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Abstract. Here, a new certain class of contractive mappings in the b−metric spaces is intro-
duced. Some fixed point theorems are proved which generalize and modify the recent results
in the literature. As an application, some results in the b−metric spaces endowed with a
partial ordered are proved.
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1. Introduction

The existence of a fixed point is studied by many authors. The notion of b-metric space
was first explained by Bakhtin in [2] and then widely utilized by Czerwik in [6] (this space
is a metric type spaces defined by Khamsi and Hussain [18]). Since then, many researches
deal with fixed point theory for single-valued and multi-valued mappings in b-metric
spaces (see, [3, 6, 7] and references therein). Meanwhile, Samet et al. [30] presented the
notions of α-ψ-contractive and α-admissible mappings and founded several fixed point
theorems for such mappings outline under the complete metric spaces. Subsequently,
Salimi et al. [28] and Hussain et al. [13] improved the concepts of α-ψ-contractive and α-
admissible mappings and studied some fixed point theorems. In this paper, a new classes
of contractive mappings is introduced in order to study some fixed point theorems in the
b−metric spaces.
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Definition 1.1 [6] Let X be a nonempty set and s ⩾ 1. A function d : X ×X → R+ is
a b−metric if and only if for all x, y, z ∈ X, the following conditions hold:

(b1) d(x, y) = 0 iff x = y,
(b2) d(x, y) = d(y, x),
(b3) d(x, z) ⩽ s[d(x, y) + d(y, z)].

Then the tripled (X, d, s) is called a b−metric space.

Definition 1.2 [5] Let (X, d) be a b−metric space. A sequence {xn} in X is called:
(a) b-convergent if and only if there exists x ∈ X such that d(xn, x) → 0, as n→ +∞.

In this case, we write lim
n→∞

xn = x.

(b) b-Cauchy if and only if d(xn, xm) → 0, as n,m→ +∞.

Proposition 1.3 [5, Remark 2.1] In a b−metric space (X, d) the following assertions
hold:
p1. A b-convergent sequence has a unique limit.
p2. Each b-convergent sequence is b-Cauchy.
p3. In general a b−metric is not continuous.

Lemma 1.4 [1] Let (X, d) be a b−metric space with s ⩾ 1. Suppose that {xn} and {yn}
are b-convergent to x, y, respectively. Then

1

s2
d(x, y) ⩽ lim inf

n−→∞
d(xn, yn) ⩽ lim sup

n−→∞
d(xn, yn) ⩽ s2d(x, y).

In particular, if x = y then lim
n−→∞

d(xn, yn) = 0. Moreover, for each z ∈ X

1

s
d(x, z) ⩽ lim inf

n−→∞
d(xn, z) ⩽ lim sup

n−→∞
d(xn, z) ⩽ sd(x, z).

For more details on b-metric spaces the reader can refer to [7]-[11].

Definition 1.5 [30] Let T be a self-mapping on X and α : X × X → [0,+∞) be a
function. T is an α-admissible mapping if

x, y ∈ X, α(x, y) ⩾ 1 =⇒ α(Tx, Ty) ⩾ 1.

Definition 1.6 [16] Let T be an α-admissible mapping. We say that T is a triangular
α-admissible mapping if α(x, y) ⩾ 1 and α(y, z) ⩾ 1 implies that α(x, z) ⩾ 1.

Lemma 1.7 [16] Let T be a triangular α-admissible mapping. Assume that there exists
x0 ∈ X such that α(x0, Tx0) ⩾ 1. Define sequence {xn} by xn = Tnx0. Then

α(xm, xn) ⩾ 1 for all m,n ∈ N with m < n.

Definition 1.8 [12] Let α : X × X → [0,∞) and T : X → X. We say that T is
an α-continuous mapping if for given x ∈ X and sequence {xn} with xn → x and
α(xn, xn+1) ⩾ 1 for all n ∈ N one has Txn → Tx.

Definition 1.9 Let T be a self-mapping on X and let λ : X → [0,+∞) be a function.
We say that T is a semi λ-subadmissible mapping if

x ∈ X, λ(x) ⩽ 1 =⇒ λ(Tx) ⩽ 1.
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Example 1.10 Let T : R → R be defined by Tx = x3. Suppose that λ : R → R+ is
given by λ(x) = ex for all x ∈ R. Then T is a semi λ-subadmissible mapping. Indeed, if

λ(x) = ex ⩽ 1 then x ⩽ 0 which implies that Tx ⩽ 0. Therefore λ(Tx) = eTx ⩽ 1.

Consistent with Khan et al. [17] we denote by Ψ the set of all function φ : [0,+∞) →
[0,+∞) (which is called an altering distance function) if the following conditions hold:

• φ is continuous and non-decreasing.

• φ(t) = 0 if and only if t = 0.

Motivated by Kumam and Roldán [20] we introduce the following class of mappings
which is suitable for our results.

Let Θ denote the set of all functions θ : R+4 → R+ satisfying:
(Θ1) θ is continuous and increasing in all its variables;
(Θ2) θ(t1, t2, t3, t4) = 0 iff either t1 = 0 or t4 = 0.

2. Main Theorems

In this section we stat the Main results. The first theorem is based on [7, Theorem 4]
and [27, Theorem 3].

Theorem 2.1 Let (X, d, s) be a complete b-metric space, T be a self-mapping on X and
α : X ×X → [0,∞) and λ : X → [0,+∞) be two functions. Suppose that the following
assertions hold.

(i) There exists x0 ∈ X such that α(x0, Tx0) ⩾ 1 and λ(x0) ⩽ 1.
(ii) T is α-continuous, triangular α-admissible and semi λ-subadmissible mapping.
(iii) For all x, y ∈ X with α(x, y) ⩾ 1

ψ(sd(Tx, Ty)) ⩽ λ(x)λ(y)
[
ψ(M(x, y))−φ(M(x, y))

]
+θ
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
(1)

where ψ,φ ∈ Ψ, θ ∈ Θ and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
.

Then T has a fixed point.

Proof. Let x0 ∈ X be such that α(x0, Tx0) ⩾ 1 and λ(x0) ⩽ 1. We define a sequence
{xn} as follows

xn = Tnx0 = Txn−1

for all n ∈ N. If xn = xn+1 for some n ∈ N then xn = Txn and so xn is a fixed point of
f . Hence we assume that xn ̸= xn+1, for all n ∈ N. Since T is a triangular α-admissible
mapping then by Lemma 1.7

α(xm, xn) ⩾ 1 for all m,n ∈ N with m < n.

Also, since T is a semi λ-subadmissible mapping and λ(x0) ⩽ 1 then λ(x1) = λ(Tx0) ⩽ 1.
Again, since T is semi λ-subadmissible, then λ(x2) = λ(Tx1) ⩽ 1. Continuing this process
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λ(xn) ⩽ 1 for all n ∈ N ∪ {0}. Then by (iii),

ψ(d(xn, xn+1)) ⩽ ψ(sd(xn, xn+1))
= ψ(sd(Txn−1, Txn))

⩽ λ(xn−1)λ(xn)
[
ψ(M(xn−1, xn))− φ(M(xn−1, xn))

]
+θ
(
d(xn−1, Txn−1), d(xn, Txn), d(xn−1, Txn), d(xn, Txn−1)

)
⩽ ψ(M(xn−1, xn))− φ(M(xn−1, xn))
+θ
(
d(xn−1, Txn−1), d(xn, Txn), d(xn−1, Txn), d(xn, Txn−1)

)
(2)

where

M(xn−1, xn) = max

{
d(xn−1, xn), d(xn−1, Txn−1), d(xn, Txn),

d(xn−1,Txn)+d(xn,Txn−1)
2s

}
= max

{
d(xn−1, xn), d(xn, xn+1),

d(xn−1,xn+1)
2s

}
⩽ max

{
d(xn−1, xn), d(xn, xn+1),

sd(xn−1,xn)+sd(xn,xn+1)
2s

}
= max

{
d(xn−1, xn), d(xn, xn+1),

d(xn−1,xn)+d(xn,xn+1)
2

}
= max

{
d(xn−1, xn), d(xn, xn+1)

}
(3)

and

θ
(
d(xn−1, Txn−1), d(xn, Txn), d(xn−1, Txn), d(xn, Txn−1)

)
= θ
(
d(xn−1, xn), d(xn, xn+1), d(xn−1, xn+1), d(xn, xn)

)
= θ
(
d(xn−1, xn), d(xn, xn+1), d(xn−1, xn+1), 0

)
= 0.

(4)

By (2)-(4) and the properties of ψ and φ we obtain

ψ(d(xn, xn+1)) ⩽ ψ

(
max

{
d(xn−1, xn), d(xn, xn+1)

})
− φ

(
M(xn−1, xn)

)
< ψ

(
max

{
d(xn−1, xn), d(xn, xn+1)

})
.

(5)

Now if

max

{
d(xn−1, xn), d(xn, xn+1)

}
= d(xn, xn+1),

then by (5)

ψ(d(xn, xn+1)) ⩽ ψ(d(xn, xn+1))− φ(M(xn−1, xn))

< ψ(d(xn, xn+1)),

which is a contradiction. Hence

max

{
d(xn−1, xn), d(xn, xn+1)

}
= d(xn−1, xn).
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Therefore

ψ(d(xn, xn+1)) ⩽ ψ(d(xn, xn−1))− φ(M(xn−1, xn)) < ψ(d(xn, xn−1)). (6)

Since ψ is a non-decreasing mapping, then {d(xn, xn+1) : n ∈ N∪{0}} is a non-increasing
sequence of positive numbers. Then there exists r ⩾ 0 such that

lim
n→∞

d(xn, xn+1) = r.

Letting n→ ∞ in (6), we have

ψ(r) ⩽ ψ(r)− φ( lim
n→∞

M(xn−1, xn)) ⩽ ψ(r).

Therefore φ(limn→∞M(xn−1, xn)) = 0 and hence r = 0, i.e.,

lim
n→∞

d(xn, xn+1) = 0. (7)

Now, we show that {xn} is a b−Cauchy sequence in X. Assume the contrary, that {xn}
is not a b−Cauchy sequence. Then there exists ε > 0 and two subsequences {xmi

} and
{xni

} of {xn} such that ni is the smallest index for which

ni > mi > i dna d(xmi
, xni

) ⩾ ε. (8)

That is

d(xmi
, xni−1) < ε. (9)

By using (8), (9) and the triangular inequality

ε ⩽ d(xmi
, xni

)

⩽ sd(xmi
, xmi−1) + sd(xmi−1, xni

)

⩽ sd(xmi
, xmi−1) + s2d(xmi−1, xni−1) + s2d(xni−1, xni

).

Now, using (7) and taking the upper limit as i→ ∞

ε

s2
⩽ lim sup

i−→∞
d(xmi−1, xni−1).

On the other hand

d(xmi−1, xni−1) ⩽ sd(xmi−1, xmi
) + sd(xmi

, xni−1).

Using (7), (9) and taking the upper limit as i→ ∞

lim sup
i−→∞

d(xmi−1, xni−1) ⩽ εs.
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Hence

ε

s2
⩽ lim sup

i−→∞
d(xmi−1, xni−1) ⩽ εs. (10)

Again using the triangular inequality

d(xmi−1, xni
) ⩽ sd(xmi−1, xni−1) + sd(xni−1, xni

), (11)

ε ⩽ d(xmi
, xni

) ⩽ sd(xmi
, xmi−1) + sd(xmi−1, xni

) (12)

and

ε ⩽ d(xmi
, xni

) ⩽ sd(xmi
, xni−1) + sd(xni−1, xni

). (13)

Using (7) and (10) and taking the upper limit as i→ ∞ in (11) and (12) we get

ε

s
⩽ lim sup

i−→∞
d(xmi−1, xni

) ⩽ εs2. (14)

Again using (7) and (9) and taking the upper limit as i→ ∞ in (13)

ε

s
⩽ lim sup

i−→∞
d(xmi

, xni−1) ⩽ ε. (15)

Since α(xmi−1, xni−1) ⩾ 1, λ(xmi−1) ⩽ 1 and λ(xni−1) ⩽ 1 then from (iii) we have

ψ(sd(xmi
, xni

)) = ψ(sd(Txmi−1, Txni−1))

⩽ λ(xmi−1)λ(xni−1)
[
ψ(M(xmi−1, xni−1))− φ(M(xmi−1, xni−1))

]
+θ
(
d(xmi−1, Txmi−1), d(xni−1, Txni−1), d(xmi−1, Txni−1), d(xni−1, Txmi−1)

)
⩽ ψ(M(xmi−1, xni−1))− φ(M(xmi−1, xni−1))

+θ
(
d(xmi−1, Txmi−1), d(xni−1, Txni−1), d(xmi−1, Txni−1), d(xni−1, Txmi−1)

)
,

(16)

where

M(xmi−1, xni−1) = max

{
d(xmi−1, xni−1), d(xmi−1, Txmi−1), d(xni−1, Txni−1),

d(xmi−1,Txni−1)+d(Txmi−1,xni−1)
2s

}
= max

{
d(xmi−1, xni−1), d(xmi−1, xmi

), d(xni−1, xni
),

d(xmi−1,xni
)+d(xmi

,xni−1)
2s

}
,

(17)

and

θ
(
d(xmi−1, Txmi−1), d(xni−1, Txni−1), d(xmi−1, Txni−1), d(xni−1, Txmi−1)

)
= θ
(
d(xmi−1, xmi

), d(xni−1, xni
), d(xmi−1, xni

), d(xni−1, xmi
)
)
.

(18)
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Taking the upper limit as i→ ∞ in (17) and (18) and using (7), (10), (14) and (15) we
get

ε

s2
= min

{
ε

s2
,

ε

s
+
ε

s
2s

}
⩽ lim sup

i−→∞
M(xmi−1, xni−1)

= max{lim sup
i−→∞

d(xmi−1, xni−1), 0, 0,

lim sup
i−→∞

d(xmi−1, xni
) + lim sup

i−→∞
d(xmi

, xni−1)

2s
}

⩽ max

{
εs,

εs2 + ε

2s

}
= εs.

So

ε

s2
⩽ lim sup

i−→∞
M(xmi−1, xni−1) ⩽ εs, (19)

and

lim sup
i→∞

θ
(
d(xmi−1, Txmi−1), d(xni−1, Txni−1), d(xmi−1, Txni−1), d(xni−1, Txmi−1)

)
= lim sup

i→∞
θ
(
d(xmi−1, xmi

), d(xni−1, xni
), d(xmi−1, xni

), d(xni−1, xmi
)
)
= 0.

(20)

Similarly

ε

s2
⩽ lim inf

i−→∞
M(xmi−1, xni−1) ⩽ εs. (21)

Now, taking the upper limit as i→ ∞ in (16) and using (8), (19) and (20) we have

ψ(εs) ⩽ ψ(slim sup
i−→∞

d(xmi
, xni

))

⩽ ψ(lim sup
i−→∞

M(xmi−1, xni−1))− lim inf
n−→∞

φ(M(xmi−1, xni−1))

⩽ ψ(εs)− φ(lim inf
i−→∞

M(xmi−1, xni−1)),

which implies

φ(lim inf
i−→∞

M(xmi−1, xni−1)) = 0,

so lim inf
i−→∞

M(xmi−1, xni−1) = 0, which is a contradiction with (21). So {xn+1} is a

b−Cauchy sequence in X. Since X is a complete b−metric space, there exists x∗ ∈ X
such that xn → x∗ as n → ∞. Also, from (ii) we know T is an α−continuous mapping.
Hence Txn → Tx∗ as n→ ∞. Then

d(x∗, Tx∗) ⩽ sd(x∗, Txn) + sd(Txn, Tx
∗).
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Letting n→ ∞ in the above inequality

d(x∗, Tx∗) ⩽ s lim
n→∞

d(x∗, Txn) + s lim
n→∞

d(Txn, Tx
∗) = 0.

So Tx∗ = x∗. ■

For self-mappings that are not continuous or α−continuous we have the following
result.

Theorem 2.2 Let (X, d, s) be a complete b-metric space, T be a self-mapping on X and
α : X ×X → [0,∞) and λ : X → [0,+∞) be two functions. Suppose that the following
assertions hold.

(i) There exists x0 ∈ X such that α(x0, Tx0) ⩾ 1 and λ(x0) ⩽ 1.
(ii) T is a triangular α-admissible and semi λ-subadmissible mapping.
(iii) For all x, y ∈ X with α(x, y) ⩾ 1

ψ(sd(Tx, Ty)) ⩽ λ(x)λ(y)
[
ψ(M(x, y))−φ(M(x, y))

]
+θ
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
,

where ψ,φ ∈ Ψ, θ ∈ Θ and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
.

(v) If {xn} be a sequence such that α(xn, xn+1) ⩾ 1, λ(xn) ⩽ 1 for all n ∈ N ∪ {0} and
xn → x as n→ ∞, then α(xn, x) ⩾ 1 for all n ∈ N ∪ {0} and λ(x) ⩽ 1.

Then T has a fixed point.

Proof. Let x0 ∈ X be such that α(x0, Tx0) ⩾ 1 and λ(x0) ⩽ 1. Define a sequence {xn}
in X by xn = Tnx0 = Txn−1 for all n ∈ N. Following the proof of the Theorem 2.1, we
obtain that {xn} is a b−Cauchy sequence such that α(xn, xn+1) ⩾ 1 and λ(xn) ⩽ 1 for
all n ∈ N ∪ {0}. Since X is complete, there exists x∗ ∈ X such that the sequence {xn}
b-converges to x∗. Using the assumption (v), we have α(xn, x

∗) ⩾ 1 for all n ∈ N ∪ {0}
and λ(x∗) ⩽ 1. By (iii)

ψ(sd(xn+1, Tx
∗)) = ψ(sd(Txn, Tx

∗))

⩽ λ(xn)λ(x
∗)
[
ψ(M(xn, x

∗))− φ(M(xn, x
∗))
]

+θ
(
d(xn, Txn), d(x

∗, Tx∗), d(xn, Tx
∗), d(x∗, Txn)

)
⩽ ψ(M(xn, x

∗))− φ(M(xn, x
∗))

+θ
(
d(xn, Txn), d(x

∗, Tx∗), d(xn, Tx
∗), d(x∗, Txn)

)
,

(22)

where

M(xn, x
∗) = max

{
d(xn, x

∗), d(xn, Txn), d(x
∗, Tx∗), d(xn,Tx∗)+d(Txn,x∗)

2s

}
= max

{
d(xn, x

∗), d(xn, xn+1), d(x
∗, Tx∗), d(xn,Tx∗)+d(xn+1,x∗)

2s

} (23)
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and

θ
(
d(xn, Txn), d(x

∗, Tx∗), d(xn, Tx
∗), d(x∗, Txn)

)
= θ
(
d(xn, xn+1), d(x

∗, Tx∗), d(xn, Tx
∗), d(x∗, xn+1)

)
.

(24)

Letting n→ ∞ in (23) and (24) and using lemma 1.4, we get

d(x∗,Tx∗)
2s2 = min

{
d(x∗, Tx∗), d(x

∗,Tx∗)
2s2

}
⩽ lim sup

n−→∞
M(xn, x

∗)

⩽ max
{
d(x∗, Tx∗), sd(x

∗,Tx∗)
2s

}
= d(x∗, Tx∗),

(25)

and

θ
(
d(xn, Txn), d(x

∗, Tx∗), d(xn, Tx
∗), d(x∗, Txn)

)
→ 0 as n→ ∞.

Similarly

d(x∗, Tx∗)

2s2
⩽ lim inf

n−→∞
M(xn, x

∗) ⩽ d(x∗, Tx∗). (26)

Again, taking the upper limit as i→ ∞ in (22) and using lemma 1.4 and (25) we get

ψ(d(x∗, Tx∗) = ψ(s
1

s
d(x∗, Tx∗)) ⩽ ψ(slim sup

n−→∞
d(xn+1, Tx

∗))

⩽ ψ(lim sup
n−→∞

M(xn, x
∗))− lim inf

n−→∞
φ(M(xn, x

∗))

⩽ ψ(d(x∗, Tx∗))− φ(lim inf
n−→∞

M(xn, x
∗)).

Hence, φ(lim inf
n−→∞

M(xn, x
∗)) = 0. Then, lim inf

n−→∞
M(xn, x

∗) = 0 which is a contradiction.

So, x∗ = Tx∗. ■

Example 2.3 Let X = R be endowed with the b−metric

d(x, y) =

 (|x|+ |y|)2, if x ̸= y

0 if x = y

for all x, y ∈ X. Define T : X → X, α : X ×X → [0,∞) and λ : X → [0,∞) by

Tx =



2x3 + sinx, if x ∈ (−∞, 0)

1
8x

2, if x ∈ [0, 1)

1
8x, if x ∈ [1, 2)

1
4 if x ∈ [2,+∞)

α(x, y) =

{
2, if x, y ∈ [0,+∞)
0, otherwise
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and λ(x) =

1, if x ∈ [0,+∞)

2x2 + 3, otherwise.

Also, define ψ,φ : [0,∞) → [0,+∞) and θ : [0,+∞)4 → [0,+∞) by ψ(t) = t, φ(t) = 3
4 t

and θ(t1, t2, t3, t4) = min{t1, t2, t3, t4}. Clearly (X, d, s) with s = 2 is a complete b−metric
space, ψ,φ ∈ Ψ and θ ∈ Θ. Let α(x, y) ⩾ 1, then x, y ∈ [0,+∞). On the other hand,
Tw ∈ [0,+∞) for all w ∈ [0,+∞). Then α(Tx, Ty) ⩾ 1. That is, T is an α-admissible
mapping. Let α(x, y) ⩾ 1 and α(y, z) ⩾ 1. So x, y, z ∈ [0,+∞) i.e., α(x, z) ⩾ 1. Hence
T is a triangular α-admissible mapping. Also, let λ(x) ⩽ 1. Thus x ∈ [0,+∞). That is,
λ(Tx) ⩽ 1. Thus T is a semi λ-subadmissible mapping. Let {xn} be a sequence in X
such that α(xn, xn+1) ⩾ 1 and λ(xn) ⩽ 1 with xn → x as n → ∞. Then, xn ∈ [0,+∞)
for all n ∈ N. Also [0,+∞) is a closed set. Then x ∈ [0,+∞). That is α(xn, x) ⩾ 1 for
all n ∈ N ∪ {0} and λ(x) ⩽ 1. Clearly α(0, T0) ⩾ 1 and λ(0) ⩽ 1.

Let α(x, y) ⩾ 1. So x, y ∈ [0,+∞).
Now we consider the following cases:

• Let x, y ∈ [0, 1) then

ψ(2d(Tx, Ty)) = 2d(Tx, Ty) = 2(18x
2 + 1

8y
2)2

= 1
32(x

2 + y2)2

⩽ 1
4(x+ y)2

= 1
4d(x, y)

⩽ 1
4M(x, y)

= ψ(M(x, y))− φ(M(x, y))

= λ(x)λ(y)
[
ψ(M(x, y))− φ(M(x, y))

]
+ θ(d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)).

• Let x, y ∈ [1, 2) then

ψ(2d(Tx, Ty)) = 2d(Tx, Ty) = 2(18x+ 1
8y)

2

= 1
32(x+ y)2

⩽ 1
4(x+ y)2

= 1
4d(x, y)

⩽ 1
4M(x, y)

= ψ(M(x, y))− φ(M(x, y))

⩽ λ(x)λ(y)
[
ψ(M(x, y))− φ(M(x, y))

]
+θ(d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)).

• Let x, y ∈ [2,∞) then

ψ(2d(Tx, Ty)) = 2d(Tx, Ty) = 2(14 + 1
4)

2

= 1
2 ⩽ 1

= 1
4(1 + 1)2

⩽ 1
4(x+ y)2

= 1
4d(x, y)

⩽ 1
4M(x, y)

= ψ(M(x, y))− φ(M(x, y))

⩽ λ(x)λ(y)
[
ψ(M(x, y))− φ(M(x, y))

]
+θ(d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)).
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• Let x ∈ [0, 1) and y ∈ [1, 2) then

ψ(2d(Tx, Ty)) = 2d(Tx, Ty) = 2(18x
2 + 1

8y)
2

⩽ 2(18x+ 1
8y)

2

= 1
32(x

2 + y2)2

⩽ 1
4(x+ y)2

= 1
4d(x, y) ⩽

1
4M(x, y)

= ψ(M(x, y))− φ(M(x, y))

= λ(x)λ(y)
[
ψ(M(x, y))− φ(M(x, y))

]
+θ(d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)).

• Let x ∈ [0, 1) and y ∈ [2,∞) then

ψ(2d(Tx, Ty)) = 2d(Tx, Ty) = 2t(18x
2 + 1

4)
2

⩽ 2(18x+ 1
8y)

2

= 1
32(x+ y)2

⩽ 1
4(x+ y)2

= 1
4d(x, y)

⩽ 1
4M(x, y)

= ψ(M(x, y))− φ(M(x, y))

= λ(x)λ(y)
[
ψ(M(x, y))− φ(M(x, y))

]
+θ(d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)).

• Let x ∈ [1, 2) and y ∈ [2,∞) then

ψ(2d(Tx, Ty)) = 2d(Tx, Ty) = 2(18x+ 1
4)

2

⩽ 2(18x+ 1
8y)

2

= 1
32(x+ y)2

⩽ 1
4(x+ y)2

= 1
4d(x, y)

⩽ 1
4M(x, y)

= ψ(M(x, y))− φ(M(x, y))

⩽ λ(x)λ(y)
[
ψ(M(x, y))− φ(M(x, y))

]
+θ(d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)).

Therefore α(x, y) ⩾ 1 implies

ψ(2d(Tx, Ty)) ⩽ λ(x)λ(y)
[
ψ(M(x, y))− φ(M(x, y))

]
+ θ(d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx))

Hence, all conditions of Theorem 2.2 holds and T has a fixed point. Here, x = 0 is a fixed
point of T .

Corollary 2.4 Let (X, d, s) be a complete b-metric space, T be a self-mapping on X and
α : X ×X → [0,∞) and λ : X → [0,+∞) be two functions. Suppose that the following
assertions hold.
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(i) There exists x0 ∈ X such that α(x0, Tx0) ⩾ 1 and λ(x0) ⩽ 1.
(ii) T is a triangular α-admissible and semi λ-subadmissible mapping.
(iii) For all x, y ∈ X

ψ(sα(x, y)d(Tx, Ty)) ⩽ λ(x)λ(y)
[
ψ(M(x, y))−φ(M(x, y))

]
+θ
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
,

(27)
where ψ,φ ∈ Ψ, θ ∈ Θ and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
.

(v) If {xn} is a sequence such that α(xn, xn+1) ⩾ 1, λ(xn) ⩽ 1 for all n ∈ N ∪ {0} and
xn → x as n→ ∞ then α(xn, x) ⩾ 1 for all n ∈ N ∪ {0} and λ(x) ⩽ 1.

Then T has a fixed point.

Proof. Let α(x, y) ⩾ 1. Since ψ is increasing then from (iii)

ψ(sd(Tx, Ty)) ⩽ ψ(sα(x, y)d(Tx, Ty))

⩽ λ(x)λ(y)
[
ψ(M(x, y))− φ(M(x, y))

]
+θ
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
.

Therefore all conditions of Theorem 2.2 holds and T has a fixed point. ■

If in Corollary 2.4 we take α(x, y) = 1 for all x, y ∈ X, then we have the following
corollary.

Corollary 2.5 Let (X, d, s) be a complete b-metric space and T be a self-mapping on
X and λ : X → [0,+∞) be a function. Suppose that the following assertions hold.

(i) there exists x0 ∈ X such that λ(x0) ⩽ 1,
(ii) T is a semi λ-subadmissible mapping,
(iii) for all x, y ∈ X we have

ψ(sd(Tx, Ty)) ⩽ λ(x)λ(y)
[
ψ(M(x, y))−φ(M(x, y))

]
+θ
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
(28)

where, ψ,φ ∈ Ψ, θ ∈ Θ and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
,

(v) if {xn} be a sequence such that λ(xn) ⩽ 1 for all n ∈ N ∪ {0} and xn → x as n → ∞
then λ(x) ⩽ 1.

Then T has a fixed point.
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3. Some results in b−metric spaces endowed with a graph

In this section, we show that many fixed point results in b−metric spaces endowed with
a graph G (see [4]) can be deduced easily from our presented theorems.
As in [14], let (E, d, s) be a b−metric space and ∆ denotes the diagonal of the Cartesian
product of X × X. Consider a directed graph G such that the set V (G) of its vertices
coincides with X and the set E(G) of its edges contains all loops, that is E(G) ⊇ ∆. We
assume that G has no parallel edges, so we can identify G with the pair (V (G), E(G)).
Moreover, we may treat G as a weighted graph, see [15, P.309], by assigning to each edge
the distance between its vertices. If x and y are vertices in a graph G then a path in
G from x to y of length N (N ∈ N) is a sequence {xi}Ni=0 of N + 1 vertices such that
x0 = x, xN = y and (xi−1, xi) ∈ E(G) for i = 1, . . . , N.

Definition 3.1 [14] Let (X, d) be a metric space endowed with a graph G. We say that
a self-mapping T : X → X is a Banach G-contraction or simply a G-contraction if T
preserves the edges of G that is,

for all x, y ∈ X, (x, y) ∈ E(G) =⇒ (Tx, Ty) ∈ E(G)

and T decreases the weights of the edges of G in the following way:

∃α ∈ (0, 1) such that for all x, y ∈ X, (x, y) ∈ E(G) =⇒ d(Tx, Ty) ≤ αd(x, y).

Definition 3.2 [14] A mapping T : X → X is called G-continuous if given x ∈ X and
sequence {xn}

xn → x asn→ ∞ and (xn, xn+1) ∈ E(G) for alln ∈ N imply Txn → Tx.

Theorem 3.3 Let (X, d, s) be a complete b-metric space endowed with a graph G and
T be a self-mapping on X. Suppose that the following assertions hold.

(i) there exists x0 ∈ X such that (x0, Tx0) ∈ E(G) and λ(x0) ⩽ 1,
(ii) T is G-continuous and semi λ-subadmissible mapping,
(iii) ∀x, y ∈ X[(x, y) ∈ E(G) ⇒ (T (x), T (y)) ∈ E(G)]
(iv) ∀x, y, z ∈ X[(x, y) ∈ E(G) and (y, z) ∈ E(G) ⇒ (x, z) ∈ E(G)]
(v) for all x, y ∈ X with (x, y) ∈ E(G) we have,

ψ(sd(Tx, Ty)) ⩽ λ(x)λ(y)
[
ψ(M(x, y))−φ(M(x, y))

]
+θ
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
where, ψ,φ ∈ Ψ, θ ∈ Θ and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
.

Then T has a fixed point.

Proof. Define α : X2 → [0,+∞) by

α(x, y) =

{
2, if (x, y) ∈ E(G)
1
2 , otherwise.
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First we show that T is a triangular α-admissible mapping. Let α(x, y) ⩾ 1 then (x, y) ∈
E(G). From (iii) (Tx, Ty) ∈ E(G). That is α(Tx, Ty) ⩾ 1. Also let α(x, y) ⩾1 and
α(y, z) ⩾ 1. So (x, y) ∈ E(G) and (y, z) ∈ E(G). From (iv) we get (x, z) ∈ E(G), i.e.
α(x, z) ⩾ 1. Thus T is a triangular α-admissible mapping. Let T be G-continuous. So

xn → x asn→ ∞ and (xn, xn+1) ∈ E(G) for alln ∈ N imply Txn → Tx.

That is,

xn → x asn→ ∞ and α(xn, xn+1) ⩾ 1 for alln ∈ N imply Txn → Tx

which implies that T is α-continuous. From (i) there exists x0 ∈ X such that (x0, Tx0) ∈
E(G). That is α(x0, Tx0) ⩾ 1. Let α(x, y) ⩾ 1 then (x, y) ∈ E(G). Now from (v) we have

ψ(sd(Tx, Ty)) ⩽ λ(x)λ(y)
[
ψ(M(x, y))−φ(M(x, y))

]
+θ
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
Hence all conditions of Theorem 2.1 are satisfied and T has a fixed point. ■

In Theorem 3.3 we take θ(t1, t2, t3, t4) = min{t1, t2, t3, t4}.

Corollary 3.4 Let (X, d, s) be a complete b-metric space endowed with a graph G and
T be a self-mapping on X. Suppose that the following assertions hold.

(i) there exists x0 ∈ X such that (x0, Tx0) ∈ E(G) and λ(x0) ⩽ 1,
(ii) T is G-continuous and semi λ-subadmissible mapping,
(iii) ∀x, y ∈ X[(x, y) ∈ E(G) ⇒ (T (x), T (y)) ∈ E(G)]
(iv) ∀x, y, z ∈ X[(x, y) ∈ E(G) and (y, z) ∈ E(G) ⇒ (x, z) ∈ E(G)]
(v) for all x, y ∈ X with (x, y) ∈ E(G) we have,

ψ(sd(Tx, Ty)) ⩽ λ(x)λ(y)
[
ψ(M(x, y))−φ(M(x, y))

]
+Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

where, ψ,φ ∈ Ψ, L ⩾ 0 and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
.

Then T has a fixed point.

Theorem 3.5 Let (X, d, s) be a complete b-metric space endowed with a graph G and
T be a self-mapping on X. Suppose that the following assertions hold.

(i) there exists x0 ∈ X such that (x0, Tx0) ∈ E(G) and λ(x0) ⩽ 1,
(ii) T is semi λ-subadmissible mapping,
(iii) ∀x, y ∈ X[(x, y) ∈ E(G) ⇒ (T (x), T (y)) ∈ E(G)]
(iv) ∀x, y, z ∈ X[(x, y) ∈ E(G) and (y, z) ∈ E(G) ⇒ (x, z) ∈ E(G)]
(v) for all x, y ∈ X with (x, y) ∈ E(G) we have,

ψ(sd(Tx, Ty)) ⩽ λ(x)λ(y)
[
ψ(M(x, y))−φ(M(x, y))

]
+θ
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
(29)
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where, (ψ,φ ∈ Ψ), θ ∈ Θ and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
.

(vi) if {xn} be a sequence in X such that (xn, xn+1) ∈ E(G), λ(xn) ⩽ 1 for all n ∈ N∪{0}
and xn → x as n→ ∞ then (xn, x) ∈ E(G) for all n ∈ N ∪ {0} and λ(x) ⩽ 1.

Then T has a fixed point.

Proof. Define the mapping α : X2 → [0,+∞) as in the proof of Theorem 3.3. Similar
to the proof of Theorem 3.3 we can prove that the conditions (i)-(iii) of Theorem 2.2
are satisfied. Let {xn} be a sequence in X such that α(xn, xn+1) ⩾ 1 and λ(xn) ⩽ 1 for
all n ∈ N ∪ {0} and xn → x as n → ∞. Then (xn, xn+1) ∈ E(G) and λ(xn) ⩽ 1 for all
n ∈ N ∪ {0}. From (vi) we get (xn, x) ∈ E(G) and λ(x) ⩽ 1. That is α(xn, x) ⩾ 1 for all
n ∈ N ∪ {0} and λ(x) ⩽ 1. Therefore all conditions of Theorem 2.2 holds and T has a
fixed point. ■

Corollary 3.6 Let (X, d, s) be a complete b-metric space endowed with a graph G and
T be a self-mapping on X. Suppose that the following assertions hold.

(i) there exists x0 ∈ X such that (x0, Tx0) ∈ E(G) and λ(x0) ⩽ 1,
(ii) T is semi λ-subadmissible mapping,
(iii) ∀x, y ∈ X[(x, y) ∈ E(G) ⇒ (T (x), T (y)) ∈ E(G)]
(iv) ∀x, y, z ∈ X[(x, y) ∈ E(G) and (y, z) ∈ E(G) ⇒ (x, z ∈ E(G)]
(v) for all x, y ∈ X with (x, y) ∈ E(G) we have,

ψ(sd(Tx, Ty)) ⩽ λ(x)λ(y)
[
ψ(M(x, y))−φ(M(x, y))

]
+Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

where, (ψ,φ ∈ Ψ), L ⩾ 0 and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
.

(vi) if {xn} be a sequence in X such that (xn, xn+1) ∈ E(G), λ(xn) ⩽ 1 for all n ∈ N∪{0}
and xn → x as n→ ∞, then (xn, x) ∈ E(G) for all n ∈ N ∪ {0} and λ(x) ⩽ 1.

Then T has a fixed point.

4. Some results in b−metric spaces endowed with a partial ordered

The existence of fixed points in partially ordered sets has been considered by many
authors (such as [19], [21–26] and [29] etc.). Later on, some generalizations of [26] are
given in [27]. Several applications of these results to matrix equations are presented in
[26].

Let X be a nonempty set. If (X, d, s) is a b−metric space and (X,⪯) be a partially
ordered set, then (X, d, s,⪯) is called an ordered b−metric space. Two elements x, y ∈ X
are called comparable if x ⪯ y or y ⪯ x hold. A mapping T : X → X is said to be
non-decreasing if x ⪯ y implies Tx ⪯ Ty for all x, y ∈ X.

In this section, we will show that many fixed point results in partially ordered b−metric
spaces can be deduced easily from our obtained results.
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Theorem 4.1 Let (X, d, s,⪯) be a complete ordered b-metric space and T be a self-
mapping on X. Suppose that the following assertions hold.

(i) there exists x0 ∈ X such that x0 ⪯ Tx0 and λ(x0) ⩽ 1,
(ii) T is continuous and semi λ-subadmissible mapping,
(iii) T is an increasing mapping,
(v) for all x, y ∈ X with x ⪯ y we have,

ψ(sd(Tx, Ty)) ⩽ λ(x)λ(y)
[
ψ(M(x, y))−φ(M(x, y))

]
+θ
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
where, ψ,φ ∈ Ψ, θ ∈ Θ and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
.

Then T has a fixed point.

Proof. Define α : X2 → [0,+∞) by

α(x, y) =

{
2, if x ⪯ y
1
2 , otherwise

First, we prove that T is a triangular α-admissible mapping. Let α(x, y) ⩾ 1, then x ⪯ y.
Since T is increasing, then we have Tx ⪯ Ty. That is, α(Tx, Ty) ⩾ 1. Suppose that
α(x, y) ⩾ 1 and α(y, z) ⩾ 1. Then x ⪯ y and y ⪯ z. Hence x ⪯ z i.e., α(x, z) ⩾ 1.
Therefore, T is a triangular α-admissible mapping. Since T is continuous then it is
α-continuous too. From (i) there exists x0 ∈ X such that α(x0, Tx0) ⩾ 1. That is,
α(x0, Tx0) ⩾ 1. Let α(x, y) ⩾ 1, then x ⪯ y. Now, from (v) we have

ψ(sd(Tx, Ty)) ⩽ λ(x)λ(y)
[
ψ(M(x, y))−φ(M(x, y))

]
+θ
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
.

Hence, all conditions of Theorem 2.1 are satisfied and T has a fixed point. ■

If in Theorem 3.3 we take θ(t1, t2, t3, t4) = Lψ(min{t1, t4}) where L ⩾ 0, then we have
the following Corollary.

Corollary 4.2 Let (X, d, s,⪯) be a complete ordered b-metric space and T be a self-
mapping on X. Suppose that the following assertions hold.

(i) there exists x0 ∈ X such that x0 ⪯ Tx0 and λ(x0) ⩽ 1,
(ii) T is continuous and semi λ-subadmissible mapping,
(iii) T is an increasing mapping,
(v) for all x, y ∈ X with x ⪯ y we have,

ψ(sd(Tx, Ty)) ⩽ λ(x)λ(y)
[
ψ(M(x, y))− φ(M(x, y))

]
+ Lψ(min{d(x, Tx), d(y, Tx)})

where, ψ,φ ∈ Ψ, L ⩾ 0 and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
.
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Then T has a fixed point.

If in Corollary 3.3 we take λ(x) = 1 for all x ∈ X, then we have the following Corollary.

Corollary 4.3 [27, Theorem 3] Let (X, d, s,⪯) be a complete ordered b-metric space
and T be a self-mapping on X. Suppose that the following assertions hold.

(i) there exists x0 ∈ X such that x0 ⪯ Tx0,
(ii) T is continuous,
(iii) T is an increasing mapping,
(v) for all x, y ∈ X with x ⪯ y we have,

ψ(sd(Tx, Ty)) ⩽ ψ(M(x, y))− φ(M(x, y)) + +Lψ(min{d(x, Tx), d(y, Tx)})

where, ψ,φ ∈ Ψ, L ⩾ 0 and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
.

Then T has a fixed point.

Theorem 4.4 Let (X, d, s,⪯) be a complete partially ordered b-metric space and let T
be a self-mapping on X. Suppose that the following assertions hold.

(i) there exists x0 ∈ X such that x0 ⪯ Tx0 and λ(x0) ⩽ 1,
(ii) T is a semi λ-subadmissible mapping,
(iii) T is an increasing mapping,
(iv) for all x, y ∈ X with x ⪯ y we have,

ψ(sd(Tx, Ty)) ⩽ λ(x)λ(y)
[
ψ(M(x, y))−φ(M(x, y))

]
+θ
(
d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
(30)

where, (ψ,φ ∈ Ψ), θ ∈ Θ and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
.

(v) if {xn} be an increasing sequence in X such that λ(xn) ⩽ 1 for all n ∈ N ∪ {0} and
xn → x as n→ ∞ then xn ⪯ x for all n ∈ N ∪ {0} and λ(x) ⩽ 1.

Then T has a fixed point.

Proof. Define the mapping α : X2 → [0,+∞) as in the proof of Theorem 3.3. Analogous
to the proof of Theorem 3.3 we can prove all the conditions (i)-(iii) of Theorem 2.2 are
satisfied. Let {xn} be a sequence in X such that α(xn, xn+1) ⩾ 1 and λ(xn) ⩽ 1 for all
n ∈ N ∪ {0} and xn → x as n→ ∞. Then xn ⪯ xn+1 and λ(xn) ⩽ 1 for all n ∈ N ∪ {0}.
From (v) we get, xn ⪯ x and λ(x) ⩽ 1. That is, α(xn, x) ⩾ 1 for all n ∈ N ∪ {0} and
λ(x) ⩽ 1. Therefore all conditions of Theorem 2.2 holds and T has a fixed point. ■

Corollary 4.5 Let (X, d, s,⪯) be a complete partially ordered b-metric space and T be
a self-mapping on X. Suppose that the following assertions hold.

(i) there exists x0 ∈ X such that, x0 ⪯ Tx0 and λ(x0) ⩽ 1,
(ii) T is a semi λ-subadmissible mapping,
(iii) T is an increasing mapping,
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(iv) for all x, y ∈ X with x ⪯ y we have,

ψ(sd(Tx, Ty)) ⩽ λ(x)λ(y)
[
ψ(M(x, y))− φ(M(x, y))

]
+ Lψ(min{d(x, Tx), d(y, Tx)})

(31)
where, ψ,φ ∈ Ψ, θ ∈ Θ and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
.

(v) if {xn} be an increasing sequence in X such that λ(xn) ⩽ 1 for all n ∈ N ∪ {0} and
xn → x as n→ ∞, then xn ⪯ x for all n ∈ N ∪ {0} and λ(x) ⩽ 1.

Then T has a fixed point.

Corollary 4.6 [27, Theorem 4] Let (X, d, s,⪯) be a complete partially ordered b-metric
space and T be a self-mapping on X. Suppose that the following assertions hold.

(i) there exists x0 ∈ X such that x0 ⪯ Tx0,
(iii) T is an increasing mapping,
(iv) for all x, y ∈ X with x ⪯ y we have,

ψ(sd(Tx, Ty)) ⩽ ψ(M(x, y))− φ(M(x, y)) + Lψ(min{d(x, Tx), d(y, Tx)}) (32)

where, (ψ,φ ∈ Ψ), L ⩾ 0 and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
.

(v) if {xn} be an increasing sequence in X such that xn → x as n → ∞ then xn ⪯ x for
all n ∈ N ∪ {0}.

Then T has a fixed point.

5. Some integral type contractions

Let Φ denotes the set of all functions ϕ : [0,+∞) → [0,+∞) satisfying the following
properties:

• every ϕ ∈ Φ is a Lebesgue integrable function on each compact subset of [0,+∞),

• for any ϕ ∈ Φ and any ϵ > 0,
∫ ϵ
0 ϕ(τ)dτ > 0.

Note that if we take ψ(t) =
∫ t
0 ϕ(τ)dτ where ϕ ∈ Φ then ψ ∈ Ψ.

Also note that if ψ ∈ Ψ and θ ∈ Θ then ψθ ∈ Θ.
If in Theorem 2.1 we take ψ(t) =

∫ t
0 ϕ(τ)dτ , φ(t) = (1− r)

∫ t
0 ϕ(τ)dτ for all t ∈ [0,∞)

where 0 ⩽ r < 1 and replace θ by ψθ then we have the following theorem.

Theorem 5.1 Let (X, d, s) be a complete b-metric space, T be a self-mapping on X and
α : X ×X → [0,∞) and λ : X → [0,+∞) be two functions. Suppose that the following
assertions hold.

(i) there exists x0 ∈ X such that α(x0, Tx0) ⩾ 1 and λ(x0) ⩽ 1,
(ii) T is α-continuous, triangular α-admissible and semi λ-subadmissible mapping,
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(iii) for all x, y ∈ X with α(x, y) ⩾ 1 we have

∫ d(Tx,Ty)

0
ϕ(τ)dτ ⩽ rλ(x)λ(y)

s

∫ M(x,y)

0
ϕ(τ)dτ+

∫ θ

(
d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

)
0

ϕ(τ)dτ

(33)
where, 0 ⩽ r < 1, ϕ ∈ Φ, θ ∈ Θ and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
.

Then T has a fixed point.

Theorem 5.2 Let (X, d, s) be a complete b-metric space, T be a self-mapping on X and
α : X ×X → [0,∞) and λ : X → [0,+∞) be two functions. Suppose that the following
assertions hold.

(i) there exists x0 ∈ X such that, α(x0, Tx0) ⩾ 1 and λ(x0) ⩽ 1,
(ii) T is a triangular α-admissible and semi λ-subadmissible mapping,
(iii) for all x, y ∈ X with α(x, y) ⩾ 1 we have

∫ d(Tx,Ty)

0
ϕ(τ)dτ ⩽ rλ(x)λ(y)

s

∫ M(x,y)

0
ϕ(τ)dτ+

∫ θ

(
d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

)
0

ϕ(τ)dτ

(34)
where, 0 ⩽ r < 1, ϕ ∈ Φ, θ ∈ Θ and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
,

(v) if {xn} be a sequence such that α(xn, xn+1) ⩾ 1, λ(xn) ⩽ 1 for all n ∈ N ∪ {0} and
xn → x as n→ ∞, then α(xn, x) ⩾ 1 for all n ∈ N ∪ {0} and λ(x) ⩽ 1.

Then T has a fixed point.

Theorem 5.3 Let (X, d, s) be a complete b-metric space endowed with a graph G and
T be a self-mapping on X. Suppose that the following assertions hold.

(i) there exists x0 ∈ X such that, (x0, Tx0) ∈ E(G) and λ(x0) ⩽ 1,
(ii) T is G-continuous and semi λ-subadmissible mapping,
(iii) ∀x, y ∈ X[(x, y) ∈ E(G) ⇒ (T (x), T (y)) ∈ E(G)]
(iv) ∀x, y, z ∈ X[(x, y) ∈ E(G) and (y, z) ∈ E(G) ⇒ (x, z) ∈ E(G)]
(v) for all x, y ∈ X with (x, y) ∈ E(G) we have,

∫ d(Tx,Ty)

0
ϕ(τ)dτ ⩽ rλ(x)λ(y)

s

∫ M(x,y)

0
ϕ(τ)dτ+

∫ θ

(
d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

)
0

ϕ(τ)dτ

(35)
where, 0 ⩽ r < 1, ϕ ∈ Φ, θ ∈ Θ and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
.

Then T has a fixed point.
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Theorem 5.4 Let (X, d, s) be a complete b-metric space endowed with a graph G and
T be a self-mapping on X. Suppose that the following assertions hold.

(i) there exists x0 ∈ X such that (x0, Tx0) ∈ E(G) and λ(x0) ⩽ 1,
(ii) T is semi λ-subadmissible mapping,
(iii) ∀x, y ∈ X[(x, y) ∈ E(G) ⇒ (T (x), T (y)) ∈ E(G)]
(iv) ∀x, y, z ∈ X[(x, y) ∈ E(G) and (y, z) ∈ E(G) ⇒ (x, z) ∈ E(G)]
(v) for all x, y ∈ X with (x, y) ∈ E(G) we have,

∫ d(Tx,Ty)

0
ϕ(τ)dτ ⩽ rλ(x)λ(y)

s

∫ M(x,y)

0
ϕ(τ)dτ+

∫ θ

(
d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

)
0

ϕ(τ)dτ

(36)
where, 0 ⩽ r < 1, ϕ ∈ Φ, θ ∈ Θ and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
.

(vi) if {xn} be a sequence in X such that (xn, xn+1) ∈ E(G), λ(xn) ⩽ 1 for all n ∈ N∪{0}
and xn → x as n→ ∞ then (xn, x) ∈ E(G) for all n ∈ N ∪ {0} and λ(x) ⩽ 1.

Then T has a fixed point.

Theorem 5.5 Let (X, d, s,⪯) be a complete ordered b-metric space and T be a self-
mapping on X. Suppose that the following assertions hold.

(i) there exists x0 ∈ X such that x0 ⪯ Tx0 and λ(x0) ⩽ 1,
(ii) T is continuous and semi λ-subadmissible mapping,
(iii) T is an increasing mapping,
(v) for all x, y ∈ X with x ⪯ y we have

∫ d(Tx,Ty)

0
ϕ(τ)dτ ⩽ rλ(x)λ(y)

s

∫ M(x,y)

0
ϕ(τ)dτ+

∫ θ

(
d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

)
0

ϕ(τ)dτ

(37)
where, 0 ⩽ r < 1, ϕ ∈ Φ, θ ∈ Θ and

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
.

Then T has a fixed point.
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