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New fixed and periodic point results on cone metric spaces
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Abstract. In this paper, several fixed point theorems for T-contraction of two maps on cone
metric spaces under normality condition are proved. Obtained results extend and generalize
well-known comparable results in the literature.
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1. Introduction

In 1922, Banach proved his famous fixed point theorem [3]. Afterward, other people
consider some various definitions of contractive mappings and proved several fixed
point theorems in [4, 7, 10, 11, 13, 15] and the references contained therein. In
2007, Huang and Zhang [8] introduced cone metric space and proved some fixed
point theorems. Afterward, several fixed and common fixed point results on cone
metric spaces proved in [1, 14, 16, 17] and the references contained therein.
Recently, Morales and Rajes [12] introduced T -Kannan and T -Chatterjea con-

tractive mappings in cone metric space and proved some fixed point theorems.
Then, Filipović et al. [5] defined T -Hardy-Rogers contraction in cone metric space
and proved some fixed and periodic point theorems. In this work, we prove several
fixed and periodic point theorems for T -contraction of two maps on normal cone
metric spaces. Our results extend various comparable results of Filipović et al. [5],
and Morales and Rajes [12].

2. preliminaries

Let us start by defining some important definitions.

Definition 2.1 (See [6, 8]). Let E be a real Banach space and P a subset of E.
Then P is called a cone if and only if
(a) P is closed, non-empty and P 6= {0};
(b) a, b ∈ R, a, b > 0, x, y ∈ P imply that ax+ by ∈ P ;
(c) if x ∈ P and −x ∈ P , then x = 0.
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Given a cone P ⊂ E, we define a partial ordering 6 with respect to P by
x 6 y ⇐⇒ y − x ∈ P.

We shall write x < y if x 6 y and x 6= y. Also, we write x ≪ y if and only if
y − x ∈ intP (where intP is interior of P ). If intP 6= ∅, the cone P is called solid.
The cone P is named normal if there is a number K > 0 such that for all x, y ∈ E,

0 6 x 6 y =⇒ ‖x‖ 6 K‖y‖. (1)

The least positive number satisfying the above is called the normal constant of P .

Example 2.2 (See [14]). Let E = CR[0, 1] with the supremum norm and P = {f ∈
E : f > 0}. Then P is a normal cone with normal constant K = 1.

Definition 2.3 (See [8]). Let X be a nonempty set. Suppose that the mapping
d : X ×X → E satisfies
(d1) 0 6 d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, z) 6 d(x, y) + d(y, z) for all x, y, z ∈ X.
Then, d is called a cone metric on X and (X, d) is called a cone metric space.

Example 2.4 (See [8]). Let E = R2, P = {(x, y) ∈ E|x, y > 0} ⊂ R2, X = R and
d : X ×X → E such that d(x, y) = (|x− y|, α|x− y|), where α > 0 is a constant.
Then (X, d) is a cone metric space.

Definition 2.5 (See [5]). Let (X, d) be a cone metric space, {xn} a sequence in
X and x ∈ X. Then
(i) {xn} converges to x if for every c ∈ E with 0≪ c there exist n0 ∈ N such that
d(xn, x)≪ c for all n > n0.
(ii) {xn} is called a Cauchy sequence if for every c ∈ E with 0 ≪ c there exist
n0 ∈ N such that d(xn, xm)≪ c for all m,n > n0.

Also, a cone metric space X is said to be complete if every Cauchy sequence in
X is convergent in X. In the sequel, we always suppose that E is a real Banach
space, P is a normal cone in E, and 6 is partial ordering with respect to P .

Definition 2.6 (See [5]). Let (X, d) be a cone metric space, P a solid cone and
S : X → X. Then
(i) S is said to be sequentially convergent if we have for every sequence (xn), if

S(xn) is convergent, then (xn) also is convergent.
(ii) S is said to be subsequentially convergent if we have for every sequence (xn)

that S(xn) is convergent, implies (xn) has a convergent subsequence.
(iii) S is said to be continuous, if limn→∞ xn = x implies that limn→∞ S(xn) =

S(x), for all (xn) in X.

Definition 2.7 (See [5]). Let (X, d) be a cone metric space and T, f : X → X

two mappings. A mapping f is said to be a T -Hardy-Rogers contraction, if there
exist αi > 0, i = 1, · · · , 5 with α1+α2+α3+α4+α5 < 1 such that for all x, y ∈ X,

d(Tfx, Tfy) 6 α1d(Tx, Ty) + α2d(Tx, Tfx) + α3d(Ty, Tfy) + α4d(Tx, Tfy)

+α5d(Ty, Tfx). (2)

In previous definition, suppose that α1 = α4 = α5 = 0 and α2 = α3 6= 0 (resp.
α1 = α2 = α3 = 0 and α4 = α5 6= 0). Then we obtain T -Kannan (resp. T -
Chatterjea) contraction from [12].
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3. Fixed point results

Theorem 3.1 Suppose that (X, d) be a complete cone metric space, P be a normal
cone with normal constant K, and T : X → X be a continuous and one to one
mapping. Moreover, let f and g be two maps of X satisfying

d(Tfx, Tgy) 6 α1d(Tx, Ty) + α2[d(Tx, Tfx) + d(Ty, Tgy)]

+α3[d(Tx, Tgy) + d(Ty, Tfx)], (3)

for all x, y ∈ X, where

αi > 0 for i = 1, 2, 3 and α1 + 2α2 + 2α3 < 1. (4)

That is, f and g be a T -contraction. Then
(1) There exist ux ∈ X such that limn→∞ Tfx2n = limn→∞ Tgx2n+1 = ux.
(2) If T is subsequentially convergent, then {fx2n} and {gx2n+1} have a convergent
subsequence.
(3) There exist a unique vx ∈ X such that fvx = gvx = vx, that is, f and g have
a unique common fixed point.
(4) If T is sequentially convergent, then iterate sequences {fx2n} and {gx2n+1}
converge to vx.

Proof Suppose x0 is an arbitrary point of X, and define {xn} by
x1 = fx0 , x2 = gx1 , · · · , x2n+1 = fx2n , x2n+2 = gx2n+1 for n =
0, 1, 2, ....
First, we prove that {Txn} is a Cauchy sequence.

d(Tx2n+1, Tx2n+2) = d(Tfx2n, T gx2n+1)

6 α1d(Tx2n, Tx2n+1)

+α2[d(Tx2n, T fx2n) + d(Tx2n+1, T gx2n+1)]

+α3[d(Tx2n, T gx2n+1) + d(Tx2n+1, T fx2n)]

= α1d(Tx2n, Tx2n+1)

+α2[d(Tx2n, Tx2n+1) + d(Tx2n+1, Tx2n+2)]

+α3[d(Tx2n, Tx2n+2) + d(Tx2n+1, Tx2n+1)]

6 (α1 + α2 + α3)d(Tx2n, Tx2n+1)

+(α2 + α3)d(Tx2n+1, Tx2n+2),

which implies that

d(Tx2n+1, Tx2n+2) 6 γd(Tx2n, Tx2n+1),

where γ = α1+α2+α3

1−α2−α3

< 1.
Similarly, we get

d(Tx2n+3, Tx2n+2) 6 γd(Tx2n+2, Tx2n+1),

where γ = α1+α2+α3

1−α2−α3

< 1.
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Thus, for all n

d(Txn, Txn+1) 6 γd(Txn−1, Txn) 6 γ2d(Txn−2, Txn−1)

6 · · · 6 γnd(Tx0, Tx1). (5)

Now, for any m > n

d(Txn, Txm) 6 d(Txn, Txn+1) + d(Txn+1, Txn+2) + · · ·+ d(Txm−1, Txm)

6 (γn + γn+1 + · · ·+ γm−1)d(Tx0, Tx1)

6
γn

1− γ
d(Tx0, Tx1).

From (1), we have

‖d(Txn, Txm)‖ 6 K
γn

1− γ
‖d(Tx0, Tx1)‖.

It follows that {Txn} is a Cauchy sequence by Definition 2.5.(ii). Since cone metric
space X is complete, there exist ux ∈ X such that Txn → ux as n→∞. Thus,

lim
n→∞

Tfx2n = ux, lim
n→∞

Tgx2n+1 = ux. (6)

Now, if T is subsequentially convergent, {fx2n} (resp. {gx2n+1}) has a convergent
subsequence. Thus, there exist vx1

∈ X and {fx2ni
} (resp. vx2

∈ X and {gx2ni+1})
such that

lim
n→∞

fx2ni
= vx1

, lim
n→∞

gx2ni+1 = vx2
. (7)

Because of continuity T and by (7), we have

lim
n→∞

Tfx2ni
= Tvx1

, lim
n→∞

Tgx2ni+1 = Tvx2
. (8)

Now, by (6) and (8) and because of injectivity of T, there exist wx ∈ X (set
vx = vx1

= vx2
) such that Tvx = ux.

On the other hand, by (d3) and (3), we have

d(Tvx, T gvx) 6 d(Tvx, T gx2ni+1) + d(Tgx2ni+1, T fx2ni
) + d(Tfx2ni

, T gvx)

6 d(Tvx, Tx2ni+2) + d(Tx2ni+2, Tx2ni+1) + α1d(Tx2ni
, T vx)

+α2[d(Tx2ni
, Tx2ni+1) + d(Tvx, T gvx)]

+α3[d(Tx2ni
, T gvx) + d(Tvx, Tx2ni+1)]

6 d(Tvx, Tx2ni+2) + d(Tx2ni+2, Tx2ni+1) + (α1 + α3)d(Tx2ni
, T vx)

+α2d(Tx2ni
, Tx2ni+1) + α3d(Tvx, Tx2ni+1)

+(α2 + α3)d(Tvx, T gvx).
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Now, by (4) and (5) we have

d(Tvx, T gvx) 6
1

1− α2 − α3
d(Tvx, Tx2ni+2) +

1

1− α2 − α3
d(Tx2ni+2, Tx2ni+1)

+
α1 + α3

1− α2 − α3
d(Tx2ni

, T vx) +
α2

1− α2 − α3
d(Tx2ni

, Tx2ni+1)

+
α3

1− α2 − α3
d(Tvx, Tx2ni+1)

= A1d(Tvx, Tx2ni+2) +A2γ
2ni +A3d(Tx2ni

, T vx)

+A4d(Tvx, Tx2ni+1),

where

A1 =
1

1− α2 − α3
, A2 =

α2 + γ

1− α2 − α3
d(Tx0, Tx1)

A3 =
α1 + α3

1− α2 − α3
, A4 =

α3

1− α2 − α3
.

From (1), we have

‖d(Tvx, T gvx)‖ 6 A1K‖d(Tvx, Tx2ni+2)‖+A2Kγ2ni‖d(Tx0, Tx1)‖

+A3K‖d(Tx2ni
, T vx)‖+A4K‖d(Tvx, Tx2ni+1)‖

Now the right hand side of the above inequality approaches zero as i → ∞. The
convergence above give us that ‖d(Tvx, T gvx)‖ = 0. Hence d(Tvx, T gvx) = 0, that
is, Tvx = Tgvx. Since T is one to one, then gvx = vx. Now, we shall show that
fvx = vx.

d(Tfvx, T vx) = d(Tfvx, T gvx)

6 α1d(Tvx, T vx) + α2[d(Tvx, T fvx) + d(Tvx, T gvx)]

+ α3[d(Tvx, T gvx) + d(Tvx, T fvx)]

= (α2 + α3)d(Tvx, T fvx).

which, using the definition of partial ordering on E and properties of cone P , gives
d(Tfvx, T vx) = 0. Hence, Tfvx = Tvx. Since T is one to one, then fvx = vx. Thus,
fvx = gvx = vx, that is, vx is a common fixed point of f and g. Now, we shall show
that vx is a unique common fixed point. Suppose that v′x be another common fixed
point of f and g, then

d(Tvx, T v
′

x) = d(Tfvx, T gv
′

x)

6 α1d(Tvx, T v
′

x) + α2[d(Tvx, T fvx) + d(Tv′x, T gv
′

x)]

+ α3[d(Tvx, T gv
′

x) + d(Tv′x, T fvx)]

= (α1 + 2α3)d(Tvx, T v
′

x).

By the same arguments as above, we conclude that d(Tvx, T v
′

x) = 0, which implies
the equality Tvx = Tv′x. Since T is one to one, then vx = v′x. Thus f and g have a
unique common fixed point.
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Ultimately, if T is sequentially convergent, then we replace n for ni. Thus, we have

lim
n→∞

fx2n = vx, lim
n→∞

gx2n+1 = vx.

Therefore if T is sequentially convergent, then iterate sequences {fx2n} and
{gx2n+1} converge to vx. �

The following results is obtained from Theorem 3.1.

Corollary 3.2 Let (X, d) be a complete cone metric space, P be a normal cone
and T : X → X be a continuous and one to one mapping. Moreover, let mapping
f be a map of X satisfying

d(Tfx, Tfy) 6 α1d(Tx, Ty) + α2[d(Tx, Tfx) + d(Ty, Tfy)]

+α3[d(Tx, Tfy) + d(Ty, Tfx)], (9)

for all x, y ∈ X, where

αi > 0 for i = 1, 2, 3 and α1 + 2α2 + 2α3 < 1. (10)

That is, f be a T -contraction. Then,
(1) For each x0 ∈ X, {Tfnx0} is a cauchy sequence.
(2) There exist ux0

∈ X such that limn→∞ Tfnx0 = ux0
.

(3) If T is subsequentially convergent, then {fnx0} has a convergent subsequence.
(4) There exist a unique vx0

∈ X such that fvx0
= vx0

, that is, f has a unique fixed
point.
(5) If T is sequentially convergent, then for each x0 ∈ X the iterate sequence {fnx0}
converges to vx0

.

Recently, Fillipović et al. prove that the Corollary 3.2 for a non-normal cone.

Corollary 3.3 Let (X, d) be a complete cone metric space, P be a solid cone
and T : X → X be a continuous and one to one mapping. Moreover, let mapping
f be a T -Hardy-Rogers contraction. Then, the results of previous Corollary hold.

Proof See [5]. �

4. Periodic point results

Obviously, if f is a map which has a fixed point z, then z is also a fixed point
of fn for each n ∈ N. However the converse is not true [2]. If a map f : X → X

satisfies Fix(f) = Fix(fn) for each n ∈ N, where Fix(f) stands for the set of fixed
points of f [9], then f is said to have property P . Recall also that two mappings
f, g : X → X is said to have property Q if Fix(f)

⋂
Fix(g) = Fix(fn)

⋂
Fix(gn).

The following results extend some theorems of [2].

Theorem 4.1 Let (X, d) be a cone metric space, P be a normal cone and T : X →
X be a one to one mapping. Moreover, let mapping f be a map of X satisfyiing
(i) d(fx, f2x) 6 λd(x, fx) for all x ∈ X, where λ ∈ [0, 1) and or (ii) with strict
inequality, λ = 1 for all x ∈ X with x 6= fx. If Fix(f) 6= ∅, then f has property P.

Proof See [5]. �



Gh. Soleimani Rad/ JLTA, 01 - 01 (2012) 33-40. 39

Theorem 4.2 Let (X, d) be a complete cone metric space, and P a normal cone
with normal constant K. Suppose that mappings f, g : X → X satisfy all the
conditions of Theorem 3.1. Then f and g have property Q.

Proof From Theorem 3.1, f and g have a unique common fixed point inX. Suppose
that z ∈ Fix(fn)

⋂
Fix(gn), thus we have

d(Tz, Tgz) = d(Tf(fn−1z), T g(gnz))

6 α1d(Tf
n−1z, Tgnz) + α2[d(Tf

n−1z, Tfnz) + d(Tgnz, Tgn+1z)]

+α3[d(Tf
n−1z, Tgn+1z) + d(Tgnz, Tfnz)]

= α1d(Tf
n−1z, Tz) + α2[d(Tf

n−1z, Tz) + d(Tz, Tgz)]

+α3d(Tf
n−1z, Tgz)

6 (α1 + α2 + α3)d(Tf
n−1z, Tz) + (α2 + α3)d(Tz, Tgz),

which implies that

d(Tz, Tgz) 6 γd(Tfn−1z, Tz),

where γ = α1+α2+α3

1−α2−α3

< 1 (by relation (4)). Now, we have

d(Tz, Tgz) = d(Tfnz, Tgn+1z) 6 γd(Tfn−1z, Tz) 6 · · · 6 γnd(Tfz, Tz).

From (1), we have

‖d(Tz, Tgz)‖ 6 γnK‖d(Tfz, Tz)‖.

Now the right hand side of the above inequality approaches zero as n→∞. Hence,
‖d(Tz, Tgz)‖ = 0. It follows that d(Tz, Tgz) = 0, that is, Tgz = Tz. Since T

is one to one, then gz = z. Also, Theorem 3.1 implies that fz = z and z ∈
Fix(f)

⋂
Fix(g). �

Theorem 4.3 Let (X, d) be a complete cone metric space, and P a solid cone.
Suppose that mapping f : X → X satisfies all the conditions of Corollary 3.2. Then
f has property P.

Proof From Corollary 3.2, f has a unique common fixed point in X. Suppose that
z ∈ Fix(fn), we have

d(Tz, Tfz) = d(Tf(fn−1z), T f(fnz))

6 α1d(Tf
n−1z, Tfnz) + α2[d(Tf

n−1z, Tfnz) + d(Tfnz, Tfn+1z)]

+α3[d(Tf
n−1z, Tfn+1z) + d(Tfnz, Tfnz)]

6 (α1 + α2 + α3)d(Tf
n−1z, Tz) + (α2 + α3)d(Tz, Tfz),

which implies that
d(Tz, Tfz) 6 γd(Tfn−1z, Tz) where γ = α1+α2+α3

1−α2−α3

< 1, (by relation (10)). Hence,

d(Tz, Tfz) = d(Tfnz, Tfn+1z) 6 γd(Tfn−1z, Tz) 6 · · · 6 γnd(Tfz, Tz).
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Therefore, we have d(Tz, Tfz) 6 γnd(Tfz, Tz) 6 γd(Tfz, Tz). By the same argu-
ments as Theorem 4.2, we conclude that d(Tfz, Tz) = 0, that is, Tfz = Tz. Since
T is one to one, then fz = z and proof is complete. �

Corollary 4.4 Let (X, d) be a complete cone metric space, and P be a solid
cone. Suppose that mapping f : X → X satisfies all the conditions of Corollary
3.3. Then f has property P.

Proof See [5]. �
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