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Frames for compressed sensing using coherence
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Abstract. We give some new results on sparse signal recovery in the presence of noise, for
weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for
random dictionaries this condition is rarely satisfied. Moreover, we give better estimations
then the ones given recently by Cai, Wang and Xu.
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1. Introduction

Compressed sensing (also known as compressive sensing or compressive sampling) is a
relatively new field of research, started by the work of E. Candés, D. Donoho, J. Romberg
and T. Tao (see [5], [6], [9]). Using the theory of compressed sensing we can recover signals
and images from far fewer samples or measurements than were traditionally thought
necessary. In order to do this, compressed sensing is based on two principles: sparsity
and incoherence. Using the concept of sparsity it is possible to exactly recover a signal c
knowing that it is sparse or nearly sparse in the sense that it has only a limited number
of nonzero components. On the other hand, incoherence says that unlike the signal of
interest, the sampling/sensing waveforms have an extremely dense representation in a
proper basis ([4]).
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Important applications of compressed sensing are in signal processing, imagine pro-
cessing ([11]), coding and information theory ([5]), compressive radar ([1], [16]), MRI
(Magnetic Resonance Imaging), where using compressed sensing techniques we can ob-
tain benefits of imagine speed, reducing costs (see for example [13], [14]). Successfully,
a significant number of compressive sensing recovery algorithms were discovered, for ex-
ample orthogonal matching pursuit ([15]), basis pursuit ([7]), l1-minimization. Current
directions of research are in computational biology, geophysical data analysis, astronomy,
communications and much more other areas.

In this paper, we present a new result on sparse signals recovery in the presence of
noise, which generalizes and completes a result of T. Cai et al., presented in the paper
[2]. Our paper is in connection to frame theory; we use the synthesis operator to establish
new results on mutual coherence.

Let H = Hn be an real n-dimensional space, with the inner product ⟨·, ·⟩ and
F = {f1, f2, . . . , fN} ⊂ Hn. We associate the following operators:

The analysis operator

Θ : Hn → RN ,

which is given by

Θx := ({⟨x, f1⟩, ⟨x, f2⟩, . . . , ⟨x, fN ⟩})

and the synthesis operator

T : CN → H, T (c1, c2, . . . , cN ) =

N∑
j=1

cjfj .

We suppose that wi = ∥fi∥ ̸= 0, i = 1, N.

For c = (c1, c2, . . . , cN ) ∈ CN and for 0 < p < ∞ we denote

∥c∥p,w :=

( N∑
i=1

|ci|pwp
i

)1/p

, ⟨c, d⟩w =

N∑
i=1

cidiw
2
i

and

⟨c, d⟩ =
N∑
i=1

cidi.

We define by

µ := max
i ̸=j

|⟨fi, fj⟩|
∥fi∥∥fj∥

the coherence of F . Usually, it is assumed that ∥fi∥ = 1, i = 1, N but, for random
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dictionaries is very rarely satisfied. It is known that µ satisfies the Welch’s inequality [18]

√
N − n

n(N − 1)
⩽ µ ⩽ 1.

We also denote by ∥c∥0 = #{i : ci ̸= 0} the cardinality of the support of c.
Clearly, ∥c1+c2∥0 ⩽ ∥c1∥0+∥c2∥0, but ∥·∥0 isn’t homogeneous. We say that c is s−sparse
if ∥c∥0 ⩽ s.

It is known that if F is a frame for Hn, then the equation

y = Tc

has a solution for any y ∈ Hn.
We consider the equation

y = Tc+ z

where z is an unknown noise term, with ∥z∥2 ⩽ ε and the problem

(P1,w) min
c̃∈RN

∥c̃∥1,w subject to ∥y − T c̃∥2,w ⩽ η.

The solution of this problem is given in the final part of the present paper. Our result
extends and gives better estimations than the one presented in reference [2]. Also, we
present a result related to Orthogonal Matching Pursuit algorithm (in connection with
a result given by J.A. Tropp [17]) for dictionaries with the norm not necessarily equal to
1.

2. Preliminary results

Lemma 2.1 (Basic Lemma) Let Hn be an real n-dimensional Hilbert space and T the
synthesis operator for F . Then, for all c, d ∈ RN , we have

(i) supp c ∩ supp d = ∅ implies |⟨Tc, Td⟩| ⩽ µ∥c∥1,w∥d∥1,w

(ii) (1 + µ)∥c∥22,w − µ∥c∥21,w ⩽ ∥Tc∥2 ⩽ (1− µ)∥c∥22,w + µ∥c∥21,w

(iii) if c is s-sparse, then we have

[1− µ(s− 1)]∥c∥22,w ⩽ ∥Tc∥2 ⩽ [1 + µ(s− 1)]∥c∥22,w
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Proof. For all c, d ∈ RN we have,

|⟨Tc, Td⟩ − ⟨c, d⟩w| =
∣∣∣∣⟨ N∑

i=1

cifi,

N∑
j=1

djfj⟩ −
N∑
i=1

cidiw
2
i

∣∣∣∣
=

∣∣∣∣∑
i̸=j

cidj⟨fi, fj⟩
∣∣∣∣

⩽ µ
∑
i̸=j

|ci||dj |∥fi∥∥fj∥

= µ(∥c∥1,w∥d∥1,w − ⟨c, d⟩w)

The relation in (i) follows from the above computation because supp c ∩ supp d = ∅
implies ⟨c, d⟩w = 0.

The relation in (ii) follows for d = c, and the relation in (iii) it follows from (ii) using
Cauchy-Schwarz inequality. ■

The following three Propositions are extensions to weighted spaces of some well-known
results.

Proposition 2.2 Let ∥c∥0 ⩽ s, ∥d∥0 ⩽ s and Tc = Td. For

s <
1

2

(
1

µ
+ 1

)
it follows that c = d.

Proof. 0 = ∥T (c− d)∥2 ⩾ [1−µ(2s− 1)]∥c− d∥22,w. It follows that ∥c− d∥2,w = 0 which
implies that c = d. ■

Proposition 2.3 Let s < 1 + 1
µ . Then {f1, . . . , fs} is linear independent.

Proof. If

s∑
i=1

cifi = 0,

then, by Lemma 2.1, it follows

∥c∥22,w = 0

hence c = 0. ■

Proposition 2.4 Let

δs = sup
c̸=0

∥c∥0⩽s

|∥Tc∥2 − ∥c∥22,w|
∥c∥22,w

.

Then δs ⩽ µ(s− 1).

Proof. Immediately from Lemma 2.1. ■
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When the elements of F are all of norm 1 and µ <
1

2s− 1
, J.A. Tropp [17] shown that

Orthogonal Matching Pursuit algorithm will recovery any s-sparse signal for measure-
ments y = Tc.

We will show that, in the general case when the elements are not necessarily of the
norm equal to 1, we have a more general result with a much more easier proof.

Theorem 2.5 Let c ̸= 0, c ∈ RN and j0 be such that

⟨Tc, f ′
j0⟩ = min

1⩽j⩽N
⟨Tc, f ′

j⟩, where f ′
j =

fj
∥fj∥

, 1 ⩽ j ⩽ N.

If c is s-sparse and δs + µs < 1, then j0 ∈ supp c.

Proof. If j0 /∈ supp c, then we have

µ ⩾ ∥Tc∥2

∥c∥21,w
(1)

Indeed,

∥Tc∥2 = ⟨Tc,
N∑
j=1

cjfj⟩

=

N∑
j=1

cj⟨Tc, fj⟩

⩽
N∑
j=1

|cj |wj
|⟨Tc, fj⟩|
∥fj∥

⩽ |⟨Tc, fj0⟩|
∥fj0∥

∥c∥1,w.

But j0 /∈ supp c implies that |⟨fj , fj0⟩| ⩽ µ∥fj∥∥fj0∥, for j ∈ supp c.
Hence

|⟨Tc, fj0⟩| = |
∑

j∈supp c

cj⟨fj , fj0⟩| ⩽ µ
∑

j∈supp c

|cj |wj∥fj0∥ = µ∥fj0∥∥c∥1,w.

Hence

∥Tc∥2 ⩽ µ∥c∥21,w.

Using Cauchy-Schwarz inequality, from relation (1), we have

µ ⩾ ∥Tc∥2

∥c∥21,w
⩾

(1− δs)∥c∥22,w
∥c∥21,w

⩾ 1− δs
s

.
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■

Corollary 2.6 If c is s-sparse and µ <
1

2s− 1
, then j0 ∈ supp c.

Proof. From Proposition 2.4 and Theorem 2.5. ■

3. Main results

For a vector c ∈ RN we denote by cs the vector c with all but the s−largest entries set
to zero. Also, for T0 ⊂ {1, 2, . . . , N}, we denote by T c

0 the complement of T0.

Theorem 3.1 Let c, d ∈ RN such that ∥c∥1,w ⩾ ∥d∥1,w and let v = d− c. If

µ <
1

2s− 1

then we have

∥v∥2,w ⩽

√
3− 1

2s−1

1− µ(2s− 1)
∥Tv∥+

2
√

µ(1 + µ)s

1− µ(2s− 1)
e0,

where

e0 =
∥c− cs∥1,w√

s
.

Proof. We denote by T0 the locations of the s largest coefficients of c. We have

∥vT c
0
∥1,w ⩽ ∥vT0

∥1,w + 2e0. (2)

Indeed,

∥c∥1,w ⩾ ∥d∥1,w =

N∑
i=1

wi|vi + ci|

=
∑
i∈T0

wi|vi + ci|+
∑
i∈T c

0

wi|vi + ci|

⩾ ∥cT0
∥1,w − ∥vT0

∥1,w + ∥vT c
0
∥1,w − ∥cT0

∥1,w,

hence

2∥cT c
0
∥1,w + ∥vT0

∥1,w ⩾ ∥vT c
0
∥1,w,

i.e. relation (2). We have

⟨Tv, TvT0
⟩ = ⟨TvT0

+ TvT c
0
, T vT0

⟩

= ∥TvT0
∥2 + ⟨TvT c

0
, T vT0

⟩

⩾ [1− µ(s− 1)]∥vT0
∥22,m − µ∥vT c

0
∥1,m∥vT0

∥1,w
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But vT0
is s− sparse and from Lemma 2.1 we have,

∥vT0
∥1,w ⩽

√
s∥vT0

∥2,w (3)

We obtain

∥Tv∥∥TvT0
∥ ⩾ [1− µ(s− 1)]∥vT0

∥22,w − µ∥vT c
0
∥1,m

√
s∥vT0

∥2,w

But

∥TvT0
∥ ⩽

√
1 + µ(s− 1)∥vT0

∥2,w (4)

So √
1 + µ(s− 1)∥Tv∥ ⩾ [1− µ(s− 1)]∥vT0

∥2,w − µ
√
s∥vT c

0
∥1,w

But

∥vT c
0
∥1,w ⩽ ∥vT0

∥1,w + 2
√
se0. (5)

Using relations (3) and (5), we obtain

∥vT c
0
∥1,w ⩽

√
s[∥vT0

∥2,w + 2e0] (6)

It follows that√
1 + µ(s− 1)∥Tv∥ ⩾ [1− µ(s− 1)]∥vT0

∥2,w − µ
√
s[
√
s(∥vT0

∥2,w + 2e0)]

⩾ [1− µ(s− 1)]∥vT0
∥2,w − µs∥vT0

∥2,w − 2µse0

So we obtain the following inequality

∥vT0
∥2,w ⩽

√
1 + µ(s− 1)

1− µ(2s− 1)
∥Tv∥+ 2µse0

1− µ(2s− 1)
(7)

On the other hand, by the basic lemma (Lemma 2.1), we have

∥Tv∥2 ⩾ (1 + µ)∥v∥22,w − µ∥v∥21,w

and by using the equation (3) and the equation (5) we obtain

∥v∥1,w = ∥vT0
∥1,w + ∥vT c

0
∥1,w

⩽ 2∥vT0
∥1,w + 2

√
se0

⩽ 2
√
s∥vT0

∥2,w + 2
√
se0.

so

∥v∥1,w ⩽ 2
√
s∥vT0

∥2,w + 2
√
se0. (8)
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and then

∥Tv∥2 ⩾ (1 + µ)∥v∥22,w − 4µs(∥vT0
∥2,w + e0)

2

which is equivalent to

(1 + µ)∥v∥22,w ⩽ ∥Tv∥2 + 4µs(∥vT0
∥2,w + e0)

2 (9)

Combining the equation (7) and the equation (9), we have

(1 + µ)∥v∥22,w ⩽ ∥Tv∥2 + 4µs

(√
1 + µ(s− 1)

1− µ(2s− 1)
∥Tv∥+ 2µse0

1− µ(2s− 1)
+ e0

)2

= ∥Tv∥2 + 4µs

(√
1 + µ(s− 1)

1− µ(2s− 1)
∥Tv∥+ (1 + µ)e0

1− µ(2s− 1)

)2

.

Hence

(1 + µ)∥v∥22,w ⩽ ∥Tv∥2 +
(
2
√
µs

√
1 + µ(s− 1)

1− µ(2s− 1)
∥Tv∥+ 2

√
µs

(1 + µ)e0
1− µ(2s− 1)

)2

.

We use the following inequality

α2 + (mα+ β)2 ⩽ (
√

1 +m2α+ β)2

where

α = ∥Tv∥

m = 2
√
µs

√
1 + µ(s− 1)

1− µ(2s− 1)

β = 2
√
µs

(1 + µ)e0
1− µ(2s− 1)

With this notations, we have

(
√

1 + µ)2∥v∥22,w ⩽ (
√

1 +m2α+ β)2

so

∥v∥22,w ⩽ 1√
1 + µ

(
√

1 +m2α+ β)2

But

√
1 +m2 =

√
(8s2 − 8s+ 1)µ2 + 2µ+ 1

1− µ(2s− 1)
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So we obtain

∥v∥2,w ⩽ 1√
1 + µ

(√
(8s2 − 8s+ 1)µ2 + 2µ+ 1

1− µ(2s− 1)
∥Tv∥+

2
√
µs(1 + µ)e0

1− µ(2s− 1)

)
And so

∥v∥2,w ⩽ ∥Tv∥
1− µ(2s− 1)

√
(8s2 − 8s+ 1)µ2 + 2µ+ 1

1 + µ
+

2
√
µs

√
1 + µe0

1− µ(2s− 1)
.

We denote

F (µ) =
(8s2 − 8s+ 1)µ2 + 2µ+ 1

1 + µ

Since

F ′(µ) =
(8s2 − 8s+ 1)µ2 + 2(8s2 − 8s+ 1)µ+ 1

(1 + µ)2
⩾ 0.

and µ ⩽ 1
2s−1 it follows that

F (µ) ⩽ F (
1

2s− 1
) =

6s− 4

2s− 1
.

Finally, we obtain that

∥v∥2,w ⩽

√
3− 1

2s−1

1− µ(2s− 1)
∥Tv∥+

2
√

µs(1 + µ)

1− µ(2s− 1)
e0.

■

Theorem 3.2 Assume that

µ <
1

2s− 1

and ∥z∥2 ⩽ ε. Then the solution c∗ of (P1,w) obeys

∥c∗ − c∥2,w ⩽

√
3− 1

2s−1

1− µ(2s− 1)
(η + ε) +

2
√

µs(1 + µ)

1− µ(2s− 1)
e0.

Proof. This result it follows from Theorem 3.1 since

∥Tv∥2 = ∥Tc∗ − y − (Tc− y)∥2
⩽ ∥Tc∗ − y∥2 + ∥Tc− y∥2
⩽ ε+ η.

■
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In [2] the authors obtained, for c s−sparse and ∥fi∥ = 1, i = 1, N , the following
estimation

∥c∗ − c∥2,w ⩽
√

3(1 + µ)

1− (2s− 1)µ
(η + ε).

We notice that our estimation, given in the above Theorem is better. The authors of the
paper presented in reference [2] indicate that there exist a relation like the one given in
the above Theorem, but without the specification of the constants.
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