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G-Frames, g-orthonormal bases and g-Riesz bases
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Abstract. G-Frames in Hilbert spaces are a redundant set of operators which yield a repre-
sentation for each vector in the space. In this paper we investigate the connection between
g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded opera-
tors is a g-Bessel sequences if and only if the Gram matrix associated to its defines a bounded
operator.
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1. Introduction

Let H,K be separable Hilbert spaces, let I, J and every Ji denote the countable (or
finite) index sets. Let {Wj}j∈J is a sequence of closed subspaces of K and let B(H,Wj)
denote the algebra of all bounded linear operators from H to Wj . Recall that a family
F = {fj}j∈J is called a frame for H if there exist constants 0 < A ⩽ B < ∞ such that,

A∥f∥2 ⩽
∑
j∈J

| < f, fj > |2 ⩽ B∥f∥2 ∀f ∈ H. (1)

Frames have many nice properties which make them very useful in the characterization
of function spaces, signal processing and many other fields. Gabor [5], in 1946 intro-
duced a technique for signal processing which eventually led to wavelet theory. Later in
1952, Duffin and Schaeffer [3] in the context of nonharmonic Fourier series introduced
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frame theory for Hilbert spaces. In 1986, Daubechies, Grassman and Meyer [2] showed
that Duffin and Schaeffers definition was an abstraction of Gabors concept. Sun in [6]
introduced g-frames and g-Riesz bases in a complex Hilbert space and discussed some
properties of them. We refer to [1, 4, 7] for an introduction to the frames and g-frames
and its applications.

Definition 1.1 A family Λ = {Λj ∈ B(H,Wj)| j ∈ J} is called a generalized frame, or
simply a g-frame for H with respect to {Wj}j∈J if there are two positive constant C and
D such that

C∥f∥2 ⩽
∑
j∈J

∥Λjf∥2 ⩽ D∥f∥2 ∀f ∈ H. (2)

The real numbers 0 < C ⩽ D < ∞ are called the lower and upper g-frame bounds,
respectively. We call this family a g-frame for H with respect to K whenever K = Wj

for all j ∈ J . The family Λ is called a C-tight g-frame if C = D and if C = D = 1,
it’s called a Parseval g-frame, the sup{rank(Λj) : j ∈ J} is called the multiplicity of the
g-frame. If ∥Λi∥ = ∥Λj∥ = λ for all i, j ∈ J , then the g-frame is called λ-uniform. If we
only have the upper bound, we call Λ a g-Bessel sequence for H with respect to {Wj}j∈J
with g-Bessel bound D. The family Λ is called

(i) A g-complete set for H with respect to {Wj}j∈J if H = span{Λ∗
j (Wj)}j∈J .

(ii) A g-orthonormal system for H with respect to {Wj}j∈J , if:

< Λ∗
i g,Λ

∗
jg

′ >= δij < g, g′ > ∀i, j ∈ J, g ∈ Wi, g
′ ∈ Wj .

(iii) A g-orthonormal basis for H with respect to {Wj}j∈J , if it is a g-orthonormal
system for H with respect to {Wj}j∈J and {Λ∗

j (eij)}j∈J,i∈Jj
is a basis for H,

where {eij}i∈Jj
is an orthonormal basis for Wj for all j ∈ J .

Notation 1.2 Let Λ = {Λj}j∈J be a g-frame for H with respect to {Wj}j∈J . The
representation space associated to Λ denotes by(∑

j∈J
⊕Wj

)
ℓ2
=

{
{gj}j∈J | gj ∈ Wj and

∑
j∈J

∥gj∥2 < ∞
}
. (3)

which is a Hilbert space with inner product as follows:

< {gj}j∈J , {g′k}k∈J >=
∑
j∈J

< gj , g
′
j > ∀{gj}j∈J , {g′j}j∈J ∈

(∑
j∈J

⊕Wj

)
ℓ2
.

Moreover, if {eij}i∈Jj
is an orthonormal basis for Wj for all j ∈ J , then {uij}j∈J,i∈Jj

is

called the standard orthonormal basis of
(∑

j∈J ⊕Wj

)
ℓ2

where uij = {δkjeij}k∈J and δkj
is the Kronecker delta.

Definition 1.3 The synthesis operator of a g-frame Λ = {Λj}j∈J is defined by

ΘΛ :
(∑
j∈J

⊕Wj

)
ℓ2
−→ H with ΘΛ({gj}j∈J) =

∑
j∈J

Λ∗
jgj (4)
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The associated adjoint operator given by

Θ∗
Λ : H −→

(∑
j∈J

⊕Wj

)
ℓ2

with Θ∗
Λ(f) = {Λjf}j∈J . (5)

is called the analysis operator. By composing ΘΛ and Θ∗
Λ we obtain the g-frame operator

SΛ : H −→ H with SΛ(f) = ΘΛΘ
∗
Λ(f) =

∑
j∈J

Λ∗
jΛj(f) (6)

which is a bounded, invertible, and positive operator. This provides the reconstruction
formula

f =
∑
j∈J

Λ∗
j Λ̃jf =

∑
j∈J

Λ̃∗
jΛjf (7)

where Λ̃j = ΛjS
−1
Λ . The family Λ̃ = {Λ̃j}j∈J is also a g-frame for H with respect to

{Wj}j∈J with g-frame bounds 1
D and 1

C respectively.

The well-known relations between a frame and associated analysis and synthesis op-
erator also holds in g-frames situation.

Theorem 1.4 Let Λj ∈ B(H,Wj) for all j ∈ J . Then the following are equivalent:

(i) Λ = {Λj}j∈J is a g-frame for H with respect to {Wj}j∈J .
(ii) The synthesis operator ΘΛ is bounded, linear and onto.
(iii) The analysis operator Θ∗

Λ is injective with closed range.

Proof. This claim holds in an analogous way as in frame theory. ■

A family Λ = {Λj}j∈J is called a g-frame sequence for H with respect to {Wj}j∈J if Λ
is a g-frame for span{Λ∗

j (Wj)}j∈J with respect to {Wj}j∈J . The definition shows that if
Λ is a g-frame for H with respect to {Wj}j∈J then Λ is g-complete set for H with respect
to {Wj}j∈J . Theorem 1.4 leads to a statement about g-frame sequence.

Corollary 1.5 A sequence Λ = {Λj}j∈J is a g-frame sequence for H with respect to
{Wj}j∈J if and only if

ΘΛ :
(∑
j∈J

⊕Wj

)
ℓ2
−→ H , ΘΛ({gj}j∈J) =

∑
j∈J

Λ∗
jgj ,

is a well-defined bounded operator with closed range.

Proof. This follows immediately from Theorem 1.4. ■

2. G-Frames, g-orthonormal bases and g-Riesz bases

If Λ = {Λj}j∈J is a g-Bessel sequence for H with respect to {Wj}j∈J , then the Gram
matrix associated to Λ is defined by

Θ∗
ΛΘΛ = {< Λ∗

jeij ,Λ
∗
nemn >}j,n∈J,i∈Jj ,m∈Jn

. (8)

Theorem 2.1 Let Λj ∈ B(H,Wj) for all j ∈ J , then the following are equivalent:
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(i) Λ = {Λj}j∈J is g-Bessel sequence with bound B for H with respect to {Wj}j∈J .
(ii) The Gram matrix associated to Λ defines a bounded operator on

(∑
j∈J ⊕Wj

)
ℓ2
,

with norm at most B.

Proof. (i) ⇒ (ii) Let {gj}j∈J ∈
(∑

j∈J ⊕Wj

)
ℓ2
, we show that ΘΛ({gj}j∈J) is well-

defined. Fix I ⊆ J with |I| < ∞, we have∥∥∥∑
i∈I

Λ∗
i gi

∥∥∥2 = sup
∥f∥=1

∣∣ < f,
∑
i∈I

Λ∗
i gi >

∣∣2
= sup

∥f∥=1

∣∣∑
i∈I

< Λif, gi >
∣∣2

⩽ sup
∥f∥=1

(∑
i∈I

∥Λif∥2
)(∑

i∈I
∥gi∥2

)
⩽ B

∑
i∈I

∥gi∥2.

It follows that
∑

j∈J Λ
∗
jgj is weakly unconditionally Cauchy and hence uncondition-

ally convergent in H. Thus ΘΛ({gj}j∈J) is well-defined. Clearly Θ∗
ΛΘΛ is bounded and

∥Θ∗
ΛΘΛ∥ ⩽ B.
(ii) ⇒ (i) suppose that {gj}j∈J ∈

(∑
j∈J ⊕Wj

)
ℓ2
, then we have

∑
j∈J

∥
∑
k∈J

ΛjΛ
∗
kgk∥2 ⩽ B2

∑
j∈J

∥gj∥2.

Given arbitrary I ⊆ J with |I| < ∞, we have∥∥∥∑
i∈I

Λ∗
i gi

∥∥∥4 = ∣∣ < ∑
i∈I

Λ∗
i gi,

∑
k∈I

Λ∗
kgk >

∣∣2
=

∣∣∑
i∈I

< gi,
∑
k∈I

ΛiΛ
∗
kgk >

∣∣2
⩽

(∑
i∈I

∥gi∥2
)(∑

i∈I

∥∥∑
k∈I

ΛiΛ
∗
kgk

∥∥2)
⩽ B2

(∑
i∈I

∥gi∥2
)2

.

It follows that ΘΛ({gj}j∈J) =
∑

j∈J Λ
∗
jgj is convergent and ∥ΘΛ∥ ⩽

√
B. Hence for all

f ∈ H we obtain ∑
j∈J

∥Λjf∥2 = ∥Θ∗
Λf∥2 ⩽ B∥f∥2.

■

Theorem 2.2 Let {Λj}j∈J and {Γj}j∈J be g-Bessel sequences for H with respect to
{Wj}j∈J , {Vj}j∈J then the series

∑
j∈J Γ

∗
jΛjf converges unconditionally for all f ∈ H.

Proof. Since {Λj}j∈J is a g-Bessel sequence for H with respect to {Wj}j∈J , hence
{Λjf}j∈J ∈ ℓ2(K, J) for all f ∈ H. Fix I ⊂ J with |I| < ∞, and let B be the g-Bessel



S. S. Karimizad. / J. Linear. Topological. Algebra. 02(01) (2013) 25-33. 29

bound of {Γj}j∈J . Then for all f ∈ H we have∥∥∥∑
i∈I

Γ∗
iΛif

∥∥∥2 = sup
∥g∥=1

∣∣ < ∑
i∈I

Γ∗
iΛif, g >

∣∣2
= sup

∥g∥=1

∣∣∑
i∈I

< Λif,Γig >
∣∣2

⩽ sup
∥g∥=1

(∑
i∈I

∥Λif∥2
)(∑

i∈I
∥Γig∥2

)
⩽ B

∑
i∈I

∥Λif∥2.

It follows that
∑

j∈J Γ
∗
jΛjf is weakly unconditionally Cauchy and hence unconditionally

convergent in H. ■

Proposition 2.3 Let {Ξj}j∈J , {Ξ′
j}j∈J be g-orthonormal bases for H,U with respect

to {Wj}j∈J respectively, and let T : H → U be a bounded linear operator such that
Ξ′
jT = Ξj for all j ∈ J . Then T is a unitary operator.

Proof. For each f ∈ H we have

∥Tf∥2 =
∑
j∈J

∥Ξ′
jTf∥2 =

∑
j∈J

∥Ξjf∥2 = ∥f∥2,

which implies that T is an isometry operator. Further for every g ∈ U we compute

T ∗g =
∑
j∈J

T ∗Ξ′∗
j Ξ

′
jg =

∑
j∈J

Ξ∗
jΞ

′
jg.

This yields

∥T ∗g∥2 =<
∑
j∈J

Ξ∗
jΞ

′
jg,

∑
k∈J

Ξ∗
kΞ

′
kg >

=
∑
j∈J

∑
k∈J

δjk < Ξ′
jg,Ξ

′
kg >

=
∑
j∈J

∥Ξ′
jg∥2 = ∥g∥2.

Thus T is a co-isometry, which finishes the proof. ■

Theorem 2.4 Let Ξ = {Ξj}j∈J be a g-orthonormal system for H with respect to
{Wj}j∈J . Then the following conditions are equivalent:

(i) Ξ is a g-orthonormal basis for H with respect to {Wj}j∈J .
(ii) f =

∑
j∈J Ξ

∗
jΞjf ∀f ∈ H.

(iii) ∥f∥2 =
∑

j∈J ∥Ξ∗
jΞjf∥2 ∀f ∈ H.

(iv) ∥f∥2 =
∑

j∈J ∥Ξjf∥2 ∀f ∈ H.

(v) < f, g >=
∑

j∈J < Ξjf,Ξjg > ∀f, g ∈ H.

(vi) If Ξjf = 0 for all j ∈ J then f = 0.
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(vii) H = span{Ξ∗
jΞj(H)}j∈J .

(viii) H = span{Ξ∗
j (Wj)}j∈J .

Proof. (i) ⇒ (ii) By the assumptions {Ξ∗
jeij}j∈J,i∈Jj

is an orthonormal basis for H.
Therefore for all f ∈ H we have

<
∑
j∈J

Ξ∗
jΞjf, f > =

∑
j∈J

∥Ξjf∥2 =
∑
j∈J

∑
i∈Jj

| < f,Ξ∗
jeij > |2 = ∥f∥2 =< f, f > .

From this (ii) follows.
(ii) ⇒ (iii) Since Ξ is a g-orthonormal system for H with respect to {Wj}j∈J , hence

for all f ∈ H and j ∈ J we have (Ξ∗
jΞj)

2f = Ξ∗
jΞjf. This yields

∥f∥2 =<
∑
j∈J

Ξ∗
jΞjf, f >=

∑
j∈J

∥Ξ∗
jΞjf∥2,

which implies (iii). The implications (iii) ⇒ (iv) ⇒ (v) ⇒ (vi) are clear. To prove
(vi) ⇒ (vii) assume that f ⊥ span{Ξ∗

jΞj(H)}j∈J , hence ∥Ξjf∥2 =< f,Ξ∗
jΞjf >= 0 and

so Ξjf = 0 for all j ∈ J , it shows that f = 0 and thus (vii) follows. Also the implication
(vii) ⇒ (viii) is obvious. To prove (viii) ⇒ (i) suppose that

A =
{
f ∈ H :

∑
j∈J

Ξ∗
jΞjf = f

}
.

It is obvious that A is a closed subspace of H. It follows by assumption that for every
i, j ∈ J and f ∈ H we have < Ξ∗

jΞjf,Ξ
∗
iΞif >= δij < Ξjf,Ξif >, which implies that

Ξ∗
jΞjΞ

∗
iΞi = δijΞ

∗
jΞi. Thus Ξ∗

jΞjf ∈ A. Now suppose f ∈ A⊥, then for all j ∈ J we

compute ∥Ξjf∥2 =< Ξ∗
jΞjf, f >= 0, hence Ξjf = 0. Let j ∈ J and g ∈ Wj then

< f,Ξ∗
jg >=< Ξjf, g >= 0. It follows that f ⊥ span{Ξ∗

j (Wj)}j∈J = H and so f = 0,
therefore H = A. For every f ∈ H we further have

f =
∑
j∈J

Ξ∗
jΞjf =

∑
j∈J

∑
i∈Jj

< f,Ξ∗
jeij > Ξ∗

jeij .

From this the result follows. ■

Let {Zj}j∈J be a family of closed subspaces inH, then {Zj}j∈J is called an orthonormal
fusion basis for H if H =

⊕
j∈J Zj .

Corollary 2.5 Let Ξ = {Ξj}j∈J be a g-orthonormal basis forH with respect to {Wj}j∈J ,
and let Vj = Ξ∗

jΞj(H) for all j ∈ J . Then {Vj}j∈J is an orthonormal fusion basis for H.

Proof. This claim follows immediately from the fact that for each i, j ∈ J we have

Ξ∗
jΞjΞ

∗
iΞi = δijΞ

∗
jΞi.

■

Corollary 2.6 Let Ξ = {Ξj}j∈J be a Parseval g-frame of co-isometries for H with
respect to {Wj}j∈J . Then Ξ is a g-orthonormal basis for H with respect to {Wj}j∈J .
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Proof. Fix i ∈ J , since Ξ is a Parseval g-frame for H with respect to {Wj}j∈J . Thus for
every g ∈ Wi, we have

∥Ξ∗
i g∥2 =

∑
j∈J

∥ΞjΞ
∗
i g∥2 = ∥Ξ∗

i g∥2 +
∑
j∈J

j ̸=i

∥ΞjΞ
∗
i g∥2.

Hence
∑

j∈J

j ̸=i

∥ΞjΞ
∗
i g∥2 = 0. So ΞjΞ

∗
i g = 0 for all j ̸= i. This shows that Ξ = {Ξj}j∈J is

a g-orthonormal system for H with respect to {Wj}j∈J . Now the result follows from the
Theorem 2.4. ■

Definition 2.7 Let {Λj}j∈J and {Γj}j∈J be sequences for H with respect to {Wj}j∈J
and {Vj}j∈J respectively. Then

(i) {Λj}j∈J and {Γj}j∈J are said to be biorthogonal for H with respect to
{Wj}j∈J , {Vj}j∈J if

< Λ∗
i g,Γ

∗
jg

′ >= δij < g, g′ > ∀i, j ∈ J, g ∈ Wi, g
′ ∈ Vj .

(ii) {Λj}j∈J is called a g-Riesz basis for H with respect to {Wj}j∈J if it’s g-complete
set for H with respect to {Wj}j∈J and there exist constants 0 < A ⩽ B < ∞
such that for any finite subset I ⊂ J and gi ∈ Wi, (i ∈ I) we have

A
∑
i∈I

∥gi∥2 ⩽
∥∥∑

i∈I
Λ∗
i gi

∥∥2 ⩽ B
∑
i∈I

∥gi∥2. (9)

Theorem 2.8 Let Λ = {Λj}j∈J be a g-Riesz basis for H with respect to {Wj}j∈J , then
there exists a sequence Γ = {Γj}j∈J for H with respect to {Wj}j∈J such that

f =
∑
j∈J

Γ∗
jΛjf ∀f ∈ H. (10)

Γ is also a g-Riesz basis for H with respect to {Wj}j∈J and Λ,Γ are biorthogonal for
H with respect to {Wj}j∈J . Moreover the series (10) converges unconditionally for all
f ∈ H.

Proof. By [6, Corollary 3.4] there is a g-orthonormal basis {Ξj}j∈J for H with respect to
{Wj}j∈J and a bounded invertible operator T on H such that Λ = {Λj}j∈J = {ΞjT}j∈J .
Put Γj = Ξj(T

−1)∗ for all j ∈ J . Obviously Γ = {Γj}j∈J is a g-Riesz basis for H with
respect to {Wj}j∈J and we have

< Λ∗
i g,Γ

∗
jg

′ >=< T ∗Ξ∗
jg, T

−1Ξ∗
jg

′ >= δij < g, g′ > ∀i, j ∈ J, g ∈ Wi, g
′ ∈ Wj

which implies that Λ,Γ are biorthogonal for H with respect to {Wj}j∈J . Moreover, for
all f ∈ H we observe that∑

j∈J
Γ∗
jΛjf =

∑
j∈J

T−1Ξ∗
jΞjTf = T−1Tf = f.

Since every g-Riesz basis is a g-Bessel sequence thus, convergent unconditionally of the
above series follows by Theorem 2.2. ■
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Let Λ = {Λj}j∈J and Γ = {Γj}j∈J be g-Bessel sequences for H with respect to
{Wj}j∈J , {Vj}j∈J respectively. Then Γ is called a dual g-frame of Λ for H with respect
to {Vj}j∈J , {Wj}j∈J if

f =
∑
j∈J

Γ∗
jΛjf ∀f ∈ H.

It is easy to check that Γ is a dual g-frame of Λ for H with respect to {Vj}j∈J , {Wj}j∈J
if and only if ΘΓΘ

∗
Λ = IdH, in this case Λ and Γ are also g-frames for H with respect to

{Wj}j∈J , {Vj}j∈J . Since ΘΛΘ
∗
Γ = IdH, hence Λ is also a dual g-frame of Γ for H with

respect to {Wj}j∈J , {Vj}j∈J .
The following example shows that the dual g-frame of a g-orthonormal basis is not

unique.

Example 2.9 Fix some n ∈ N, 1 ⩽ j ⩽ n and define Wj ⊂ Cn+1, by Wj =

span{
∑j+1

k=1 ek}, where {ei}n+1
i=1 is the standard orthonormal basis for Cn+1. Also define

Ξj : Cn → Wj with Ξj({zi}ni=1) =
zj√
j + 1

j+1∑
k=1

ek.

Then Ξ = {Ξj}nj=1 is a g-orthonormal basis for Cn with respect to {Wj}nj=1. Therefore
by Theorem 2.4, Ξ is a dual g-frame of itself for Cn with respect to {Wj}nj=1. Now if for
each 1 ⩽ j ⩽ n, we define Vj = span{ej} and

Γj : Cn → Vj and Γj({zi}ni=1) =
√

j + 1zjej .

Then for all z ∈ Cn we have z =
∑n

j=1 Γ
∗
jΞjz, that is Γ = {Γj}nj=1 is a dual g-frame of

Ξ = {Ξj}nj=1 for Cn with respect to {Vj}nj=1, {Wj}nj=1 respectively.

Proposition 2.10 Let Λ = {Λj}j∈J be a g-frame for H with respect to {Wj}j∈J , then
there exists a g-orthonormal basis {Ξj}j∈J for

(∑
j∈J ⊕Wj

)
ℓ2

with respect to {Wj}j∈J
such that ΞjΘ

∗
Λ = Λj for all j ∈ J .

Proof. For all j ∈ J define Ξj :
(∑

j∈J ⊕Wj

)
ℓ2

→ Wj by Ξj({gk}k∈J) = gj , then

Ξ∗
jg = {δkjπWk

g}k∈J for all g ∈ K, where δkj is the Kronecker delta. First of all, {Ξj}j∈J
is a g-orthonormal system for H with respect to {Wj}j∈J . To see this, let g ∈ Wj , g

′ ∈ Wi

and i, j ∈ J . Then we have

< Ξ∗
jg,Ξ

∗
i g

′ > =
∑
k∈J

δkjδki < πWk
g, πWk

g′ >

= δji < πWj
g, πWj

g′ >= δji < g, g′ > .

On the other hand for any g = {gk}k∈J ∈
(∑

j∈J ⊕Wj

)
ℓ2

we compute∑
j∈J

∥Ξjg∥2 =
∑
j∈J

∥gj∥2 = ∥g∥2.

By Theorem 2.4 {Ξj}j∈J is a g-orthonormal basis for
(∑

j∈J ⊕Wj

)
ℓ2

with respect to

{Wj}j∈J . It is easy to check that ΞjΘ
∗
Λ = Λj for all j ∈ J . Now the conclusion follows.■
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