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Abstract. In this study, a new and efficient approach is presented for numerical solution of
Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain
with degenerate kernel based on operational matrices with respect to generalized Laguerre
polynomials(GLPs). Properties of these polynomials and operational matrices of integration,
differentiation are introduced and are ultilized to reduce the (FIDEs) to the solution of
a system of linear algebraic equations with unknown generalized Laguerre coefficients. In
addition, two examples are given to demonstrate the validity, efficiency and applicability of
the technique.
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1. Introduction

The main object of this paper is to approximate the solution of Fredholm integro-
differential equation of the second kind on unbounded domain of the following form:{

f ′(x)− (ϑ f)(x) = g(x),
f(0) = f0,

(1)
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(ϑ f)(x) := ρ

∫ ∞

0
w(t)k(x, t)f(t)dt, x ∈ R+, (2)

where ρ ∈ R, w(t) = tαe−t(α > −1) and g(x) is continuous function and the kernel
k(x, t) might has singularity in the region D = {(x, t) : 0 ⩽ x, t < ∞}, and f(x) is the
unknown function which to be determined. The considered equation arise in a number
of important problem of elasticity theory, neutron transport, particle scattering and the
theory of mixed-type equations [1–4]. The analytical solutions of some FIDEs cannot be
found, thus numerical methods are required. It’s the reason of great interest for solving
these equations. Moreover many researchers have developed the approximate method to
solve infinite boundary integral equation using Galerkin and Collocation methods with
Laguerre and Hermite polynomials as a bases function [5, 6]. However, method of so-
lution for Eq. (1) is too rear in the literature. In the present work, we are going to
use the operational matrices of generalized Laguerre polynomials to find the approxi-
mate solution of the FIDEs on unbounded domain. Our approach in the current paper
is different. The organization of this paper is as follows: In section 2, we describe the
basic formulation and give some relevant properties of the GPLs which is required for
our subsequent development. Section 3 is devoted to the approximate of the function
g(x) and also the kernel function k(x, t) by using GPLs basis. Also the upper bound of
the approximation error is presented. In Section 4 we obtain the operational matrices
of integration and differentiation by GPLs. In Section 5, the approximate solution of
the Fredholm integral-differential equations on unbounded domain using generalized La-
guerre polynomials basis is presented. In Section 6, we report our numerical finding and
demonstrate the accuracy of the proposed scheme by considering numerical examples.
Finally, we conclude the article in Section 7.

2. The generalized Laguerre polynomials

In this part, for the reader’s convenience, we present some necessary definitions which
are used further in this paper.
Let R+ := Λ = {x : 0 ⩽ x < ∞} = [0,∞) and w(α)(x) = xαe−x be a weight function on
Λ in the usual sense. We define the following:

L2
w(α)(Λ) = {v : v is measurable on Λ and ∥v∥w(α) < ∞}, (3)

equipped with the following inner product and norm:

(u, v)w(α) =

∫
Λ
u(x)v(x)w(α)(x)dx, ∥v∥w(α) = (v, v)

1

2

w(α) . (4)

Next, suppose L
(α)
n (x) be the generalized Laguerre polynomials of degree n, defined by

the following:

L(α)
n (x) =

1

n!
x−αex∂n

x

(
e−xxn+α

)
, n = 0, 1, .... (5)
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L
(α)
n (x)(generalized Laguerre polynomials) are the nth eigenfunction of the Sturm-

Liouville problem:

x−αex
(
xα+1e−x

(
L(α)
n (x)

)′
)′

+ λnL
(α)
n (x) = 0, x ∈ Λ, (6)

with the eigenvalues λn = n[7, 8].
Generalized Laguerre polynomials are orthogonal in L2

w(α)(Λ) Hilbert space with the

weight function w(α)(x) = xαe−x satisfy in the following relation∫ ∞

0
xαe−xL(α)

n (x)L(α)
m (x)dx = γαnδn,m, ∀n,m ⩾ 0, (7)

where δn,m is the Kronecher delta function and γαn = Γ(n+α+1)
Γ(n+1) . The explicit form of these

polynomials is in the form

L(α)
n (x) =

n∑
i=0

Eα
i x

i, (8)

where

Eα
i =

(
n+ α
n− i

)
(−1)i

i!
. (9)

These polynomials are satisfied in the following three terms recurrence formula

L
(α)
0 (x) = 1, L

(α)
1 (x) = 1 + α− x,

L
(α)
n+1(x) =

1

n+ 1

[
(2n+ α+ 1− x)L(α)

n (x)− (n+ α)L
(α)
n−1(x)

]
, n = 1, 2, .... (10)

The case α = 0 leads to the classical Laguerre polynomials, which are used most fre-
quently in practice and will simply be denoted by Ln(x). An important property of the
Laguerre polynomials is the following derivative relation [9]:

(
L(α)
n (x)

)′
=

n−1∑
i=0

L
(α)
i (x). (11)

Further,
(
L
(α)
i (x)

)(k)
are orthogonal with respect to the weight function w(α+k)(x). i.e.

∫ ∞

0
(L

(α)
i )(k)(x)(L

(α)
j )(k)(x)w(α+k)(x)dx = γα+k

n−k δi,j , ∀i, j ⩾ 0, (12)

where γα+k
n−k is defined in (7).
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3. Approximation of functions by using GLPs

A function g(x) ∈ L2
w(α)(Λ) may be expressed in terms of generalized Laguerre polyno-

mials as:

g(x) =

∞∑
i=0

g
(α)
i L

(α)
i (x), (13)

where the generalized Laguerre coefficients g
(α)
i are given by

g
(α)
i =

∫ ∞

0

L
(α)
i (x)(
i+ α
i

) · xαe−x

Γ(α+ 1)
· g(x)dx, i = 0, 1, .... (14)

The series converges in the associated Hilbert space L2
w(α)(Λ), iff

∥g∥2L2 :=

∫ ∞

0

xαe−x

Γ(α+ 1)
|g(x)|2dx =

∞∑
i=0

(
i+ α
i

)
|g(α)i |2 < ∞. (15)

In practice, only the first (n+1) terms of generalized Laguerre polynomials are considered.
Then we have

g(x) ≃
n∑

i=0

g
(α)
i L

(α)
i (x) = GTLx, (16)

where the generalized Laguerre coefficient vector G and the generalized Laguerre vector
Lx are given by as follows:

G = [g
(α)
0 , g

(α)
1 , . . . , g(α)n ]T , and Lx = [L

(α)
0 (x), L

(α)
1 (x), . . . , L(α)

n (x)]T . (17)

Now in the following lemma we present an upper bound to estimate the error.

Theorem 3.1 Suppose that the function g : [0,∞) → R is n + 1 times continuously

differentiable (i.e. g ∈ Cn+1[0,∞)), and Y = Span{L(α)
0 (x), L

(α)
1 (x), . . . , L

(α)
n (x)}. If

GTLx be the best approximation g out of Y then mean error bound is presented as
follows:

∥g −GTLx∥L2

w(α) (Λ)
⩽ N

√
(2n+ α+ 2)!

(n+ 1)!
, (18)

where N = maxx∈Λ |g(n+1)(x)|.

Proof. We know that set {1, x, ..., xn} is a basis for polynomials space of degree n.

Therefore we define y1(x) = g(0) + xg′(0) + x2

2! g
′′(0) + · · · + xn

n! g
(n)(0). From Taylor

expansion we have

|g(x)− y1(x)| ⩽ |g(n+1)(ηx)
xn+1

(n+ 1)!
|, (19)
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where ηx ∈ (0,∞). Since GTLx is the best approximation g out of Y , y1 ∈ Y and using
(19) we have

∥g −GTLx∥2L2

w(α) (Λ)
⩽ ∥g − y1∥2L2

w(α) (Λ)
=

∫ ∞

0
xαe−x|g(x)− y1(x)|2dx

⩽ N2(2n+ α+ 2)!

(n+ 1)!2
. (20)

Then by taking square roots we have the above bound. The previous Lemma shows that
the error vanishes as n → ∞. ■

We can also approximate the function of two variables, k(x, t) ∈ L2
w(α)(Λ

2) as follows:

k(x, t) ≃
n∑

i=0

n∑
j=0

L
(α)
i (x)k

(α)
ij L

(α)
j (t) = LT

xKLt. (21)

Here the entries of matrix K = [k
(α)
ij ](n+1)×(n+1) will be obtained by

k
(α)
ij =

(L
(α)
i (x), (k(x, t), L

(α)
j (t)))

(L
(α)
i (x), L

(α)
i (x))(L

(α)
j (t), L

(α)
j (t))

, for i, j = 0, 1, ..., n. (22)

where (., .) denotes the inner product.

4. The operational matrices

The main objective of this section is to obtain the operational matrices of the integration
and differentiation by GPLs.

Theorem 4.1 Suppose Lx be the generalized Laguerre vector defined in (17) then∫ x

0
Ltdt ≃ PLx, (23)

where P is the (n+ 1)× (n+ 1) operational matrix for integration as follows:

P =



Ω(0, 0, α) Ω(0, 1, α) Ω(0, 2, α) · · · Ω(0, n, α)
Ω(1, 0, α) Ω(1, 1, α) Ω(1, 2, α) · · · Ω(1, n, α)

...
...

...
. . .

...
Ω(i, 0, α) Ω(i, 1, α) Ω(i, 2, α) · · · Ω(i, n, α)

...
...

...
. . .

...
Ω(n, 0, α) Ω(n, 1, α) Ω(n, 2, α) · · · Ω(n, n, α)


, (24)

where

Ω(i, j, α) =

i∑
k=0

j∑
r=0

(−1)k+rj!Γ(i+ α+ 1)Γ(k + α+ r + 2)

(i− k)!(j − r)!(k + 1)!r!Γ(k + α+ 1)Γ(r + α+ 1)
. (25)
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Proof. The analytic form of the generalized Laguerre polynomials L
(α)
i (x) of degree i

on Λ, is given as follows:

L
(α)
i (x) =

i∑
k=0

(−1)k
Γ(i+ α+ 1)

Γ(k + α+ 1)(i− k)!k!
xk, i = 0, 1, ..., (26)

where L
(α)
0 (x) = 1. Using Eq.(26), and since the integration is a linear operation, we get

the following:

∫ x

0
L
(α)
i (t)dt =

i∑
k=0

(−1)k
Γ(i+ α+ 1)

(i− k)!k!Γ(k + α+ 1)

∫ x

0
tkdt

=

i∑
k=0

(−1)k
Γ(i+ α+ 1)

(i− k)!(k + 1)!Γ(k + α+ 1)
xk+1, i = 0, ..., n. (27)

Now, by approximating xk+1 by the n + 1 terms of the generalized Laguerre series, we
have the following:

xk+1 =

n∑
j=0

bjL
(α)
j (x), (28)

where bj is given from Eq. (14) with g(x) = xk+1, that is,

bj =

j∑
r=0

(−1)rj!Γ(k + α+ r + 2)

(j − r)!r!Γ(r + α+ 1)
, j = 0, 1, ..., n. (29)

In virtue of Eqs. (27) and (28), we get the following:∫ x

0
L
(α)
i (t)dt =

n∑
j=0

Ω(i, j, α)L
(α)
j (t), i = 0, 1, ..., n, (30)

where

Ω(i, j, α) =

i∑
k=0

j∑
r=0

(−1)k+rj!Γ(i+ α+ 1)Γ(k + α+ r + 2)

(i− k)!(j − r)!(k + 1)!r!Γ(k + α+ 1)Γ(r + α+ 1)
. (31)

Accordingly, Eq. (30) can be written in a vector form as follows:∫ x

0
L
(α)
i (t)dt ≃ [Ω(i, 0, α),Ω(i, 1, α), ...,Ω(i, n, α)]Lx, i = 0, 1, ..., n. (32)

Eq. (32) leads to the desired result. ■

Theorem 4.2 Let Lx is the generalized Laguerre vector defined in (17) then

d

dx
Lx ≃ DLx, (33)
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where D is the (n+ 1)× (n+ 1) operational matrix for differentiation as follows:

D =



D(0, 0, α) D(0, 1, α) D(0, 2, α) · · · D(0, n, α)
D(1, 0, α) D(1, 1, α) D(1, 2, α) · · · D(1, n, α)

...
...

...
. . .

...
D(i, 0, α) D(i, 1, α) D(i, 2, α) · · · D(i, n, α)

...
...

...
. . .

...
D(n, 0, α) D(n, 1, α) D(n, 2, α) · · · D(n, n, α)


, (34)

where

D(i, j, α) =

i∑
k=0

j∑
r=0

(−1)k+rj!Γ(i+ α+ 1)Γ(k + α+ r)

(i− k)!(j − r)!(k − 1)!r!Γ(k + α+ 1)Γ(r + α+ 1)
. (35)

Proof. Applying the same procedure as in the previous theorem we arrive to (35). ■

5. Solution of the Fredholm integral-differential equations on
unbounded domain

In this section, we consider (FIDE) of the second kind in (1) and approximate to solu-
tion by means of finite generalized Laguerre series defined in (16). The aim is to find
generalized Laguerre coefficients, we approximate functions g(x), k(x, t) and f ′(x) with
respect to (GPLs) by the way mentioned in before sections as follows:

g(x) ≃ GTLx, f ′(x) ≃ F ′TLx, f(0) ≃ F T
0 Lx, k(x, t) ≃ LT

xKLt, (36)

where Lx is defined in (17), the vectors GT , F ′T , and matrix K are generalized Laguerre
coefficients of g(x), f ′(x), and k(x, t), respectively. Then

f(x) =

∫ x

0
f ′(t)dt+ f(0) ≃

∫ x

0
F ′TLtdt+ F T

0 Lx

≃ F ′TPLx + F T
0 Lx = (F ′TP + F T

0 )Lx, (37)

where P is a (n+1)× (n+1) matrix given in (23). With substituting the approximations
(36) and (37) into equation (1), we have:

LT
xF

′ = LT
xG+ ρ

∫ ∞

0
tαe−tLT

xKLtL
T
t (P

TF ′ + F0)dt

= LT
xG+ ρLT

xK

∫ ∞

0
tαe−tLtL

T
t dt(P

TF ′ + F0)

= LT
xG+ ρLT

xKQ(P TF ′ + F0), (38)

then we have the following linear system:

(I − ρKQP T )F ′ = G+ ρKQF0, (39)
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where

Q =

∫ ∞

0
tαe−tLtL

T
t dt = [q

(α)
ij ], i, j = 0, 1, ..., n, (40)

and I is the unit matrix, and Q is a (n+ 1)× (n+ 1) matrix with elements

q
(α)
ij =

∫ ∞

0
tαe−tL

(α)
i (t)L

(α)
j (t)dt, i, j = 0, 1, ..., n. (41)

E.q (39) is a linear system of algebraic equations that can be easily solved by direct or
iterative methods. In equation (39), if D(ρ, α) = |I − ρKQP T | ̸= 0 we get

F ′ = (I − ρKQP T )−1(G+ ρKQF0), ρ ̸= 0. (42)

We can find the vector F ′, so

F T = F ′TP + F T
0 =⇒ f(x) ≃ F TLx (43)

Remark 1 D(ρ, α) is a polynomial in ρ of degree at most n+1, D(ρ, α) is not identically
zero, since when ρ=0, D(ρ, α) = 1.

6. Numerical Examples

To demonstrate the effectiveness of the proposed method in the present paper, two test
examples are carried out in this section. For each example we find the approximate so-
lutions using different degree of generalized Laguerre polynomials. The results obtained
by the present methods reveal that the present method is very effective and convenient
for equation (1) on the half line. In all examples the package of Matlab (2013) has been
used to solve the test problems considered in this paper.

Example 6.1 For the first example, consider the following of Fredholm integral-
differential equation on unbounded domain (constructed):

f ′(x) = −247131410303000045

36028797018963968
x2 − 38903199231847830919

144115188075855872

+

∫ ∞

0
t

1

2 e−t(x2 + t2)f(t)dt, f(0) = 1. (44)

Exact solution of this problem is f(x) = x3−2x+1. If we apply the technique described
in the section 5, with α = 1

2 and n = 3, then the approximate solution can be written as
follows:

f(x) ≃
3∑

i=0

f
(α)
i L

(α)
i (x) = F TLx, (45)

where

F = [f
(α)
0 , f

(α)
1 , f

(α)
2 , f

(α)
3 ]T . (46)
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Hence, from Eqs. (16), (21), (23), and (40), we find the matrices

G =


−125363/424
17011/496
−6434/469

0

 , K =


15/2 −5 2 0
−5 0 0 0
2 0 0 0
0 0 0 0

 , P =


3/2 −1 0 0
3/8 1 −1 0
5/16 0 1 −1

35/128 0 0 1



, Q =


148/167 0 0 0

0 222/167 0 0
0 0 555/334 0
0 0 0 2053/1059

 .

Next, we substitute these matrices into equation (42) and then simplify to obtain


f
(α)′

0

f
(α)′

1

f
(α)′

2

f
(α)′

3

 =


−119/5475 −19/7262 −574/2251 −865/5409
161/2349 347/1578 93/632 −247/3501
−181/6602 552/1769 1487/1580 193/6839

0 0 0 1

 ·


−13873/48
4211/141
−6427/538

0

 (47)

By solving the linear system (Equation (47)), we have the following:

f
(α)′

0 =
37

4
, f

(α)′

1 = −15, f
(α)′

2 = 6, f
(α)′

3 = 0. (48)

By substituting the obtained coefficients in (43) the solution of (44) becomes

f(x) ≃ 89

8
L
(α)
0 (x)− 97

4
L
(α)
1 (x) + 21L

(α)
2 (x)− 6L

(α)
3 (x), (49)

or briefly

f(x) ≃ x3 − 2x+ 1, (50)

which is the exact solution. Also, if we choose n ⩾ 4, we get the same approximate
solution as obtained in equation (50). Numerical results will not be presented since the
exact solution is obtained.

Example 6.2 As the second example, consider the following of Fredholm integral-
differential equation on a semi infinite interval (constructed):

f ′(x) = e−x − 7

4

√
x+

∫ ∞

0
t

1

2 e−t
√
xtf(t)dt, f(0) = 1. (51)

With the exact solution f(x) = 2 − e−x. We apply the generalized Laguerre se-
ries approach and solve Eq. (51). Table 1 shows the absolute values of error |e| =
|fexact.(x)− fapp.(x)| for n = 10, and n = 12 using the present method in equally divided
interval [0, 1].
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Absolute error for Example 6.2
i xi n = 10 n = 12

0 0.0 1.3000e− 003 3.6116e− 004
1 0.1 4.4620e− 004 9.3426e− 005
2 0.2 7.1845e− 005 4.5500e− 005
3 0.3 3.2705e− 004 9.9666e− 005
4 0.4 4.0407e− 004 1.0182e− 004
5 0.5 3.6812e− 004 7.5666e− 005
6 0.6 2.6834e− 004 3.7765e− 005
7 0.7 1.4076e− 004 8.8208e− 007
8 0.8 1.0787e− 005 3.3527e− 005
9 0.9 1.0468e− 004 5.6602e− 005
10 1.0 1.9540e− 004 6.8843e− 005

7. Conclusion

Finding analytical-numerical solutions for Fredholm integral-differential equations on
unbounded domain of the second kind are usually difficult, and therefore approximating
these solutions is very important. In this article, we develop an efficient and powerful
method for solving Fredholm integral-differential equations of the second kind along with
initial condition on a semi-infinite domain by using of generalized Laguerre polynomials.
By some useful properties of these polynomials such as, operational matrix, orthogonal
basis, a (FIDE) can be transformed to a linear system of algebraic equations wherein
the matrix of unknown coefficients is sparse and can be easily invertible. Therefore, the
reduction of the volume of calculations and runtime of the method can be observed. The
illustrations show that the proposed technique produces satisfactory results and yields
the desired accuracy only in a few terms with high accuracy.
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