

¥ (sd(Tw, Ty)) < A@)AW) [ (M (2,9))—p(M (2, ) | +6 (d(x, T2), d(y, Ty), d(x, Ty). d(y, Tx))
(28)
where, ¥, p € ¥, § € © and

M(z,y) = max {d(x, y),d(z, Tx),d(y, Ty), d(z,Ty) + d(y, Tx) }

2s

(v) if {zy} be a sequence such that A(z,) <1 for all n € NU {0} and z,, - = as n — o0
then A(z) < 1.

Then T has a fixed point.
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3. Some results in b—metric spaces endowed with a graph

In this section, we show that many fixed point results in b—metric spaces endowed with
a graph G (see [4]) can be deduced easily from our presented theorems.

As in [14], let (E,d, s) be a b—metric space and A denotes the diagonal of the Cartesian
product of X x X. Consider a directed graph G such that the set V(G) of its vertices
coincides with X and the set F(G) of its edges contains all loops, that is E(G) 2 A. We
assume that G has no parallel edges, so we can identify G with the pair (V(G), E(G)).
Moreover, we may treat G as a weighted graph, see [15, P.309], by assigning to each edge
the distance between its vertices. If x and y are vertices in a graph G then a path in
G from z to y of length N (N € N) is a sequence {z;}Y, of N + 1 vertices such that
xo=x, rny =y and (v;_1,2;) € E(G) fori=1,...,N.

Definition 3.1 [14] Let (X, d) be a metric space endowed with a graph G. We say that
a self-mapping T : X — X is a Banach G-contraction or simply a G-contraction if T
preserves the edges of G that is,

forall z, y € X, (z,y) € E(G) = (Tz,Ty) € E(G)
and T decreases the weights of the edges of G in the following way:
Ja € (0,1) such that for all z,y € X, (z,y) € E(G) = d(Tz,Ty) < ad(z,y).

Definition 3.2 [14] A mapping T : X — X is called G-continuous if given z € X and
sequence {x,}

Ty — xasn — oo and (T, Tny1) € E(G) for alln € N imply Tz, — Tz.

Theorem 3.3 Let (X,d, s) be a complete b-metric space endowed with a graph G and
T be a self-mapping on X. Suppose that the following assertions hold.

(i) there exists xg € X such that (zg,Tz¢) € E(G) and A(z) < 1,
(ii) T is G-continuous and semi A-subadmissible mapping,

(iii) Vz,y € X[(z,y) € E(G) = (T(2),T(y)) € E(G)]

(iv) Va,y,z € X[(z,y) € E(G)and (y,2) € E(G) = (z,2) € E(GQ)]
(v) for all z,y € X with (z,y) € E(G) we have,

$(sd(Tw, Ty)) < M@)AW) [ (M (@,9)=p (M (w,9))| +0(d(w, T2), d(y, Ty), d(z, Ty), d(y, Tx))

where, ¥, p € ¥, § € © and

M(z,y) = max {d(w, y),d(x, Tx),d(y, Ty), d(z,Ty) + d(y, Tx) }

2s
Then T has a fixed point.
Proof. Define o : X2 — [0, +00) by

olag) = {%, if (,y) € E(G)

5, otherwise.
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First we show that T is a triangular a-admissible mapping. Let o(z,y) > 1 then (z,y) €
E(G). From (iii) (Tx,Ty) € E(G). That is a(Tz,Ty) > 1. Also let a(z,y) >1 and
a(y,z) =2 1. So (z,y) € E(G) and (y,z2) € E(G). From (iv) we get (z,2) € E(G), i.e.
a(x,z) = 1. Thus T is a triangular a-admissible mapping. Let 7' be G-continuous. So

Ty, = zasn — oo and (zp, Tny1) € E(G) for alln € N imply Tz, — T'z.
That is,
Tp — xasn — oo and a(xy, xny1) = Lfor alln € N imply Tz, — Tx

which implies that 7" is a-continuous. From (i) there exists ¢ € X such that (zg,T'z¢) €
E(G). That is a(zo, Txo) > 1. Let a(z,y) > 1 then (x,y) € E(G). Now from (v) we have

¥ (sd(Tw, Ty)) < N2)Aw) [ (M (2,y))=p(M (@) | +6 (d(x. T2), d(y, Ty), d(x, Ty). d(y, =)

Hence all conditions of Theorem 2.1 are satisfied and T" has a fixed point. [ |
In Theorem 3.3 we take 0(t1,to,ts,t4) = min{ty, to,ts,t4}.

Corollary 3.4 Let (X,d,s) be a complete b-metric space endowed with a graph G and

T be a self-mapping on X. Suppose that the following assertions hold.

(i) there exists g € X such that (zg,Txo) € E(G) and A(xp) < 1,
(ii) T is G-continuous and semi A-subadmissible mapping,

(ii}) Yo,y € X[(z,y) € B(G) = (T(2),T(y)) € E(G)

(iv) ¥a,y, 2 € X[(2,y) € B(G)and (y, 2) € E(G) = (x,2) € B(G)]
(v) for all z,y € X with (x,y) € E(G) we have,

P(sd(Tz, Ty)) < Mx)A(y) [MM(%Z/))—SO(M(%ZJ)) +Lmin{d(z,Tx),d(y, Ty),d(z,Ty),d(y, Tx)}

where, ¥, p € ¥, L > 0 and

Moy = ma{ e, e, Ty, 1), “ TV F AT,

2s

Then T has a fixed point.

Theorem 3.5 Let (X, d, s) be a complete b-metric space endowed with a graph G and
T be a self-mapping on X. Suppose that the following assertions hold.

(i) there exists ¢ € X such that (zg,Txo) € E(G) and A(xp) < 1,
(ii) T is semi A-subadmissible mapping,

(iii) Vz,y € X[(z,y) € E(G) = (T(z),T(y)) € E(G)]

(iv) Vz,y,z € X[(z,y) € E(G)and (y,2) € E(G) = (z,2) € E(G)]
(v) for all z,y € X with (z,y) € E(G) we have,

Y (sd(Tw, Ty)) < N@)AW) [¥(M (2,))—p(M (2, 9)) | +6 (d(x, T2), d(y, Ty), d(x, Ty). d(y, Tx))
(29)
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where, (¢, € V), 0 € © and

M (z,y) = max {d(x, v, d(w, Tx), d(y, Ty), L& TY) ;Sd(% Tz) }

(vi) if {z} be a sequence in X such that (z,,zn4+1) € E(G), AM(zp) < 1 for alln € NU{0}
and z, — x as n — oo then (z,,z) € E(G) for all n € NU {0} and \(z) < 1.

Then T has a fixed point.

Proof. Define the mapping a : X2 — [0, +00) as in the proof of Theorem 3.3. Similar
to the proof of Theorem 3.3 we can prove that the conditions (i)-(iii) of Theorem 2.2
are satisfied. Let {z,} be a sequence in X such that a(zy,zp+1) = 1 and A(zy,) < 1 for
all n € NU{0} and z,, — x as n — oo. Then (z,,zp4+1) € E(G) and A(z;,) < 1 for all
n € NU{0}. From (vi) we get (zn,z) € E(G) and A(x) < 1. That is a(xy,,z) > 1 for all
n € NU {0} and A(x) < 1. Therefore all conditions of Theorem 2.2 holds and 7" has a
fixed point. [ ]

Corollary 3.6 Let (X,d,s) be a complete b-metric space endowed with a graph G and
T be a self-mapping on X. Suppose that the following assertions hold.

(i) there exists g € X such that (zg,Txo) € E(G) and A(zp) < 1,
(ii) T is semi A-subadmissible mapping,

(i) Vz,y € X[(z,) € B(G) = (T(x), T()) € B(G)]

(iv) Vz,y,z € X[(z,y) € E(G)and (y,2) € E(G) = (z,z € E(G)]
(v) for all z,y € X with (z,y) € E(G) we have,

P(sd(Tz, Ty)) < Ax)A(y) [¢(M($7y))—<ﬂ(M(%y)) +Lmin{d(z, Tx),d(y, Ty), d(x, Ty),d(y, Tx)}

where, (¢, € V), L > 0 and

M Go,y) = mas e o, 7 ), 28T AT,

(vi) if {z} be a sequence in X such that (z,,zn4+1) € E(G), AM(zp) < 1 for alln € NU{0}
and z, — x as n — oo, then (z,,z) € E(G) for all n € NU {0} and A\(x) < 1.

Then T has a fixed point.

4. Some results in b—metric spaces endowed with a partial ordered

The existence of fixed points in partially ordered sets has been considered by many
authors (such as [19], [21-26] and [29] etc.). Later on, some generalizations of [26] are
given in [27]. Several applications of these results to matrix equations are presented in
[26].

Let X be a nonempty set. If (X,d,s) is a b—metric space and (X, <) be a partially
ordered set, then (X, d, s, <) is called an ordered b—metric space. Two elements x,y € X
are called comparable if z < y or y =< x hold. A mapping T" : X — X is said to be
non-decreasing if x <y implies Tx < Ty for all z,y € X.

In this section, we will show that many fixed point results in partially ordered b—metric
spaces can be deduced easily from our obtained results.
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Theorem 4.1 Let (X,d,s, <) be a complete ordered b-metric space and T be a self-
mapping on X. Suppose that the following assertions hold.

(ii) T is continuous and semi A-subadmissible mapping,
(iii) T is an increasing mapping,
(v) for all z,y € X with z < y we have,

(i) there exists xg € X such that zg < Tzg and A(zg) < 1,
i

$(sd(Tw, Ty)) < M@)AW) [ (M (@) =p(M(w,9))|+0(d(w, T2), d(y, Ty), d(z, Ty), d(y, Tx))

where, ¥, p € ¥, § € © and

(o) = mase o). o T ), AT AT

Then T has a fixed point.
Proof. Define o : X2 — [0, +00) by

2,ifx <y

ow,y) = { %, otherwise

First, we prove that 7" is a triangular a-admissible mapping. Let a(z,y) > 1, then x < y.
Since T is increasing, then we have Tx < Ty. That is, a(Tz,Ty) > 1. Suppose that
a(z,y) > 1 and a(y,z) > 1. Then 2 < y and y < 2. Hence = = z ie., a(z,z) > 1.
Therefore, T is a triangular a-admissible mapping. Since 7' is continuous then it is
a-continuous too. From (i) there exists 9 € X such that a(xg,Tzp) > 1. That is,
a(zg, Txo) = 1. Let ax,y) > 1, then x < y. Now, from (v) we have

V(sd(Tw, Ty)) < Ma)My) [$(M (2,y)=p(M (@) | +6 (d(z. T2), d(y, Ty), d(x, Ty), d(y, Tx) ).

Hence, all conditions of Theorem 2.1 are satisfied and 7" has a fixed point. [ ]

If in Theorem 3.3 we take 6(t1,to,t3,t4) = Lip(min{t;, t4}) where L > 0, then we have
the following Corollary.

Corollary 4.2 Let (X,d,s, <) be a complete ordered b-metric space and T" be a self-
mapping on X. Suppose that the following assertions hold.

(i) there exists g € X such that zy < Txg and A(xg) < 1,
(ii) T is continuous and semi A-subadmissible mapping,
(iii) T is an increasing mapping,

(v) for all z,y € X with z < y we have,

G(sd(T, Ty)) < N@)AW) [6(M (2,)) = p(M(2,9))| + L (min{d(z, Tz), d(y, Tx)})

where, ¥, p € ¥, L. > 0 and

M (z,y) = max {d(x, W), d(a, T, d(y, Ty), 2 TY) + Ay, Tw) }

2s
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Then T has a fixed point.
If in Corollary 3.3 we take A(z) = 1 for all z € X, then we have the following Corollary.

Corollary 4.3 [27, Theorem 3] Let (X,d, s, <) be a complete ordered b-metric space
and T be a self-mapping on X. Suppose that the following assertions hold.

i) T is continuous,

(ii)
(iii) T is an increasing mapping,
(v) for all z,y € X with z < y we have,

(i) there exists ¢ € X such that xy < Tz,
i

P(sd(Tz,Ty)) < Y(M(z,y)) — (M (x,y)) + + Ly (min{d(z, Tx), d(y, Tx)})

where, ¥, p € ¥, L > 0 and

M(z,y) = max {d(m, y),d(z, Tx),d(y, Ty), d(z,Ty) + d(y, Tx) }

2s

Then T has a fixed point.

Theorem 4.4 Let (X,d, s, X) be a complete partially ordered b-metric space and let T
be a self-mapping on X. Suppose that the following assertions hold.

(i) there exists xg € X such that zo < T'z¢ and A(zp) < 1,
(ii) T is a semi A-subadmissible mapping,
(iii) T is an increasing mapping,
(iv) for all z,y € X with = < y we have,
(sd(Ta, Ty)) < N@AW) [6(M (2,9)) ~o(M (2, ) | +0 (d(z, Tw), d(y, Ty), d(z, Ty),d(y, Tx)
(30)
where, (¢, € V), § € © and

M(z,y) = max {d(x, y),d(z, Tx),d(y, Ty), d(z,Ty) + d(y, Tx) }

2s

(v) if {z,,} be an increasing sequence in X such that A(z,) < 1 for all n € NU {0} and
xp — x as n — oo then z, < x for alln € NU{0} and \(z) < 1.

Then T has a fixed point.

Proof. Define the mapping a : X2 — [0, +00) as in the proof of Theorem 3.3. Analogous
to the proof of Theorem 3.3 we can prove all the conditions (i)-(iii) of Theorem 2.2 are
satisfied. Let {x,} be a sequence in X such that a(x,,zn4+1) = 1 and A(x,) < 1 for all
n € NU{0} and x,, — = as n — oo. Then z,, < z,,4+1 and \(x,) < 1 for all n € NU{0}.
From (v) we get, z, =  and A(z) < 1. That is, a(z,,z) > 1 for all n € NU {0} and
A(z) < 1. Therefore all conditions of Theorem 2.2 holds and T has a fixed point. |

Corollary 4.5 Let (X,d, s, X) be a complete partially ordered b-metric space and T be
a self-mapping on X. Suppose that the following assertions hold.

(i) there exists g € X such that, zg <X Txg and A(z¢) < 1,
(ii) T is a semi A-subadmissible mapping,
(iii) T is an increasing mapping,
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(iv) for all z,y € X with 2 < y we have,

Y(sd(Tz, Ty)) < A(@)A(y) [?/)(M(xj y)) — p(M(z, y))} + Ly (min{d(z, Tz), d(y, Tx)})
(31)
where, ¥, p € ¥, § € © and

M(x,y) = max {d(g;7 y), d(z,Tz),d(y, Ty), d(z,Ty) ;;d(y, Tzx) }

(v) if {z,} be an increasing sequence in X such that A(z,) < 1 for all n € NU {0} and
Ty — T as n — oo, then z,, <z for all n € NU {0} and A(z) < 1.

Then T has a fixed point.

Corollary 4.6 [27, Theorem 4] Let (X, d, s, <) be a complete partially ordered b-metric
space and T be a self-mapping on X. Suppose that the following assertions hold.

(i) there exists g € X such that xy < Tz,
(iii) T is an increasing mapping,
(iv) for all z,y € X with = < y we have,

P(sd(Tz, Ty)) < p(M(x,y)) — (M (z,y)) + Lp(min{d(z, Tx),d(y, Tz)})  (32)

where, (¢, € ¥), L > 0 and

M (z,y) = max {d(z, y),d(x, Tz),d(y, Ty), d(z,Ty) ;;d(y, Tx) }

(v) if {x,,} be an increasing sequence in X such that z,, = = as n — oo then z,, < x for
all n € NU{0}.

Then T has a fixed point.

5. Some integral type contractions
Let @ denotes the set of all functions ¢ : [0,+00) — [0,+00) satisfying the following
properties:

e every ¢ € ® is a Lebesgue integrable function on each compact subset of [0, +0o0),
e for any ¢ € ® and any € > 0, [; ¢(7)dr > 0.

Note that if we take 1) fo 7)dT where ¢ € ® then ¢ € W.
Also note that if w E \Il and 0 E @ then Yo € @
If in Theorem 2.1 we take v(t) fo T)dT, o(t) = (1 -7 fo 7)dr for all ¢ € [0, 00)

where 0 < r < 1 and replace 8 by 6 then we have the following theorem.

Theorem 5.1 Let (X, d, s) be a complete b-metric space, T be a self-mapping on X and
a: X xX —[0,00) and A : X — [0,+00) be two functions. Suppose that the following
assertions hold.

(i) there exists g € X such that a(zg,Txo) > 1 and A(zg) < 1,
(ii) T is a-continuous, triangular a-admissible and semi A-subadmissible mapping,



R.J. Shahkoohi et al. / J. Linear. Topological. Algebra. 04(01) (2015) 65-85. 83

(iii) for all z,y € X with a(z,y) > 1 we have

d(Tz,Ty) M (z,y) 0\ d(z,Tz),d(y,Ty),d(z,Ty),d(y,T)
/ o(r)dr < 77“/\(96))\(?;) / cb(T)dT—i—/ ( ) o(T)dr
0 0 0

s
(33)
where, 0 <r<1,¢0€®, 0 €0 and

M(z,y) = max {d(x, y),d(z, Tx),d(y, Ty), d(z,Ty) + d(y, Tx) }

2s

Then T has a fixed point.

Theorem 5.2 Let (X, d, s) be a complete b-metric space, T be a self-mapping on X and
a: X xX —[0,00) and A : X — [0,+00) be two functions. Suppose that the following
assertions hold.

(i) there exists g € X such that, a(xg,Tz¢) > 1 and \(zp) < 1,
(ii) T is a triangular a-admissible and semi A-subadmissible mapping,
(iii) for all z,y € X with a(z,y) > 1 we have

d(Tx,Ty) M(z,y) 0\ d(z,Tz),d(y,Ty),d(z,Ty),d(y,Tz)
/0 o(r)dr < r)\(z:))\(y)/o (Z)(T)dT—i—/O ( ) o(T)dr

s
(34)
where, 0 <r<1,¢0€ ®, 0 €0 and

M (z,y) = max {d(x, y),d(z, Tx),d(y, Ty), d(z,Ty) 2+8 d(y, T'x) }

(v) if {zn} be a sequence such that a(x,,zn41) = 1, AMx,) < 1 for all n € NU {0} and
Tp — T as n — oo, then a(z,,x) > 1 for all n € NU {0} and \(z) < 1.

Then T has a fixed point.

Theorem 5.3 Let (X,d, s) be a complete b-metric space endowed with a graph G and
T be a self-mapping on X. Suppose that the following assertions hold.

(i) there exists zg € X such that, (2o, Txo) € E(G) and A(zp) < 1,
(ii) T is G-continuous and semi A-subadmissible mapping,

(iii) Vz,y € X[(z,y) € E(G) = (T(2),T(y)) € E(G)]

(iv) Va,y,z € X[(z,y) € E(G)and (y,2) € E(G) = (z,2) € E(GQ)]
(v) for all z,y € X with (z,y) € E(G) we have,

d(Tz,Ty) M(z,y) 0\ d(z,Tx),d(y,Ty),d(z,Ty),d(y,Tx)
/ o(r)dr < 77“)\(95))\((1;) / QS(T)dT—i—/ ( ) o(T)dr
0 0 0

s
(35)
where, 0 <r < 1,90 € ®, 0 € © and

M (z,y) = max {d(w, y), d(z, T), d(y, Ty), 2&TY) 2+S d(y, T) }

Then T has a fixed point.
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Theorem 5.4 Let (X,d, s) be a complete b-metric space endowed with a graph G and
T be a self-mapping on X. Suppose that the following assertions hold.

(i) there exists xg € X such that (zg,Tz¢) € E(G) and A(z) < 1,
(ii) T is semi A-subadmissible mapping,

) Yo,y € X[(z,y) € E(G) = (T(x), T(y)) € E(G)]

v) Va,y,z € X[(z,y) € E(G)and (y,2) € E(G) = (z,2) € E(GQ)]
) for all z,y € X with (z,y) € E(G) we have,

d(Tz,Ty) M(z,y) 0\ d(z,Tx),d(y,Ty),d(z,Ty),d(y,Tx)
[ etmar < PR [T o yars | ( ) sosi

s
(36)
where, 0 <r<1,¢p€ P, 0 €0 and

Vo) = max {ae ). e 7).l 1), 20TV AT

2s
(vi) if {zy} be a sequence in X such that (x,,zn4+1) € E(G), A(z,,) < 1 for all n € NU{0}
and z, — x as n — oo then (x,,z) € E(G) for all n € NU {0} and \(z) < 1.
Then T has a fixed point.

Theorem 5.5 Let (X,d,s, <) be a complete ordered b-metric space and T be a self-
mapping on X. Suppose that the following assertions hold.

(i) there exists xg € X such that zo < T'z¢ and A(zg) < 1,
(ii) T is continuous and semi A-subadmissible mapping,
(iii) T is an increasing mapping,

(v) for all z,y € X with x < y we have

d(Tx,Ty) M(z,y) 0\ d(z,Tz),d(y,Ty),d(z,Ty),d(y,Tz)
/0 o(r)dr < 7n>\($))\(y)/0 cZ)(T)dT—{—/O ( ) o(T)dr

s
(37)
where, 0 <r<1,¢0€®, 0 €0 and

M(z,y) = max {d(w, y). d(z, Tx), d(y, Ty), 2819 + Ay, T'z) }

2s

Then T has a fixed point.
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