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Abstract. In this paper, several fixed point theorems for T-contraction of two maps on cone
metric spaces under normality condition are proved. Obtained results extend and generalize
well-known comparable results in the literature.
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1. Introduction

In 1922, Banach proved his famous fixed point theorem [3]. Afterward, other people
consider some various definitions of contractive mappings and proved several fixed
point theorems in [4, 7, 10, 11, 13, 15] and the references contained therein. In
2007, Huang and Zhang [8] introduced cone metric space and proved some fixed
point theorems. Afterward, several fixed and common fixed point results on cone
metric spaces proved in [1, 14, 16, 17] and the references contained therein.

Recently, Morales and Rajes [12] introduced T-Kannan and T-Chatterjea con-
tractive mappings in cone metric space and proved some fixed point theorems.
Then, Filipovié¢ et al. [5] defined T-Hardy-Rogers contraction in cone metric space
and proved some fixed and periodic point theorems. In this work, we prove several
fixed and periodic point theorems for T-contraction of two maps on normal cone
metric spaces. Our results extend various comparable results of Filipovié et al. [5],
and Morales and Rajes [12].

2. preliminaries

Let us start by defining some important definitions.

DEFINITION 2.1 (See [6, 8]). Let E be a real Banach space and P a subset of E.
Then P is called a cone if and only if

(a) P is closed, non-empty and P # {0};

(b) a,b € R,a,b > 0,z,y € P imply that ax + by € P;

(¢) ifx € P and —x € P, then x = 0.
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Given a cone P C E, we define a partial ordering < with respect to P by
rLy<—=y—xekl
We shall write z < y if * < y and = # y. Also, we write z < y if and only if
y —x € intP (where intP is interior of P). If intP # (), the cone P is called solid.
The cone P is named normal if there is a number K > 0 such that for all z,y € E,

0<z<y=|z|] < K|yl 1)

The least positive number satisfying the above is called the normal constant of P.

Ezxample 2.2 (See [14]). Let E = Cr|[0, 1] with the supremum norm and P = {f €
E : f > 0}. Then P is a normal cone with normal constant K = 1.

DEFINITION 2.3 (See [8]). Let X be a nonempty set. Suppose that the mapping
d: X x X — F satisfies

(d1) 0 < d(z,y) for all z,y € X and d(z,y) =0 if and only if x = y;

(d2) d(z,y) = d(y,) for all z,y € X;

(d3) d(z,z) < d(z,y) +d(y, z) for all z,y,z € X.

Then, d is called a cone metric on X and (X, d) is called a cone metric space.

Ezample 2./ (See [8]). Let E = R?, P = {(z,y) € Elz,y >0} C R?>, X = R and
d: X x X — E such that d(z,y) = (Jx — y|, o]z — y|), where a > 0 is a constant.
Then (X, d) is a cone metric space.

DEFINITION 2.5 (See [5]). Let (X,d) be a cone metric space, {x,} a sequence in
X and x € X. Then

(1) {xn} converges to x if for every c € E with 0 < ¢ there exist ng € N such that
d(xn,z) < ¢ for all n > ng.

(i1) {xn} is called a Cauchy sequence if for every ¢ € E with 0 < ¢ there exist
ng € N such that d(xy, ) < ¢ for all m,n > ng.

Also, a cone metric space X is said to be complete if every Cauchy sequence in
X is convergent in X. In the sequel, we always suppose that E is a real Banach
space, P is a normal cone in F, and < is partial ordering with respect to P.

DEFINITION 2.6 (See [5]). Let (X,d) be a cone metric space, P a solid cone and
S: X — X. Then

(i) S is said to be sequentially convergent if we have for every sequence (x,), if
S(xy) is convergent, then (x,,) also is convergent.

(i) S is said to be subsequentially convergent if we have for every sequence ()
that S(xy,) is convergent, implies (xy,) has a convergent subsequence.

(i) S is said to be continuous, if im, oo 2, = x implies that limy, o S(x,) =

S(z), for all (z,) in X.

DEFINITION 2.7 (See [5]). Let (X,d) be a cone metric space and T,f : X — X
two mappings. A mapping [ is said to be a T-Hardy-Rogers contraction, if there
erista; 2 0,1=1,--- .5 with a1 +as+az+ag+as < 1 such that for all z,y € X,

d(Tfz, Tfy) < ard(Tz, Ty) + axd(Tx, T fz) + asd(Ty, T fy) + cud(Tz, T fy)
+asd(Ty, T fx). (2)
In previous definition, suppose that a1 = ay = a5 = 0 and ag = az # 0 (resp.

ap = ag = ag = 0 and ag = a5 # 0). Then we obtain T-Kannan (resp. T-
Chatterjea) contraction from [12].
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3. Fixed point results

THEOREM 3.1 Suppose that (X, d) be a complete cone metric space, P be a normal
cone with normal constant K, and T : X — X be a continuous and one to one
mapping. Moreover, let f and g be two maps of X satisfying

d(Tfz,Tgy) < ard(Tx, Ty) + az[d(Tz, T fz) + d(Ty, Tgy)]
+a3[d(Tx, Tgy) + d(Ty, T fz)], (3)

for all x,y € X, where
a; =20 for 1=1,2,3 and o1 + 200 + 2a3 < 1. (4)

That is, f and g be a T-contraction. Then

(1) There exist u, € X such that limy,—oo T fro, = limy, 00 TgTont+1 = Uy.

(2) If T is subsequentially convergent, then { fxan} and {gxaon+1} have a convergent
subsequence.

(3) There exist a unique v, € X such that fv, = gu, = v, that is, f and g have
a unique common fixed point.

(4) If T is sequentially convergent, then iterate sequences {fxa,} and {gron+1}
converge 10 vy.

Proof Suppose xg is an arbitrary point of X, and define {x,} by

r1 = fro , w2 = gr1 , -, Topg1 = [fT2n , Tony2 = gTouy1 for no=
0,1,2,...

First, we prove that {Tz,} is a Cauchy sequence.

d(Txop+1, Txonto) = d(T fron, TgTon+1)
< a1d(Tzon, Txont1)
+ag|d(Taon, T foon) + d(Txont1, Tgrons1)]
+agld(Twan, Tgrons1) + d(Txons1, T fron)]
= a1d(Tron, Txon+t1)
toold(Ton, Teoni1) + d(Tx2n41, TT2n+2)]
tas[d(Ton, Troni2) + d(Txon41, TT2n+1)]
< (a1 + ag + a3)d(Txon, Tront1)
+(ag + a3)d(Tx2n41, TTon42),

which implies that

d(Txon41, Tropy2) < Yd(Txon, TTon41),

where v = 70117*&“;7*&‘? < 1.

Similarly, we get

d(Txonts3, Tront2) < vd(Txont2, Tront1),

artastas < 1.

where v = re—
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Thus, for all n

d(Txy, Tap1) < yd(Tep—1,Ta,) < ’de(Txn_%Tmn_l)
< <A"d(Two, Tay). (5)

Now, for any m > n

A(Txp, Tam) < d(Txp, Tapy1) + d(Txpi1, Tapgo) + -+ d(Txm—1, TTm)
(Y 9" N d(T, Tan)

,Y'fl
L=

<
<

d(TIo,Tl‘l).
From (1), we have
,YTL
ld(Tzn, Tom)|| < Ko d(Tzo, Tz1)]

It follows that {T'z,,} is a Cauchy sequence by Definition 2.5.(i¢). Since cone metric
space X is complete, there exist u, € X such that Tz,, — u, as n — oco. Thus,

lim T fxo, = Uy, lim Tgroni1 = uy. (6)
n—oo n—oo

Now, if T' is subsequentially convergent, { fxa,} (resp. {gxan+1}) has a convergent
subsequence. Thus, there exist vy, € X and {fxay, } (resp. vy, € X and {gxan,+1})
such that

'th—>Holo fx2”i = Uz, nh—>H;o 9T2n;4+1 = Vz,- (7)
Because of continuity 7" and by (7), we have

lim T fxo,, = Tu,,, le Tgxon,+1 = Tvg,. (8)
n—oo

n—oo

Now, by (6) and (8) and because of injectivity of T, there exist w, € X (set
Up = Uy, = Uy, ) such that Tv, = u,.
On the other hand, by (d3) and (3), we have

d(Tvg, Tgva) < d(Tve, Tgwon, 1) + d(Tgzon, 11, T fron,) + d(T fron,, Tgve)

(Twy, Txon,+2) + d(Txon,+2, TT2n,41) + c1d(Tzon,, Tvs)
tao[d(Tzon,, Tron,+1) + d(Tvz, Tgvy)]
+asld(Tzon,, Tgvy) + d(Tvy, Txon,+1)]

< d(Tvg, Txon,+2) + d(Txon,+2, Txon,+1) + (a1 + az)d(Txay,, Tvy)
+aod(Txop,, Tron,+1) + asd(Tve, Txon,+1)

+(ag + as)d(Tvg, Tgvy).

<d
<d

)
)
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Now, by (4) and (5) we have

1 1
d<TUw7 TgUﬂc) < 7d(TUz7 Tx2nz+2) + 7d(T~r2m+2a Tx2ni+1)
1—a2—a3 1—a2—a3

o)+« o
#d(TxQn, ) va) + 72(1(T$2n1 ) Tx?nﬂrl)
1—&2—0&3 1—042—&3
a3z

—— d(Tvy, Txon,
l—OéQ—Oég ( Y $21+1)

= A1d(Twg, Txon, 1) + Aoy?™ + Asd(Txon,, Tvs)
—l—A4d(Tvz, Tx2ni+1 ) ,

where
1
A1 = A2 = Lﬂd(Txo,Txl)
1—042—043 1—a2—a3
As o1 + o3 Ay a3

_l—OéQ—Oég _1—a2—a3-

From (1), we have

Jd(Tvs, Tguo)ll < AvK[[d(Tvy, Tarng, 2| + Ao KA [ d(To, Ty )|
+ A5 K |d(T w0, To,) | + AK[[d(Tvy, Tasn,41)]

Now the right hand side of the above inequality approaches zero as i — oco. The
convergence above give us that ||d(Tvz, T'gv,)|| = 0. Hence d(Tvy, T'gv,) = 0, that
is, Tv, = Tgv,;. Since T is one to one, then gv, = wv,. Now, we shall show that
fue = v,.
A(T fvg, Tvy) = d(T fvg, Tgv,)

< aqd(Tvg, Tvy) + agld(Tvy, T fvg) + d(Tvg, Tguy)]

+ a3 [d(TU:cv Tgvy) + d(Tvy, vall')]

= (o + a3)d(Tvy, T fvy).
which, using the definition of partial ordering on E and properties of cone P, gives
d(T fvy, Tvy) = 0. Hence, T fv, = Tw,. Since T is one to one, then fv, = v,. Thus,
fv, = gu, = vg, that is, v, is a common fixed point of f and g. Now, we shall show

that v, is a unique common fixed point. Suppose that v/, be another common fixed
point of f and g, then

d(Tv,, Tv.,) = d(T fvg, Tgv.,)
< a1 d(Twg, TV,) + ag[d(Tve, T fvg) + d(Tv., Tgvl,)]
+ asld(Tvy, Tgvl) + d(Tw., T fv,)]
= (o1 + 2a3)d(Tvg, TV,).
By the same arguments as above, we conclude that d(Tv,, Tv!) = 0, which implies

the equality Tv, = Tw/,. Since T' is one to one, then v, = v). Thus f and g have a
unique common fixed point.
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Ultimately, if T is sequentially convergent, then we replace n for n;. Thus, we have

lim fon = Ug, lim 9Ton41 = Vg
n—00 n—o00

Therefore if T is sequentially convergent, then iterate sequences {fx2,} and
{gxaon+1} converge to v,. [ ]

The following results is obtained from Theorem 3.1.

COROLLARY 3.2 Let (X,d) be a complete cone metric space, P be a normal cone
and T : X — X be a continuous and one to one mapping. Moreover, let mapping
f be a map of X satisfying

d(Tfz, Tfy) < ard(Tz, Ty) + ald(Tz, T fx) + d(Ty, T fy)]
+aa[d(Tz, T fy) +d(Ty, T fx)], 9)

for all x,y € X, where
a; =20 for 1=1,2,3 and a1 + 2as + 203 < 1. (10)

That is, f be a T-contraction. Then,

(1) For each xo € X, {T f"xo} is a cauchy sequence.

(2) There exist ug, € X such that imy, oo T [0 = Uy, -

(3) If T is subsequentially convergent, then {f"xo} has a convergent subsequence.
(4) There exist a unique vy, € X such that fuy, = vy, that is, f has a unique fized
point.

(5) If T is sequentially convergent, then for each xy € X the iterate sequence { f"xo}
converges 1o Vg, .

Recently, Fillipovié¢ et al. prove that the Corollary 3.2 for a non-normal cone.

COROLLARY 3.3 Let (X,d) be a complete cone metric space, P be a solid cone
and T : X — X be a continuous and one to one mapping. Moreover, let mapping
f be a T-Hardy-Rogers contraction. Then, the results of previous Corollary hold.

Proof See [5]. [ |

4. Periodic point results

Obviously, if f is a map which has a fixed point z, then z is also a fixed point
of f™ for each n € N. However the converse is not true [2]. If a map f: X — X
satisfies Fiz(f) = Fiz(f") for each n € N, where Fiz(f) stands for the set of fixed
points of f [9], then f is said to have property P. Recall also that two mappings
fyg: X — X is said to have property Q if Fiz(f) () Fiz(g) = Fiz(f™) () Fixz(g").
The following results extend some theorems of [2].

THEOREM 4.1 Let (X, d) be a cone metric space, P be a normal cone and T : X —
X be a one to one mapping. Moreover, let mapping f be a map of X satisfyiing

(i) d(fz, f2x) < Md(z, fx) for all x € X, where X\ € [0,1) and or (ii) with strict
inequality, N = 1 for all x € X with x # fx. If Fix(f) # 0, then f has property P.

Proof See [5]. [ |
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THEOREM 4.2 Let (X,d) be a complete cone metric space, and P a normal cone
with normal constant K. Suppose that mappings f,g : X — X satisfy all the
conditions of Theorem 3.1. Then f and g have property Q.

Proof From Theorem 3.1, f and ¢g have a unique common fixed point in X. Suppose
that z € Fiz(f™) () Fiz(g™), thus we have

d(Tz,Tgz) = d(Tf(f"'2),Tg(g"=2))
< ad(TF 12, Tg"2) + ao[d(Tf" L2, Tf"2) + d(Tg"z, Tg" 1 2)]
taa[d(Tf" 2, Tg" ™ 2) + d(Tg"2, Tf"2)]
= d(Tf" 12, T2) + aold(Tf"2,T2) + d(Tz,Tygz)|
+azd(Tf" 12, Tgz)
< (a1 + ag + a3)d(T " 12, T2) + (ag + a3)d(Tz, Tygz),

which implies that
d(Tz,Tgz) < vd(Tf" 12, Tz),

where y = @ttt 1 (hy relation (4)). Now, we have

l—az—as

d(Tz,Tgz) = d(Tf"z,Tg" ™ 2) <Ad(Tf" 12,Tz) < - <A"d(Tfz,Tz).
From (1), we have
1d(Tz, Tgz)|| <" K||d(T fz,Tz)|.

Now the right hand side of the above inequality approaches zero as n — oco. Hence,
|d(Tz,Tgz)|| = 0. It follows that d(Tz,Tgz) = 0, that is, Tgz = T=z. Since T
is one to one, then gz = z. Also, Theorem 3.1 implies that fz = 2z and z €

Fiz(f)( Fiz(g). [ |

THEOREM 4.3 Let (X, d) be a complete cone metric space, and P a solid cone.
Suppose that mapping f : X — X satisfies all the conditions of Corollary 3.2. Then
f has property P.

Proof From Corollary 3.2, f has a unique common fixed point in X. Suppose that
z € Fiz(f™), we have

d(Tz,Tfz) = d(Tf(f"""2), Tf(f"2))
S ard(Tf L2, Tf2) + ao[d(Tf" L2, Tf"2) + d(Tf 2, T 2)]
Fos[d(Tf" L, T 2) + d(Tf 2, Tf"2)]
< (a1 +ag + )d(Tf" 12, T2) + (g + a3)d(Tz, Tfz),

which implies that
d(Tz,Tfz) <yd(Tf" 12, Tz) where v = 21t%2+% 1 (hy relation (10)). Hence,

l—as—as

ATz, Tfz) =d(Tf 2, Tf" " 2) <Ad(Tf" 12, T2) < - < Ad(Tfz,Tz).
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Therefore, we have d(Tz, Tfz) < v"d(Tfz,Tz) < vd(T fz,Tz). By the same argu-
ments as Theorem 4.2, we conclude that d(T'fz,Tz) = 0, that is, T'fz = T'z. Since
T is one to one, then fz = z and proof is complete. [ ]

COROLLARY 4.4 Let (X,d) be a complete cone metric space, and P be a solid
cone. Suppose that mapping f : X — X satisfies all the conditions of Corollary
3.83. Then f has property P.

Proof See [5]. |
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