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A note on the convergence of the Zakharov-Kuznetsov
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Abstract. In this paper, the convergence of Zakharov-Kuznetsov (ZK) equation by homo-
topy analysis method (HAM) is investigated. A theorem is proved to guarantee the conver-
gence of HAM and to find the series solution of this equation via a reliable algorithm.
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1. Introduction

The Zakharov-Kuznetsov equation ZK(m,n, k) governs the behavior of weakly nonlinear
ion-acoustic waves in plasma comprising cold ions and hot isothermal electrons in the
presence of a uniform magnetic field [12, 13]. The tanh method was applied by Wazwaz
to solve the modified ZK equation [15]. Huang applied the polynomial expansion method
to solve the coupled ZK equations [4]. Zhao et al. obtained numbers of solitary waves,
periodic waves and kink waves using the theory of bifurcations of dynamical systems
for the modified ZK equation [16]. Inc solved nonlinear dispersive ZK equations using
the Adomian decomposition method [6]. Biazar et al. used the homotopy perturbation
method to solve the Zakharov-Kuznetsov equations [3]. Hesam et al. applied the differen-
tial transform method to obtain the analytical solution of Zakharov-Kuznetsov equations
[5] and Usman et al. obtained the series solution of Zakharov-Kuznetsov equations by
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homotopy analysis method [14].
In this work, we study on the convergence the HAM to use on the ZK equation and we
prove a convergence theorem to illustrate if this method is convergent, it converges to
the exact solution of the equation. We consider the following ZK(m,n, k) equation:

ut + a(up)x + b(ul)xxx + c(uk)yyx = 0, p, l, k ̸= 0, (1)

where a, b, c are arbitrary constants and m,n, k are positive integers. At first in section 2,
we remind the main idea of HAM, then in sections 3, we prove the convergence theorem
for ZK equation.

2. Preliminaries

In order to describe the HAM [1–3, 7–11], we consider the following differential equation:

N [u(x, y, t)] = 0, (2)

where N is a nonlinear operator, x, y, t denote the independent variables and u is an
unknown function. By means of the HAM, we construct the zeroth-order deformation
equation

(1− q)L[Φ(x, y, t; q)− u0(x, y, t)] = qhH(x, y, t)[Φ(x, t; q)], (3)

where q ∈ [0, 1] is the embedding parameter, h ̸= 0 is an auxiliary parameter, L is an
auxiliary linear operator andH(x, y, t) is an auxiliary function. Φ(x, y, t; q) is an unknown
function and u0(x, y, t) is an initial guess of u(x, y, t). It is obvious that when q = 0 and
q = 1, we have:

Φ(x, y, t; 0) = u0(x, y, t), Φ(x, y, t; 1) = u(x, y, t),

respectively. therefore, as q increase from 0 to 1, the solution Φ(x, y, t; q) varies from the
u0(x, y, t) to the exact solution u(x, y, t). By Taylor’s theorem, we expand Φ(x, y, t; q) in
a power series of the embedding parameter q as follows:

Φ(x, y, t; q) = u0(x, y, t) +

+∞∑
m=1

um(x, y, t)qm (4)

where

um(x, y, t) =
1

m!

∂mΦ(x, y, t; q)

∂qm

∣∣∣
q=0

(5)

Let the initial guess u0(x, y, t), the auxiliary linear operator L, the nonzero auxiliary
parameter h and the auxiliary function H(x, y, t) be properly chosen so that the power
series (4) converges at q = 1, then, we have:
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u(x, y, t) = u0(x, y, t) +

+∞∑
m=1

um(x, y, t), (6)

which must be one of the solution of the original nonlinear equation. Define the vectors

−→u n = {u0(x, y, t), u1(x, y, t), . . . , un(x, y, t)}. (7)

By differentiating the zeroth order deformation (3) m times with respect to the embed-
ding parameter q and then setting q = 0 and finally dividing theme by m!, we get the
following m−th order deformation equation:

L[um(x, y, t)− χmum−1(x, y, t)] = hH(x, y, t)Rm(−→u m−1), (8)

where

Rm(−→u m−1) =
1

(m− 1)!

∂m−1N [Φ(x, y, t; q)]

∂qm−1

∣∣∣
q=0

, (9)

and

χm =
{
0, m ⩽ 1,
1, m > 1.

(10)

It should be emphasized that um(x, y, t) for m ⩾ 1 is governed by the linear equation (8)
with initial conditions that come from the original problem [7].

3. Main Idea

In this section, at first a lemma is proved which is applied to complete the proof of the
next theorem that proves the convergence of the HAM on Eq. (1).

Lemma 3.1 According to the concept of the HAM, for r ∈ N,

+∞∑
m=1

1

(m− 1)!

∂m−1

∂qm−1
(ϕr(x, y, t; q))

∣∣
q=0

= [

+∞∑
m=0

um]r.

Proof. The proof is by induction on r. At first, we suppose r = 1, therefore, according
to the Eq.(5) we have, 1

(m−1)!
∂m−1

∂qm−1 (ϕ(x, y, t; q))
∣∣
q=0

= um−1. Therefore,

+∞∑
m=1

1

(m− 1)!

∂m−1

∂qm−1
(ϕ(x, y, t; q))

∣∣
q=0

=

+∞∑
m=0

um
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If r = 2, we have,

1

(m− 1)!

∂m−1

∂qm−1
(ϕ2(x, y, t; q))

∣∣∣
q=0

=

1

(m− 1)!

m−1∑
j=0

(m− 1)!

j!(m− 1− j)!

∂jϕ(x, y, t; q)

∂qj
∂m−j−1ϕ(x, y, t; q)

∂qm−j−1

∣∣∣
q=0

=

m−1∑
j=0

ujum−j−1.

Therefore, we have,

+∞∑
m=1

m−1∑
j=0

ujum−j−1 =

+∞∑
j=0

+∞∑
m=j+1

ujum−j−1 =

+∞∑
j=0

uj

+∞∑
i=0

ui = [

+∞∑
m=0

um]2. (11)

Now, we suppose ,
∑+∞

m=1
1

(m−1)!
∂m−1

∂qm−1 (ϕr(x, y, t; q))
∣∣
q=0

= [
∑+∞

m=1 um]r. It must be proved

that for r + 1. For this purpose,

1

(m− 1)!

∂m−1

qm−1
(ϕr+1(x, y, t; q))

∣∣∣
q=0

=
1

(m− 1)!

∂m−1

∂qm−1
((ϕr(x, y, t; q)ϕ(x, y, t; q)))

∣∣∣
q=0

.

Therefore

+∞∑
m=1

1

(m− 1)!

m−1∑
j=0

(m− 1)!

j!(m− 1− j)!

∂jϕr(x, y, t; q)

∂qj
∂m−j−1ϕ(x, y, t; q)

∂qm−j−1

∣∣∣
q=0

=

+∞∑
j=0

+∞∑
m=j+1

1

j!

∂jϕr(x, y, t; q)

∂qj
um−j−1 =

+∞∑
j=0

1

j!

∂jϕr(x, y, t; q)

∂qj

+∞∑
m=j+1

um−j−1 =

[

+∞∑
j=0

uj ]
r
+∞∑
i=0

ui = [

+∞∑
m=0

um]r+1.

■

Theorem 3.2 If the series solution (6) of problem (1) obtained from the HAM and also

the series
∑+∞

m=0
∂um

∂t

∑+∞
m=0

∂up
m

∂x ,
∑+∞

m=0
∂3ul

m

∂x3 and
∑+∞

m=0
∂3uk

m

∂y2∂x are convergent then (6)

converges to the exact solution of the Eq. (1).

Proof. Let,

u(x, y, t) =

+∞∑
m=0

um(x, y, t)
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where

lim
m→+∞

um(x, y, t) = 0. (12)

We can write,

n∑
m=1

[um(x, y, t)−χmum−1(x, y, t)] = u1+(u2−u1)+(u3−u2)+· · ·+(un−un−1) = un(x, y, t),

using (12), we have,

+∞∑
m=1

[um(x, y, t)− χmum−1(x, y, t)] = lim
n→+∞

un(x, y, t) = 0.

Since L is a linear operator, we can write

+∞∑
m=1

L[um(x, y, t)− χmum−1(x, y, t)] = L

+∞∑
m=1

[um(x, y, t)− χmum−1(x, y, t)] = 0.

From above expression and equation (8), we obtain

+∞∑
m=1

L[um(x, y, t)− χmum−1(x, y, t)] = hH(x, y, t)

+∞∑
m=1

[Rm(−→u m−1)].

Since h ̸= 0 and H(x, y, t) ̸= 0, we have

+∞∑
m=1

[Rm(−→u m−1)] = 0. (13)

From (9),it holds

+∞∑
m=1

[Rm(−→u m−1)] =

+∞∑
m=1

[ 1

(m− 1)!

∂m−1

∂qm−1
[
∂ϕ(x, y, t; q)

∂t
+a

∂ϕp(x, y, t; q)

∂x
+b

∂3ϕl(x, y, t; q)

∂x3
+c

∂3ϕk(x, y, t; q)

∂y2∂x
]
∣∣∣
q=0

]
.

(14)



12 A. Fallahzadeh et al. / J. Linear. Topological. Algebra. 03(01) (2014) 7-13.

According to the hypotheses of the theorem and also lemma 3.1, we have,

+∞∑
m=1

[Rm(−→u m−1)] =

+∞∑
m=1

[ 1

(m− 1)!
[
∂∂m−1ϕ(x, y, t; q)

∂t∂qm−1
+ a

∂∂m−1ϕp(x, y, t; q)

∂x∂qm−1
+

b
∂3∂m−1ϕl(x, y, t; q)

∂x3∂qm−1
+ c

∂3∂m−1ϕk(x, y, t; q)

∂y2∂x∂qm−1
]
∣∣∣
q=0

]
=

∂

∂t

+∞∑
m=0

um + a
∂

∂x
[

+∞∑
m=0

um]p + b
∂3

∂x3
[

+∞∑
m=0

um]l + c
∂3

∂y2∂x
[

+∞∑
m=0

um]k. (15)

From (13) and (15), we have

ut + a(up)x + b(ul)xxx + c(uk)yyx = 0.

■

4. Conclusion

In this paper, we proved a theorem on the convergence of the homotopy analysis method
to solve the Zakharov-Kuznetsov equation. Since the nonlinearity part of the equation
is complicated, we applied an auxiliary relation which was proved in a lemma and used
mathematical induction to complete the proof of the convergence theorem. Therefore,
the HAM can be an efficient and reliable method to solve a nonlinear partial differential
equation with strong nonlinearity like ZK equation.
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