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The solutions to some operator equations in Hilbert C*-module
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Abstract. In this paper, we state some results on product of operators with closed ranges
and we solve the operator equation TXS* — SX*T* = A in the general setting of the
adjointable operators between Hilbert C*-modules, when T'S = 1. Furthermore, by using
some block operator matrix techniques, we find explicit solution of the operator equation
TXS" —SX*T* = A.
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1. Introduction and preliminaries

The equation TXS* — SX*T* = A was studied by Yuan [13] for finite matrices and
Xu et al. [12] generalized the results to Hilbert C*-modules, under the condition that
ran(S) is contained in ran(T). When T equals an identity matrix or identity operator, this
equation reduces to X S* — SX* = A, which was studied by Braden [2] for finite matrices,
and Djordjevic [3] for the Hilbert space operators. In this paper, we state some results
of product of operators with closed ranges, therefore we solve the operator equation
TXS*—SX*T* = A, when T'S = 1. Furthermore, by using some block operator matrix
techniques, we find explicit solution of the operator equation T X .S* — SX*T™* = A in the
general setting of the adjointable operators between Hilbert C*-modules.

Hilbert C*-modules are objects like Hilbert spaces, except that the inner product take
its values in a C'*-algebra, instead of being complex-valued. Throughout the paper A is a
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C*-algebra (not necessarily unital). A (right) pre-Hilbert module over a C*-algebra A is a
complex linear space X', which is an algebraic right .A-module and A(za) = (Ax)a = z(\a)
equipped with an A-valued inner product (.,.) : X x X — A satisfying,

(i) (z,z) >0, and (z,z) =0 iff x = 0,
(i) (z,y +Az) = (z,9) + Mz, 2),
(iii) (z,ya) = (z,y)a,
(iv) (y,z) = (z, )"
for each x,y,2 € X, A € C, a € A. A pre-Hilbert A-module X is called a Hilbert .A-

module if it is complete with respect to the norm ||z|| = ||(z, x)|| 2. Left Hilbert A-modules
are defined in a similar way. For example every C*-algebra A is a Hilbert .A-module with
respect to inner product (x,y) = z*y, and every inner product space is a left Hilbert
C-module.

Suppose that X and ) are Hilbert .A-modules. Then, £(X,)) is the set of all maps
T : X — Y for which there is a map T* : Y — X, the so-called adjoint of T such that
(Tz,y) = (x,T"y) foreach x € X, y € V. It is known that any element 7" of £(X', )) must
be a bounded linear operator, which is also A-linear in the sense that T'(za) = (T'x)a for
x € X and a € A [7, Page 8]. We use the notations £(X') in place of L(X, X'), and ker(-)
and ran(-) for the kernel and the range of operators, respectively. The identity operator
on X is denoted by 1y or 1 if there is no ambiguity.

Suppose that X' is a Hilbert A-module and ) is a closed submodule of X. We say
that ) is orthogonally complemented if X = Y @ Y+, where Y+ := {y € X : (2,9) =
0 for all z € Y} denotes the orthogonal complement of ) in X'. The reader is referred
to [5-7] and the references cited therein for more details.

Throughout this paper X and ) are Hilbert A-modules. Recall that a closed submodule
in a Hilbert module is not necessarily orthogonally complemented, however Lance proved
that certain submodules are orthogonally complemented as follows.

Let T € L£(X,)). A bounded adjointable operator S € L(Y,X) is called an inner
inverse of T if TST = T. If T € L£(X,)) has an inner inverse S, then the bounded
adjointable operator 7> = ST'S in L£(), X) satisfies

TT*T =T, T*TT* =T*. (1)

The bounded adjointable operator T which satisfies (1) is called generalized inverse of
T. It is known that a bounded adjointable operator T" has a generalized inverse if and
only if ran(T) is closed, see e.g. [1].

Theorem 1.1 [7, Theorem 3.2] Suppose that 7' € £(X,)) has closed range. Then

e ker(T) is orthogonally complemented in X', with complement ran(T*).
e ran(T) is orthogonally complemented in ), with complement ker(7).
e The map 7% € L(Y, X) has closed range.

Definition 1.2 Let T' € £(X,)). The Moore-Penrose inverse T of T (if it exists) is an
element in L(Y,X) which satisfies:

() TT'T =T,

(i) TtT Tt =TT,

(iii) (TTH* =TTT,

(iv) (TTT)* = T'T.

Motivated by these conditions T is unique and 71T and T T are orthogonal pro-
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jections, in the sense that they are selfadjoint idempotent operators. Clearly, T is
Moore-Penrose invertible if and only if 7 is Moore-Penrose invertible, and in this case
(T*)T = (TT)*. The following theorem is known.

Theorem 1.3 [11, Theorem 2.2] Suppose that T' € £(X,)). Then the Moore-Penrose
inverse T'1 of T exists if and only if T has closed range.

By Definition 1.2, we have

ran(T)
ker(T)

ran(T TT), ran(TT) = ran(TTT) = ran(T*),
ker(T1T), ker(T) = ker(T TT) = ker(T*),

and by Theorem 1.1, we have

X = ker(T) @ ran(T") = ker(TTT) @ ran(TTT),
Y = ker(TT) @ ran(T) = ker(T TT) @ ran(T TT).

A matrix form of a bounded adjointable operator T' € L(X,))) can be induced by some
natural decompositions of Hilbert C*-modules. Indeed, if M and N are closed orthog-
onally complemented submodules of X and ), respectively, and X = M @& M+, Y =
N @ Nt then T can be written as the following 2 x 2 matrix

r=[7 1) @

where, 1 € LM, N), Ty € LM N), T3 € LM, NL) and Ty € LML, N1). Note
that Py denotes the projection corresponding to M.

Infact Ty = PyT Py, To= PyT(1—Pum), T3 = (1—Py)TPuy, Tu= (1—Py)T(1—
Ppr).

Recall that if T € £(X,)) has closed range, then TTT = Pian(m) and TiT = Pran(T+)-

The proof of the following Lemma can be found [9, Corollary 1.2.] or [4, Lemma 1.1.].

Lemma 1.4 Suppose that T' € L(X,)) has closed range. Then T has the following ma-
trix decomposition with respect to the orthogonal decompositions of closed submodules

X =ran(T*) @ ker(T) and Y = ran(T) & ker(T*):

(54 [2) e

where T7 is invertible. Moreover

T — [Tb— 1 8} : [ﬁjlfl((TT))] - [rli?r((g)]

Lemma 1.5 ( see [10, Lemma 1.2.]) Suppose that 7' € L(X,)) has closed range. Let
Xy, Xo be closed submodules of X and Y1, Vs be closed submodules of Y such that X =
X1 ® Xy and Y = V1 @ Vs. Then the operator T" has the following matrix representations
with respect to the orthogonal sums of submodules X = ran(T*) @ ker(T) and Y =
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ran(T) ® ker(T*):

r= [0 - L)

Then D =TT} + 11T € L(ran(T)) is positive and invertible. Moreover,

s y—1
+ _|TYD™0
= _T;D‘lo]' ®)
|70 [ran(T*) Vi
T= [Tgo] | ker(T) | T[] )
where F' =TTy + T5T3 € L(ran(T*)) is positive and invertible. Moreover,

ot [P PTG (5)

B 0 0 '

2. Main results

In this section we solve T X S* — SX*T™ = A via the some results of product of operators
with closed ranges.

Lemma 2.1 Let T € L(X,)Y) and let Q € L£(X) and P € L(Y) be orthogonal projections
and T'Q) and PT have closed ranges. Then

(i) (TQ)T = Q(TQ)T,
(i) (PT)I = (PT)TP.

Proof. (i) Since ran(TQ) is closed, the operator (T'Q) exists. Therefore, ran((TQ)") =
ran((TQ)*) = ran(QT*) C ranQ. Hence Q((TQ)") = (T'Q)'. The proof for (ii) is similar.
]

Lemma 2.2 Let T € L(X,)Y) and S € L(Y, X) such that T'S = 1y. Then

(1) (Lx = ST)T = (1x — SST)(1x - T1T),
(ii) T = Py SPr(1)-

Proof. (i) Since T'S = 1y, the operator S is generalized inverse of T" and vise versa.
Therefore T' and S have closed ranges, hence T and ST exist. Put Q = 14 — ST. From
TS =1y, we have QS =0 and TQ = 0. Put M = (1x — SS")(1x — TTT). Then
QM = (1y — ST)(1x — SSHY(1x —T'T) = (1x — ST)(1x — T'T) = 1x — T'T,
MQ= 1y —SSH(1xy —T'T)(1xy — ST) = (1x — SST)(1xy — ST) = 1 — SST.
Hence, QMQ = (1x —TTT)(1x — ST) = (1x — ST) = Q and MQM = (1x — SST)(1x —

SSN(1xy —ST) =M. So (1xy — ST)' = (1x — SST)(1x — TTT).
To prove (ii) By (i) we know that ran(T) is closed. Put N = Py 1)+ SPg(r). Then

TN = TPy py: SPr(r) = TSPriry = Prer),
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and

Obviously, we have TNT = Pg)T =T and NTN = N. Hence, Th = PN(T)L SPr(r). B

Corollary 2.3 Let T, S € L(X) be such that T'S = 1. Then T? has closed range and
(T*)" = Py g2y S*Prr2).

Proof. Since T'S = 1x. Then T2S5? = 1. Hence, the bounded adjointable operator S?
is generalized inverse of T?2. Therefore T? has closed range. Lemma 2.2(ii) implies that
(T?)" = P2y S* Prer2).- [

In the following theorems we obtain explicit solutions to the operator equation
TXS* —SX*T* = A, (6)

when T'S = 1.

Theorem 2.4 Suppose T,S € L(X) such that T'S = 1 and A € L(X). Then the
following statements are equivalent:
(a) There exists a solution X € L(X) to Eq. (6).
() A= —A*and (1 - T>(T>)NTAT*(1 - T>(T?)T) = 0.
If (a) or (b) is satisfied, then any solution to Eq. (6) has the form

X = %PN(Tz)LSQPR(Tz)TAT*T2PN(T2)LSQPR(Tz) + Ppqays S? Prir2) ZT? Prypay+ S7 Pryr2)
+ PN(TQ)LSQPR(TQ)TAT*Q — TQPN(TQ)LSQPR(TQ)) +(1— PN(TQ)LSQPR(TZ)TQ)Y,
where Z € L(X) satisfies T*(Z — Z*)T =0, and Y € L(X) is arbitrary.
Proof. By multiplication T of the left and 7™ of the right of Eq. (6) get into
T?°X — X*(T*)? = TAT*. (7)

Corollary 2.3 implies that T2 has closed range. Now, [8, Theorem 3] implies that (a) and
(b) are equivalent. Again by [8, Theorem 3] implies that

X = %(TQ)TTAT*TQ(TQ)T + (T 21T + (TH)'TAT*(1 - TX(T?)T)
+ (1 — (T3 T?y,

where Z € L(X) satisfies T*(Z — Z*)T = 0, and Y € L(X) is arbitrary. Again by
Corollary 2.3, equivalently

1 %
X = §PN(T2)LSQPR(T2)TAT T2PN(T2)lSQPR(T2) =+ PN(TQ)LSQPR(TQ)ZTQPN(TQ)lSQPR(T2)

The following remark is the same as in the matrix case.
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Remark 1 Let T € L(X,Y) has closed range and A € L(X,)). Then to the operator
equation

TX=A , XeL(X) (8)
is solvable iff TTTA = A. Therefore
X =TTA. (9)

is solution to Eq. (8).

Theorem 2.5 Suppose that X,), Z are Hilbert A-modules, S € L£(X,)) and T €
L(Z2,Y) and (1 — Pan(s))T have closed ranges, A € £(Y) and X' = ran(S*) @ ker(S) and
Y =ran(S) @ ker(S*) and Z = ran(T*) @ ker(T). If the operator equation

TXS*—SX*'T*"=A , XeLl(X 2) (10)
is solvable, then

= (07 P DA [ty | = ey

is solution to the operator equation (10) , such that X9, X3, X4 are arbitrary operators.

Proof. Since S,T have closed ranges, we have X = ran(S*) @ ker(S) and Y =
ran(S) @ ker(S*) and Z = ran(T*) @ ker(T). Hence by (2) and orthogonal complemented
submodules ran(S*), ran(T*) and ran(S) and using the matrix forms for X, A, that is,

a- [ 2] ] - (2]

and

X [B] [me) - [me].

and matrix forms for S,T as describe in Lemma 1.4 and Lemma 1.5, respectively. Now
the operator equation T X S* — SX*T™ = A can be written in an equivalent form

TiO| | Xe Xo| [STO| [|S10| [ X7 X3 | |TT T3 | _ | A A
T30 | X3 X4 00 00 |X5X; 0 0| |AsAy
That is,

TV X187 — SIXiTr —S1 XT3 [Ay Ay
T3X15f 0 o A3 A4



M. Mohammadzadeh Karizaki et al. / J. Linear. Topological. Algebra. 04(01) (2015) 35-42. 41

Since Eq. (10) is solvable, then A4 = 0. Therefore

T1 X185 — S XITF = Ay (11)
S XITE = Ay (12)
T3X187 = As (13)

This means that for every operators X, X3, X4, is a solution to Eq. (10). By Eq. (13)
we have T3X15] = A3. By Lemma 2, ST is invertible. Hence we have

T3X, = Az(S)~ % (14)

By using the matrix form (2) implies that T3 = (1 — Puans))T Panrs) = (1 —
Pran(s))TTTT = (1 - Pran(S))T and A3 = (1 - Pran(S))APran(S)a hence we have

((1 - Pran(S))T)Xl

(1 - Pran(S))APran(S) (Sik)_l (15)
(1= Pran(s)) ASST(S)!
(1 - Pram(S))‘LLSqL

Since Eq. (10) is solvable then Eq. (15) is solvable. Since T3 = (1 — P,ay(s))7" has closed
range, by Remark 1 Eq. (15) is solvable and

X1 = ((1 - Pran(S))T)T(l - Pran(S)>AST'
By Lemma 2.1, equivalently

X =((1- Pram(S)),T)Jr‘AST
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