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Cubic spline Numerov type approach for solution
of Helmholtz equation
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Abstract. We have developed a three level implicit method for solution of the Helmholtz
equation. Using the cubic spline in space and finite difference in time directions. The approach
has been modified to drive Numerov type finite difference method. The method yield the tri-
diagonal linear system of algebraic equations which can be solved by using a tri-diagonal
solver. Stability and error estimation of the presented method are analyzed.The obtained
results satisfied the ability and efficiency of the method.
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1. Introduction

The Helmholtz equation arises in a variety of engineering and scientific applications
such as acoustic radiation, scattering, electromagnetic field, wave propagation and heat
conduction [1,3,8,20]. Consider the linear elliptic differential operator Lτ = ∆−t2, where
∆ is the Laplacian operator and τ ∈ C is a given parameter. Let Ω be a bounded
connected domain in the real d-dimensional Euclidean spaceRd, with sufficiently regular
boundary∂Ω. The Helmholtz equation is given by

Lτu(x) = f(x) x ∈ Ω

βu(x) = g(x) x ∈ ∂Ω,
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whereβ defines a boundary linear operator,f and g are known functions on Ω and ∂Ω,
respectively. The boundary conditions could be of Dirichlet-type or Neumann-type. Fi-
nite element method (FEM) used for solving Helmholtz equation [9,10,11]. This method
has high-order accurate and requires a generation of a mesh. Both coding and mesh gen-
eration for FEM become increasingly difficult when the dimension of the space increases.
In the last decade, meshless methods using radial basis functions have been extensively
developed for numerical approximation of partial differential equations. Meshless meth-
ods based on thin plate splines radial basis functions is proposed for solving numerically
the modified Helmholtz equation.The collocation method based on RBFs have been used
in [4,5,13,14,15]. We assume that the boundary Ω is sufficiently smooth to ensure the
existence of a solution to the boundary problem(1). Paige and Saunders [18] used least-
square (LSQR) method. Apart from LSQR on wave equations using splines [6,7] and
cubic spline, Rashidinia et al. [19]. Mohanty et al. [17] have studied the cubic spline and
compact finite difference method for the numerical solution of hyperbolic problems. In
this paper we consider the one-space dimensional second-order quasi-linear hyperbolic
equation:

∂2u

∂x2
+
∂2u

∂t2
+ ρu = 0 0 < x < 1, t > 0 (1)

with the following initial conditions:

u(x, 0) = ϕ(x), ut(0, t) = ψ(t), 0 < x < 1 (2)

And the boundary equations:

u(0, t) = p0(t), u(1, t) = p1(t), t > 0 (3)

2. Formulation and numerical technique

In this section formulations of this method are described. It is supposed that, the
domain of equation (1) [0, 1] × [0, t] is divided to an (n + 1) × m such that: h = 1

n+1

in x-direction and k = t
m in t-direction,where n and m are positive integers. The mesh

ratio parameter is given by λ = k
h . and the notation ujl be a grid function for discrete

approximation at the grid point (xl, tj) = (lh, jk).
In the mesh point (xl, tj) we can write the helmholtz differential equation as

ujxxl + ujttl + ρujl = 0 (4)
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A polynomial spline function sj(x) of class C
2[x0, xn] which interpolate u(x, t) in mesh

point x0...xn in each segment [xl, xl+1] has the following form [2]

sj(x) =
(xl+1 − x)3M j

l + (x− xl)
3M j

l+1

6h
+

(xl+1 − x)ujl + (x− xl)u
j
l+1

h
(5)

− h

6
[(xl+1 − x)M j

l + (x− xl)M
j
l+1]

xl ≤ x ≤ xl+1 j = 1(1)m l = 1(1)n

sj(x) =
(xl − x)3M j

l−1 + (x− xl−1)
3M j

l

6h
+

(xl − x)ujl−1 + (x− xl−1)u
j
l

h
(6)

− h

6
[(xl − x)M j

l−1 + (x− xl−1)M
j
l ]

xl−1 ≤ x ≤ xl j = 1(1)m l = 1(1)n

s′j(x) =
−(xl − x)2

2h
M j

l−1 +
(x− xl−1)

2h
M j

l +
ujl − ujl−1

h
− h

6
[M j

l −M j
l−1] (7)

s′′j (x) =
(xl − x)

h
Ml−1 +

(x− xl−1)

h
M j

l , (8)

where

M j
l = s′′j (xl) = ujxxl = −(ujttl + ρujl ) (9)

Using continuity of first derivative at (xl, tj) , that is s′j(x
+
l ) = s′j(x

−
l ) the following

relation of spline is obtained for l = 1, 2, ..., n.[2]

ujl+1 − 2ujl + ujl−1 =
h2

6
[M j

l+1 + 2M j
l +M j

l−1], (10)

Now by using the relations (9) and (10) we have

ujl+1 − 2ujl + ujl−1 = −h
2

6
[ujttl+1 + ρujl+1 + 2ujttl + 2ρujl + ujttl−1 + ρujl−1] (11)

We have following approximations for partial derivative

ujttl ≃
uj+1
l − 2ujl + uj−1

l

k2
, (12)
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ujttl+1 ≃
uj+1
l+1 − 2ujl+1 + uj−1

l+1

k2
, (13)

ujttl−1 ≃
uj+1
l−1 − 2ujl−1 + uj−1

l−1

k2
. (14)

By substitution (12)-(14) in equation (11) we obtain the cubic spline method.

uj+1
l+1 + 4uj+1

l + uj+1
l−1 = −(uj−1

l+1 + 4uj−1
l + uj−1

l−1 ) + a0(u
j
l+1 + ujl−1) + a1u

j
l (15)

λ =
k

h

a0 = 2− 6λ2 − k2ρ

a1 = 8− 4k2ρ+ 12λ2

The cubic spline local truncation error is

T̄ j
l = ujl+1 − 2ujl + ujl−1 +

h2

6
[ujttl+1 + ρujl+1 + 2ujttl

+2ρujl + ujttl−1 + ρujl−1] +O(k4 + h2k2) (16)

Following by using the cubic spline finite difference method of Numerov type [17],we
can obtain the modified method as follow

6λ2(ujl+1 − 2ujl + ujl−1) = −k
2

2
(ūjttl+1

+ ūjttl−1
+ 10ūjttl) (17)

−k
2

2
ρ(ūjl+1 + ūjl−1 + 10ūjl ) + T̄ j

l l = 1(1)n,

where

ūjttl =
uj+1
l − 2ujl + uj−1

l

k2
+O(k2)

ūjttl+1 =
uj+1
l+1 − 2ujl+1 + uj−1

l+1

k2
+O(k2 + k2h2)

ūjttl−1 =
uj+1
l−1 − 2ujl−1 + uj−1

l−1

k2
O(k2 − k2h2).

The local truncation error of the method (17)

T̄ j
l = 6λ2(ujl+1 − 2ujl + ul−1) +

k2

2
(ujttl+1

+ ujttl−1
+ 10ujttl)

+
k2

2
ρ(ujl+1 + ujl−1 + 10ujl ) +O(k4 + k2h4)

By ignoring the truncation error in (17) and simplifying it,we have

uj+1
l+1 + uj+1

l−1 + 10uj+1
l = a1(u

j
l+1 + ujl−1) + a2u

j
l − (uj−1

l+1 + uj−1
l−1 + 10uj−1

l ), (18)
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l = 1(1)n j = 1(1)m− 1,

Where

γ1 =
−1

12λ2
, γ2 =

−h2ρ
12

, a1 =
1

γ1
+ 2− γ2

γ1
, a2 =

−2

γ1
+ 20− 10

γ2
γ1

The present method is an implicit three level scheme.By using boundary condition in
(18) yield the three diagonal linear system.
To start any computation,it is necessary to know that the solution of u, at first time level
is calculated by

u1l = u0l + ku0tl +
k2

2
u0ttl +O(k3) (19)

From equation(1) we have:

(utt)
0
l = −((uxx)

0
l + ρu0l ) (20)

Thus using the initial conditions (2) we can obtain:

u0l = ϕ(lh) (21)

(ut)
0
l = ψ(lh) (22)

By substitute (20)-(22) in (19) we can compute the value of u at first level

u1l = ϕ(lh) + kψ(lh)− k2

2
(ϕxx(lh) + ρϕ(lh)) +O(k3) (23)

3. Stability of the method

For stability of the method (18), we follow the technique used by [16].

let εjl = U j
l −ujl be the discretization error( in absent of round-off error) at each interval

grid point (xl, tj).
Now by neglecting truncation error we obtain an error equation

εj+1
l+1 + εj+1

l−1 + 10εj+1
l = a1(ε

j
l+1 + εjl−1) + a2ε

j
l − (εj−1

l+1 + εj−1
l+1 + εj−1

l+1 ) (24)

To establish stability for the difference scheme(18),we substitute

εjl = Aξjeiβlh

into the equation (24) ,where A is a non-zero parameter to be determined,ξ is in general
complex,β is an arbitrary real number and i =

√
−1.We obtain the characteristic equation

ξ2(eiβh + e−iβh + 10)− a1ξ(e
iβh + e−iβh)− a2ξ + (eiβh + e−iβh + 10) = 0, (25)
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Therefore

ξ2(−4 sin2
βh

2
+ 12) + ξ(4a1 sin

2 βh

2
− 12a1 − a2) + (−4 sin2

βh

2
+ 12) = 0, (26)

An alternative to this procedure consists of applying transformation to the characteristic
equation (26) which maps the interior of the unit circle onto the half-plane .Then using
the Routh-Hurwitz criterion [12] which gives the necessary and sufficient conditions for
the characteristic equation to have negative real part.
The transformation is

ξ =
1 + z

1− z
,

so equation (26) is translated to the following equation

(−4 sin2
βh

2
+ 24− 4a1 sin

2 βh

2
+ 12a1 + a2 − 4 sin2

βh

2
)z2

−8 sin2
βh

2
+ 24 + 4a1 sin

2 βh

2
− 12a1 − a2 = 0,

For stability by Routh-Hurwitz criterion it is required that

−8 sin2
βh

2
+ 24− 4a1 sin

2 βh

2
+ 12a1 + a2 > 0 (27)

−8 sin2
βh

2
+ 24 + 4a1 sin

2 βh

2
− 12a1 − a2 > 0 (28)

By (27) and(28) we obtain that

k2 <
10

36
h2 + 9ρ

(29)

Or the mesh ratio satisfied in

λ2 <
10

36 + 9ρh2
(30)

Thus the presented method is conditionally stable.

4. Numerical illustrations

To illustrate accuracy and ability of the present method by applying (18) and (15) on
Helmholtz equation(1) subjected to the following initial and boundary conditions
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u(x, 0) = C(A cos(xµ1) +B sin(xµ2)),

ut(0, t) = D(A cos(xµ1) +B sin(xµ1)µ2 0 < x < 1

u(0, t) = A(C cos(tµ2) +D sin(tµ2)),

u(1, t) = (A cos(µ1) +B sin(µ1))(C cos(tµ2) +D sin(tµ2)), t > 0

Whose exact solution are known to us.

u(x, t) = (A cosµ1x+B sinµ1x)(C cosµ2t+D sinµ2t),

ρ = µ21 + µ22.

WhereA,B,C andD are constant.
With various values of h = 0.1 and k = 0.01 .The maximum absolute error in the

solution are tabulated in tables 1-3. We compare the modified method(18) by cubic
spline method in (16) we obtain

The maximum norm error between the exact solution and approximation solution
u(xl, tj) at the mesh point is computed.

x scheme(18) scheme(15)
0.1 5.91541(−16) 5.89633(−15)
0.3 6.80012(−16) 5.78877(−15)
0.5 7.04298(−16) 4.13211(−15)
0.7 5.77663(−16) 3.53884(−15)
0.9 3.41741(−16) 3.48853(−15)

Table 1. Maximum absolute error for t = 0.2, h = 0.1, k = 0.01, µ1 = µ2 = 0.01.

x scheme(18) scheme(15)
0.1 3.23237(−12) 8.95593(−10)
0.3 7.16232(−12) 2.09046(−9)
0.5 7.59292(−12) 2.21997(−9)
0.7 5.63978(−12) 1.61717(−9)
0.9 2.15612(−12) 5.96565(−10)

Table 2. Maximum absolute error for t = 0.6, h = 0.1, k = 0.01, µ1 = µ2 = 0.01.

5. conclusion

In this article,we have outlined a new idea for solving Helmholtz equation by using
Numerov type finite difference method based on cubic spline approximation.The method
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x scheme(18) scheme(15)
0.1 4.09352(−8) 4.45937(−4)
0.3 1.0054(−7) 1.13972(−3)
0.5 1.14179(−7) 1.3571(−3)
0.7 8.66733(−8) 1.05986(−3)
0.9 3.21878(−8) 3.96548(−4)

Table 3. Maximum absolute error for t = 0.8, h = 0.1, k = 0.01, µ1 = µ2 = 0.01.

contain 9-grid points of order O(k2+h4).This numerical method is conditionally stable.It
has been found that the present algorithm gives considerable accurate numerical results
and it is more efficient than the cubic spline method.

References

[1] Carlos J. S. Alves, Svilen S. Valtchev,Numerical simulation of acoustic wave scattering using a meshfree plane
waves method,International Workshop on MeshFree Methods( 2003),1-6.

[2] K. Atkinson, W. Han, Theoretical Numerical Analysis: A Functional Analysis Framework, Springer,(2005).
[3] R. J. Astley, P. Gamallo, Special short elements for flow acoustics, Comput. Method Appl. Mech. Engrg. 194

(2005), 341-353.
[4] R. K. Beatson, J. B. Cherrie, C. T. Mouat, Fast fitting of radial basis functions: method based on precondi-

tioned GMRES iteration, Adv. Comput. Math. 11 (1999), 253-270.
[5] R. K. Beatson, W. A. Light, S. Billings, Fast solution of the radial basis function interpolation equations:

domain decomposition methods, SIAM J. Sci. Comput. 5 (2000),1717-1740.
[6] A. I. Bouhamid, A. Le Mhaut, Spline curves and surfaces under tension, (1994),51-58.
[7] A. I. Bouhamid, A. Le Mhaut, Multivariate interpolating (m;s)-spline, Adv. Comput. Math. 11 (1999),287-

314.
[8] G. M. L. Gladwell, N. B. Willms, On the mode shape of the Helmholtz equation, J. Sound Vib. 188(1995),419-

433.
[9] Charles I. Goldstein, A Finite Element Method for Solving Helmholtz,Type Equationsin Waveguides and

Other Unbounded Domains, mathematics of computation,39(160),(1982),309-324.
[10] F. Ihlenburg, I. Babusk. Finite element solution of the Helmholtz equation with high wave number part I:

the hversion of the FEM. Computers Mathematics with Applications, 30(9),(1995),9-37.
[11] F. Ihlenburg, I. Babuska. Finite element solution of the Helmholtz equation with high wave number part II:

the hp version of the FEM. SIAM Journal of Numerical Analysis, 34(1),(1997)315-358.
[12] M. K. Jain, Numerical Solution of Differential Equations, 2nd edn. Wiley, New Delhi (1984).
[13] E. J. Kansa, A scattered data approximation scheme with applications to computational fluid dynamics. I.

Surface approximations and partial derivative estimates, Comput. Math. Appl. 19 (8,9) (1990),127-145.
[14] E. J. Kansa, Multiquadrics a scattered data approximation scheme with applications to computational fluid

dynamics. II. Solutions to parabolic, hyperbolic partial differential equations, Comput. Math. Appl. 19 (8,9)
(1990), 127-145.

[15] Y. C. Hon,C. S. Chen, Numerical comparisons of two meshless methods using radial basis functions engineer-
ing analysis with boundary elements. 26 (2002), 205-225.

[16] R. K. Mohanty, Stability interval for explicit difference schemes for multi-dimensional second order hyperbolic
equations with significant first order space derivative terms, Appl. Math. Comput. 190 (2007),1683-1690.

[17] R. K. Mohanty, Venu Gopal, High accuracy cubic spline finite difference approximation for the solution of
one-space dimensional non-linear wave equations,Applied Mathematics and Computation 218 (2011), 4234-
4244.

[18] C. C. Paige, M. A. Saunders, LSQR: an algorithm for sparse linear equations and sparse least squares, ACM
Trans. Math. Softw. 8 (1982) ,43-71.

[19] J. Rashidinia, R. Jalilian, V. Kazemi, Spline methods for the solutions of hyperbolic equations, Appl. Math.
Comput. 190 (2007), 882-886.

[20] A. S. Wood, G. E. Tupholme, M. I. H. Bhatti, P. J. Heggs, Steady-state heat transfer through extended plane
surfaces, Int. Commun. Heat Mass Transfer 22 (1995), 99-109.


