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Weak amenability of (2N)—th dual of a Banach algebra
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Abstract.In this paper by using some conditions, we show that the weak amenability of
(2n)-th dual of a Banach algebra A for some n > 1 implies the weak amenability of A.
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1. Introduction and Preliminaries

Let X be a normed space and X be the topological dual space of X; the value
of f € X' at x € X is denoted by (f,z). We set (X')' = X" and so on, and
we regard X as a subspace of X by natural mapping ¢ : X — X (z — T)
where (Z, f) = (f,z)(f € X'). We denot the n—th dual of X by X . The weak
topology on X is denoted by w = (X, X") and weak*-topology on X is dented
by w* = (X', X).

New let X,Y and Z be normed spaces and let f : X x Y — Z be a continuous
bilinear map. Arens in [1] offers two extensions f*** and f**** of f from X x Y
to Z as following:

O {f*;Z’ xX —Y
(f*(zz),y) =z, f(z,y)) (xeX,yeY,z €Z).

2) {f**:y,,”le_)X,: / S
<f**(y , 2 ),x> = <y (2 ,x)> (xeX,z€Z,y €Y ).

) { X XY — 2"
<f***(a:”,y”),z'> = <a;”,f**(y”,z/)> (z' ceZ, 2" eX" y e Y)
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The mapping f*** is the unique extension of f such that " — f**(z",y") from
X" into Z" is w* — w*—continuous for every y € Y.

Let now f':Y x X — Z be the transpose of f defined by f!(y,z) = f(x,y) for
z € X and y € Y. We can extend f! as above to f*** and then we have the
mapping fH . X" x Y — Z". If f** = ft* then f is called Arens regular.
The mapping 3 — fr** (2", y") from Y into Z” is w* — w*—continuous for

every € X . Arens regularity of f is equivalent to the following
limlim (=, f (@, i) ) = limlim (=, f(zi,9))
i g V)

whenever both limits exist for all bounded nets (z;) and (y;) in X and Y, respec-
tively and for evrey z' € Z'.

Throughout this paper A is a Banach algebra. This algebra is called Arens regqular
if its multiplication as a bilinear map 7 : A x A — A(7w(a,b) = ab) is Arens regular.
We shall frequently use Goldstine’s theorem: for each a” € A", there is a net (a;)
in A such that " = w* — lima@;. Now let ¢ = w* —lima; and b" = w* — liml;;- be

i i J

elements of A”. The first and second Arens products on A" are denoted by symbols
[J and ¢ respectively and defined by

a//Db// _ 7.[_***(0///’ b//) , a///ob// — 7-rt***t(a‘//’ b//)'
It is easy to show that

a'0b" = w* — limw* — lim;b\j , d Ob =w* —limw* — lima/z‘-b\j-
7 J J A
On the other hand we can define above Arens products in stages as following. Let
abe A feA and F,Ge A".

(1) Define f.a in A by (f.a,b) = (f,ab),
and a.f in A" by (a.f,b) = (f,ba).

(2) Define F.f in A" by (F.f,a) = (F, f.a),
and f.F in A" by (f.F,a) = (F,a.f).

(3) Define FOG in A” by (FOG, f) = (F,G.f),
and FOG in A” by (FOG, f) = (G, f.F).

Then (A”,0) and (A", () are Banach algebras, see [1, 5] for further details.
Now let E be a Banach A—bimodule, then E' is a Banach A—bimodule under
actions

(a.f,x) = (f,za), (f.a,z) = (f,az) (a€ Ax€E,feE), (1)
and E" is a Banach A" —bimodule under actions

FA=vw"—limw* —-limagz; , AF=w"—limw" —limz;q (2)
7 j j 7
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where F' = w* — lima; and A = w* —lim &; such that (a;) C A and (z;) C E are
i J
bounded nets.

For a Banach A-bimodule E, the continuous linear map D : A — FE is called
derivation if D(ab) = a.D(b) + D(a).b,(a,b € A). For x € E the derivation
dz + A = E by 0(a) = a.x — z.a is called inner derivation. The Banach alge-
bra A is called amenable if every derivation D : A — E’ is inner, for each Banach
A-bimodule E, [7]. If every derivation D : A — A is inner, A is called weakly
amenable, see also [2, 4] for details.

THEOREM 1.1 Let A be a Banach algebra and E be a Banach A-bimodule and
D : A = E is a continuous derivation, then D" : A” — E" is a continuous
derivation[5, Theorem 2.7.17].

Remark 1 A”-bimodule structures on E” in above theorem are as in formula (2).

In [8] it was shown that if A is complete Arens regular and every derivation
D : A — A’ be weakly compact, then weak amenability of A" for some (n > 1)
implies weak amenability of A. In this paper we always use the first Arens product
O on Banach algebra A®™(n > 1). In section 2 we shall frequently use formulas
(1) and (2) and we investigate following actions

> two A”-module actions on A®) = (A")" and A®) = (A")',
> two A®-module actions on A®) = ((4)")" and A®) = ((4")"Y,
> two A®) —module actions on A = (((4")")")" and on AT = (((A")")"),

and we will extend our results to two different A2 —module actions on A(Z7+1)

by induction. In each case we find conditions to make these two different actions
equal. In a similar work in [6] two different A” —module actions on A®®) = (A")" and
AB) = (A")" have been studied. Finally in section 3 we investigate the innerness
of second, fourth... and (2n)—th dual of a derivation D : A — A'. By using some
conditions we will show that weak amenability of A" for some (n > 1) implies
weak amenability of A.

2. A" _module actions on A(2n+1)

We shall frequentey use formulas (1) and (2) to construct two different
A" _module actions on A" = (((A)")---)" and A+ = ((A")---)")".

Remark 1 There are many other A" —module actions on AZ"*1 that we don’t
need to mention.

I\

First for n= 1 we consider two A”-module actions on A®) = (A")" and
A® = (A" . Let a® = w* —lima,, € A®) and o = w* — lién ag, b’ =w* —limb;
« (2

in which (a,) and (ag), (b;) are bounded nets in A" and A respectively. For left
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A”-module action on A®) = (A")" as second dual of A" we can write

(a".a® b") = lién lim(b", ag.a,) (by formula (2))
= lim lim lim(a,,, b;.as),

and for left A”-module action on A®) = (A")" as dual of A” we can write

(a".a®b") = (a®,b"0a") (by formula (1))
= lim(b Oa ,a,) (4)

= llén hlm hén<aa, bi.ag).

This shows that two left A”-module actions on A®) = (4”)" and A®) = (A")" are
not equal. Similarly for right A”-module action on A®) = (A")" we have

(a®.a",b") = lim lién(b”, a.ap) (by formula (2))

= h{gn hén hzm<aa, ag.b;),

and for right A”-module action coincide on A®) = (A"’

(a®.a",b") = (a®,a"00") (by formula (1))
= lim<a”DbN, CL/a> (6)

= ligén lién lilxrl<aa, ag.b;).

This shows that two right A”-module actions on A®) = (A4")" and A®) = (4")"
are equal.

PROPOSITION 2.1 Let A be a Banach algebra with following conditions

(i) A is Arens regular,
(ii) the map Ax A" — A" ((a,a’) — a.a’) is Arens regular.

Then two A”-module actions on A®) = (A" and A®) = (A")" coincide.

Proof 1t is enaugh to prove that left module actions in (3) and (4) coincide. We
begin with equation (3)
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(a".a®b") = limlim(b", ag.a,)
B«
= lim lién<b”, ag.a,) (by (i)
e}
= hén hgn hgn(cw.aw bi)
= lim lién lim(a,,, b;.ag) (by formula (1))
o K3
= lim lim lim(a,,, b;.as) (by (1))
a 1 f
this proves the equality of (3) and (4). [ |

Now for n = 2 we consider two AY) —module actions on A®) = ((4')")" and

—

A®) = (A" Let a® = w* — limay) € A® and o® = w* — liéngg, b =

w* — limbA'i' in A® where (a(a?’)) and (a,,), (b;) are bounded nets in A®) and A",

respectively. For left A®) —module action on A®) = ((4)")

"

we have

(a™®.a®) pH)y = lién lim (b4, ag.a&3)> (by formula (2))

" " 7
= limlim lim<a5.ag3),bi> @
and for left A®) —module action on A®) = ((4")")" we have
(a®.a®) p®)y = (a®) pHOa®) (by formula (1))
= lim(bW0a®, a3 (8)
= lim lim lién<a§’), b; Dag).
For right A —module action on A®) = ((A")")” we have
(a®.a® b)) = lim lién<b(4), aag).a:b;) (by formula (2))
= lim lién lim(a&‘g).ag, b; ), ©)
and for right A®-module action on A®) = ((4")"
(a®).a® b)) = (o), o DOp®) (by formula (1))
= lim(aW®, o)) (10)

= lim lim lim(a?, ang;/ ).
a B i

We need the equality of two A”-module actions on A®) = (A")" and A®) = (4")"
to prove the equality of above A®W_module actions on A®), so we need the following
lemma whose proof is streightforward.
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LEMMA 2.2 Let A be a Banach algebra with following conditions

(i) A" is Arens regular,
(ii) the map A" x A" —

Then the conditions of Proposition 2.1 hold.

A" ((a",a®) — a".a®)) is Arens regular.

PROPOSITION 2.3 Let A be a Banach algebra with conditions

(i) A" is Arens regular,
(ii) the map A" x A" — A" ((a”,a(g’)) — a”.a(?’)) is Arens regular.

Then two AW -module actions on A®) = ((A)")" and A®) = ((A")")" coincide.

Proof By Lemma 2.2 the conditions of Proposition 2.1 hold, so two A”-module
actions on A®) = (A")" and A®) = (A")" are equal. We begin with equality (7)

(a®.a®) p*D)y = lién li;n<b(4) aﬂ 5.al3))
= lién 1i/gn(b<4) aﬁ 5.a3)) (by (ii) of Lemma 2.2)
= lién lim lizm<a5 a® b))
= licrkn lim lim(a®®), b; Daﬁ> (by Proposition 2.1)
= lién liim li;n< 3 b, Dag% (by (i) of Lemma 2.2)

this proves the equality of (7) and (8). For equality of right-module actions, we
continue equality 9

(@®.a® bWy = limlim lim(a{.aj, b; )

[e% ﬁ 7 @
= lién lién lilm(a((f’), aBDb ) (by Proposition 2.1)
and this proves the equality of (9) and (10). [ |
Now suppose that n = 3, we consider two A®) —module actions on A =

AYYY and AD = ((A))). Let o = w* — lima € AD and
(((4)7)")

—

al® = w* hén a(4) b = w* — limb§4) e A©® where (aﬁf)) and (a (4)),(1)54))

are bounded nets in A® and A®, respectively. For left A®) —module action on
A = (((A)")")" we can write

<a(6)_a(7),b(6)> = hﬂrgnhmhm( (ﬁ) 2 b(4)> (11)

« (2
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and for left A®) —module action on A = (((A")")")" we can write

(a®.a( 50y = lim lim lién<a§’), b(»4)Da(B4)). (12)

« i ?

(A" we can write

For right A(®) —module action on A()

<a(7) (6) b(6)> —hcgnhénhflﬂ g) ) b(4)> (13)

and for right A(®) —module action on A = (((A")")")" we can write

(aD.a(® p©)) = horén hén h{n< al®), o )Db(4)) (14)

We need the equality of two A”-module actions on A®) = ((A4")")" and A®) =
((AY")" to prove the equality of above A(®)-module actions on A7) so we need
the following Lemma that is similar to Lemma 2.2.

LEMMA 2.4 Let A be a Banach algebra with following conditions

(i) AW is Arens regular,
(ii) the map A® x A®) — AG) ((a(4), a®) — a(4).a(5)) is Arens regular.

Then the conditions of Proposition 2.3 hold.
PROPOSITION 2.5 Let A be a Banach algebra with conditions

(i) AW is Arens regular,
(ii) the map AW x A®) — AG) ((a(4), a®) — a(4).a(5)) is Arens regular.

Then two A —module actions on AT = ((A")")") and AT = ((A)")")" co-
incide.

Proof By Lemma 2.4 the conditions of Proposition 2.3 hold, so two A®)-module
actions on A®) = ((A4")")" and A®) = ((A")")" are equal. We begin with equality
(11)

. . 4)
<a(6).a(7)’ b(6)> = hén hén<b( ’a(ﬁ ag{5 >
= limlién<b( ,a(; ald) (by (ii) of Lemma 2.4)
= hén hén 11?1<a(64) a'®, b( )>
= limlim lim(a$), bt 0a) (by Proposition 2.3)
= lim lim lim(a?, 6,54)Da(54)>, (by (i) of Lemma 2.4)

this prove the equality of (11) and (12). For equality of right-module actions, we
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continue equality (13)

(a(M.a® b0 = lim lién lim(a

= lim hén lim(a{?) a?)Db(@) (by Proposition 2.3)

[0}

and this proves the equality of (13) and (14). [ |
Now by induction process we have the following extended result.

PROPOSITION 2.6 Let A be a Banach algebra with following conditions for some
n>1

(i) A%"=2 is Arens regular,
(ii) the map AP"=2) x A@=1 _ AC=1) ((q, f) —s a.f) is Arens regular.

Then two AP™ —module actions on AR+ — ((((A”)”)...)”)’ and ACn+D) —
(A=) coincide.

3. Main results

In this section we consider the transposes D”, D@ ... D" of a continuous der-
vation D : A — A'. We know by Theorem 1.1 that the following maps will be
continuous derivations

"

D" A" — A® = (A)"
D@ . A@) — (A" — AB) — =AY
DO : A0 = ((A")")" — AD = (((A)")")"

D+ A = (")) ) — ACTD = ((4))) )"

PROPOSITION 3.1 Let A be a Banach algebra with hypothesis of Proposition 2.1.
If the second transpose D" of continuous derivation D : A — A’ is inner, then D
1S 1nner.

Proof Let D : A — A be a dervation, then by Theorem 1.1 and Proposition 2.1,
D" : A" — AB) = (A)" = (A") is also a derivation. Since D" is inner, there
exists a” € A” such that D" (a") = a”.a® —a®.a", (a® € A®). Let ' = 1*(a®),
where ¢+ : A — A" is the natural map. Then for each a,b € A we can write



M. Ettefagh and S. Houdfar/ JLTA, 01 - 02 (2018) 55-65. 63

"

(D(),h) = (D' @5
= (@.a® —a® a,b)
3

’ ’ . .
hence D(a) = a.a —a .a and so D is inner. [ |

PROPOSITION 3.2 Let A be a Banach algebra with hypothesis of Proposition 2.3.
If the fourth transpose D™ of continuous derivation D : A — A’ is inner, then D
18 1nner.

Proof Let D : A — A’ be a dervation, then by Theorem 1.1 and Proposition 2.3,
DW : ((A")") — ((A))") = (((A")")") is also a derivation. Since D™ is inner,
there exists a(¥ € A® such that D@ (a®) = a®.a®) —a®) 4@ (a®) e AB)). Let
a =10 L***(a(5)), where ¢ : A — A" is the natural map. Then for each a,b € A
we can write

(D(a),B) = (D" (@),b)
—(D'@),)
= (DW(@),b)
= @.a(‘r’) - a(5).5,/5>
= <a(5),3D§ - EDA> ( by Proposition 2.3 )
= (a®® b0a — alb)
= (a®,,**(bOa — aldb))
= (1**(a®)), b.a — a.b)
= (" (a®), 1(b.a — a.b))
= (1* 0 1**(a®), b.a — a.b)
= (a',b.a — a.b)
= (a.a' —a.a,b),
hence D(a) = a.a’' — a'.a and so D is inner. [ |

PROPOSITION 3.3 Let A be a Banach algebra with hypothesis of Proposition 2.5.
If the sizth transpose D) of continuous derivation D : A — A’ is inner, then D
18 inner.

Proof Let D : A — A’ be a dervation, then by Theorem 1.1 and Proposition 2.3,
DO = A6 = (A" — ((A))) = (AN = AT is also a derivation.
Since D) is inner, there exists a(® € A®) such that D©)(a®) = a(®.a() —
a.a© (o e AD). Let o' = 1* o ** o ***(a(7)), where 1 : A — A" is the
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natural map. Then for each a,b € A we can write

(D(a),b) = (D" (@),b)

~

S
5
=)

|

)
S
W SN

SO
=

2
M)

S
3

“0‘
]
)))
|
)
[l

=

( by Proposition 2.5 )

»

= (a(™,b0a — alb)

(
(
(
(
(
(
= (a, > (ba — adb))
(
(
{
(
(
(

~

o~ ~

L*****(a(7)), L**(bma — a0 )>
U o 7 (o) ba — a.b)
0% o % (g(1) 4 (b.a — a.b))
o M o L*****(CL(7)), b.a — ab>

! ’ . .
hence D(a) = a.a — a .a and so D is inner. [ |

Using the similar reasoning as in the proof of previous lemmas we have the following
proposition.

PROPOSITION 3.4 Let A be a Banach algebra with hypothesis of Proposition 2.6.
If the (2n)—th transpose D) of continuous derivation D : A — A’ is inner, then
D 1is inner.

PROPOSITION 3.5 Let A be a Banach algebra with hypothesis of Proposition 2.1.
If A" is weakly amenable, then A is weakly amenable.

Proof Suppose that D : A — A be a continuous derivation. Then
D" A" A®B) = (A")" is a continuous derivation by Theorem 1.1. But two
A" —module actions on A®) = (4)" and A®) = (A")" are equal by Proposition
2.1, hence D" : A" AB) = (A") is also a continuous derivation in which
A®B) = (A")" is considered as dual of A”. Since A" is weakly amenable, then D" is
inner. Therefore D is inner by Proposition 3.1. This completes the proof. [ |

Using the same reasoning as in the proofs of previous propositions we have next
results, so we omit the details in proofs.

PROPOSITION 3.6 Let A be a Banach algebra with hypothesis of Proposition 2.3.
If AW s weakly amenable, then A is weakly amenable.

Proof This is a consequence of Proposition 3.2. |
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PROPOSITION 3.7 Let A be a Banach algebra with hypothesis of Proposition 2.5.
If A©) is weakly amenable, then A is weakly amenable.

Proof This is a consequence of Proposition 3.3. |
Finally by Propositions 2.6 and 3.4 we have the following extended result.

PROPOSITION 3.8 Let A be a Banach algebra with hypothesis of Proposition 2.6.
If AP s weakly amenable, then A is weakly amenable.

Acknowledgements: The authors would like to thank the referee for carefully
reading and giving some fruitful suggestions.
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