Journal of Linear and Topological Algebra Vol. 03, No. 01, 2014, 7-13

A note on the convergence of the Zakharov-Kuznetsov equation by homotopy analysis method

A. Fallahzadeh^{a*} and M. A. Fariborzi Araghi^a

^aDepartment of Mathematics, Islamic Azad University, Central Tehran Branch, PO. Code 13185.768, Tehran, Iran.

Received 21 May 2014; revised 22 July 2014; accepted 5 August 2014.

Abstract. In this paper, the convergence of Zakharov-Kuznetsov (ZK) equation by homotopy analysis method (HAM) is investigated. A theorem is proved to guarantee the convergence of HAM and to find the series solution of this equation via a reliable algorithm.

© 2014 IAUCTB. All rights reserved.

Keywords: Homotopy analysis method, Zakharov-Kuznetsov equation, convergence, partial differential equation, recursive method.

2010 AMS Subject Classification: 65M12.

1. Introduction

The Zakharov-Kuznetsov equation ZK(m, n, k) governs the behavior of weakly nonlinear ion-acoustic waves in plasma comprising cold ions and hot isothermal electrons in the presence of a uniform magnetic field [12, 13]. The tanh method was applied by Wazwaz to solve the modified ZK equation [15]. Huang applied the polynomial expansion method to solve the coupled ZK equations [4]. Zhao et al. obtained numbers of solitary waves, periodic waves and kink waves using the theory of bifurcations of dynamical systems for the modified ZK equation [16]. Inc solved nonlinear dispersive ZK equations using the Adomian decomposition method [6]. Biazar et al. used the homotopy perturbation method to solve the Zakharov-Kuznetsov equations [3]. Hesam et al. applied the differential transform method to obtain the analytical solution of Zakharov-Kuznetsov equations [5] and Usman et al. obtained the series solution of Zakharov-Kuznetsov equations by

© 2014 IAUCTB. All rights reserved. http://jlta.iauctb.ac.ir

^{*}Corresponding author.

E-mail address: amir_falah6@yahoo.com (A. Fallahzadeh).

homotopy analysis method [14].

In this work, we study on the convergence the HAM to use on the ZK equation and we prove a convergence theorem to illustrate if this method is convergent, it converges to the exact solution of the equation. We consider the following ZK(m, n, k) equation:

$$u_t + a(u^p)_x + b(u^l)_{xxx} + c(u^k)_{yyx} = 0, \quad p, l, k \neq 0,$$
(1)

where a, b, c are arbitrary constants and m, n, k are positive integers. At first in section 2, we remind the main idea of HAM, then in sections 3, we prove the convergence theorem for ZK equation.

2. Preliminaries

In order to describe the HAM [1–3, 7–11], we consider the following differential equation:

$$N[u(x, y, t)] = 0,$$
(2)

where N is a nonlinear operator, x, y, t denote the independent variables and u is an unknown function. By means of the HAM, we construct the zeroth-order deformation equation

$$(1-q)L[\Phi(x,y,t;q) - u_0(x,y,t)] = qhH(x,y,t)[\Phi(x,t;q)],$$
(3)

where $q \in [0, 1]$ is the embedding parameter, $h \neq 0$ is an auxiliary parameter, L is an auxiliary linear operator and H(x, y, t) is an auxiliary function. $\Phi(x, y, t; q)$ is an unknown function and $u_0(x, y, t)$ is an initial guess of u(x, y, t). It is obvious that when q = 0 and q = 1, we have:

$$\Phi(x, y, t; 0) = u_0(x, y, t), \quad \Phi(x, y, t; 1) = u(x, y, t),$$

respectively. therefore, as q increase from 0 to 1, the solution $\Phi(x, y, t; q)$ varies from the $u_0(x, y, t)$ to the exact solution u(x, y, t). By Taylor's theorem, we expand $\Phi(x, y, t; q)$ in a power series of the embedding parameter q as follows:

$$\Phi(x, y, t; q) = u_0(x, y, t) + \sum_{m=1}^{+\infty} u_m(x, y, t)q^m$$
(4)

where

$$u_m(x, y, t) = \frac{1}{m!} \frac{\partial^m \Phi(x, y, t; q)}{\partial q^m} \Big|_{q=0}$$
(5)

Let the initial guess $u_0(x, y, t)$, the auxiliary linear operator L, the nonzero auxiliary parameter h and the auxiliary function H(x, y, t) be properly chosen so that the power series (4) converges at q = 1, then, we have:

$$u(x, y, t) = u_0(x, y, t) + \sum_{m=1}^{+\infty} u_m(x, y, t),$$
(6)

which must be one of the solution of the original nonlinear equation. Define the vectors

$$\vec{u}_n = \{u_0(x, y, t), u_1(x, y, t), \dots, u_n(x, y, t)\}.$$
(7)

By differentiating the zeroth order deformation (3) m times with respect to the embedding parameter q and then setting q = 0 and finally dividing theme by m!, we get the following m-th order deformation equation:

$$L[u_m(x, y, t) - \chi_m u_{m-1}(x, y, t)] = hH(x, y, t)R_m(\overrightarrow{u}_{m-1}),$$
(8)

where

$$R_m(\overrightarrow{u}_{m-1}) = \frac{1}{(m-1)!} \frac{\partial^{m-1} N[\Phi(x, y, t; q)]}{\partial q^{m-1}}\Big|_{q=0},$$
(9)

and

$$\chi_m = \begin{cases} 0, \ m \leqslant 1, \\ 1, \ m > 1. \end{cases}$$
(10)

It should be emphasized that $u_m(x, y, t)$ for $m \ge 1$ is governed by the linear equation (8) with initial conditions that come from the original problem [7].

3. Main Idea

In this section, at first a lemma is proved which is applied to complete the proof of the next theorem that proves the convergence of the HAM on Eq. (1).

Lemma 3.1 According to the concept of the HAM, for $r \in \mathbb{N}$,

$$\sum_{m=1}^{+\infty} \frac{1}{(m-1)!} \frac{\partial^{m-1}}{\partial q^{m-1}} (\phi^r(x, y, t; q)) \Big|_{q=0} = \left[\sum_{m=0}^{+\infty} u_m\right]^r.$$

Proof. The proof is by induction on r. At first, we suppose r = 1, therefore, according to the Eq.(5) we have, $\frac{1}{(m-1)!} \frac{\partial^{m-1}}{\partial q^{m-1}} (\phi(x, y, t; q)) \Big|_{q=0} = u_{m-1}$. Therefore,

$$\sum_{m=1}^{+\infty} \frac{1}{(m-1)!} \frac{\partial^{m-1}}{\partial q^{m-1}} (\phi(x, y, t; q)) \Big|_{q=0} = \sum_{m=0}^{+\infty} u_m$$

If r = 2, we have,

$$\frac{1}{(m-1)!} \frac{\partial^{m-1}}{\partial q^{m-1}} (\phi^2(x, y, t; q)) \Big|_{q=0} =$$

$$\frac{1}{(m-1)!} \sum_{j=0}^{m-1} \frac{(m-1)!}{j!(m-1-j)!} \frac{\partial^j \phi(x,y,t;q)}{\partial q^j} \frac{\partial^{m-j-1} \phi(x,y,t;q)}{\partial q^{m-j-1}} \Big|_{q=0} = \sum_{j=0}^{m-1} u_j u_{m-j-1}.$$

Therefore, we have,

$$\sum_{m=1}^{+\infty} \sum_{j=0}^{m-1} u_j u_{m-j-1} = \sum_{j=0}^{+\infty} \sum_{m=j+1}^{+\infty} u_j u_{m-j-1} = \sum_{j=0}^{+\infty} u_j \sum_{i=0}^{+\infty} u_i = \left[\sum_{m=0}^{+\infty} u_m\right]^2.$$
(11)

Now, we suppose, $\sum_{m=1}^{+\infty} \frac{1}{(m-1)!} \frac{\partial^{m-1}}{\partial q^{m-1}} (\phi^r(x, y, t; q)) \Big|_{q=0} = \left[\sum_{m=1}^{+\infty} u_m\right]^r$. It must be proved that for r+1. For this purpose,

$$\frac{1}{(m-1)!} \frac{\partial^{m-1}}{q^{m-1}} (\phi^{r+1}(x,y,t;q)) \Big|_{q=0} = \frac{1}{(m-1)!} \frac{\partial^{m-1}}{\partial q^{m-1}} ((\phi^r(x,y,t;q)\phi(x,y,t;q))) \Big|_{q=0}.$$

Therefore

$$\sum_{m=1}^{+\infty} \frac{1}{(m-1)!} \sum_{j=0}^{m-1} \frac{(m-1)!}{j!(m-1-j)!} \frac{\partial^j \phi^r(x,y,t;q)}{\partial q^j} \frac{\partial^{m-j-1} \phi(x,y,t;q)}{\partial q^{m-j-1}} \Big|_{q=0} = \sum_{m=1}^{+\infty} \frac{1}{(m-1)!} \sum_{j=0}^{m-1} \frac{(m-1)!}{j!(m-1-j)!} \frac{\partial^j \phi^r(x,y,t;q)}{\partial q^j} \frac{\partial^{m-j-1} \phi(x,y,t;q)}{\partial q^{m-j-1}} \Big|_{q=0} = \sum_{m=1}^{+\infty} \frac{1}{(m-1)!} \sum_{j=0}^{m-1} \frac{(m-1)!}{j!(m-1-j)!} \frac{\partial^j \phi^r(x,y,t;q)}{\partial q^j} \frac{\partial^{m-j-1} \phi(x,y,t;q)}{\partial q^{m-j-1}} \Big|_{q=0} = \sum_{m=1}^{+\infty} \frac{1}{(m-1)!} \sum_{j=0}^{m-1} \frac{(m-1)!}{j!(m-1-j)!} \frac{\partial^j \phi^r(x,y,t;q)}{\partial q^j} \frac{\partial^{m-j-1} \phi(x,y,t;q)}{\partial q^{m-j-1}} \Big|_{q=0} = \sum_{m=1}^{+\infty} \frac{1}{(m-1)!} \sum_{j=0}^{m-1} \frac{(m-1)!}{j!(m-1-j)!} \frac{\partial^j \phi^r(x,y,t;q)}{\partial q^j} \frac{\partial^{m-j-1} \phi(x,y,t;q)}{\partial q^{m-j-1}} \Big|_{q=0} = \sum_{m=1}^{+\infty} \frac{1}{(m-1)!} \sum_{j=0}^{m-1} \frac{(m-1)!}{j!(m-1-j)!} \frac{\partial^j \phi^r(x,y,t;q)}{\partial q^j} \frac{\partial^m \phi^r(x,y,t;q)}{\partial q^{m-j-1}} \Big|_{q=0} = \sum_{m=1}^{+\infty} \frac{1}{(m-1)!} \sum_{j=0}^{m-1} \frac{(m-1)!}{j!(m-1-j)!} \frac{\partial^j \phi^r(x,y,t;q)}{\partial q^j} \frac{\partial^m \phi^r(x,y,t;q)}{\partial q^{m-j-1}} \Big|_{q=0} = \sum_{m=1}^{+\infty} \frac{1}{(m-1)!} \sum_{j=0}^{m-1} \frac{(m-1)!}{j!(m-1-j)!} \frac{\partial^j \phi^r(x,y,t;q)}{\partial q^j} \frac{\partial^m \phi^r(x,y,t;q)}{\partial q^{m-j-1}} \Big|_{q=0} = \sum_{m=1}^{+\infty} \frac{1}{(m-1)!} \sum_{j=0}^{m-1} \frac{(m-1)!}{j!(m-1-j)!} \sum_{j=0}^{m-1} \frac{(m-1)!}{j!(m-1-j)!} \frac{\partial^j \phi^r(x,y,t;q)}{\partial q^j} \frac{\partial^m \phi^r(x,y,t;q)}{\partial q^{m-j-1}} \Big|_{q=0} = \sum_{m=1}^{+\infty} \frac{1}{(m-1)!} \sum_{j=0}^{m-1} \frac{(m-1)!}{j!(m-1-j)!} \sum_{j=0}^{$$

$$\sum_{j=0}^{+\infty} \sum_{m=j+1}^{+\infty} \frac{1}{j!} \frac{\partial^j \phi^r(x, y, t; q)}{\partial q^j} u_{m-j-1} = \sum_{j=0}^{+\infty} \frac{1}{j!} \frac{\partial^j \phi^r(x, y, t; q)}{\partial q^j} \sum_{m=j+1}^{+\infty} u_{m-j-1} = \sum_{j=0}^{+\infty} \frac{1}{j!} \frac{\partial^j \phi^r(x, y, t; q)}{\partial q^j} \sum_{m=j+1}^{+\infty} \frac{1}{j!} \frac{\partial^j \phi^r(x, y, t; q)}{\partial q^j} = \sum_{j=0}^{+\infty} \frac{1}{j!} \frac{\partial^j \phi^r(x, y, t; q)}{\partial q^j} \sum_{m=j+1}^{+\infty} \frac{1}{j!} \frac{\partial^j \phi^r(x, y, t; q)}{\partial q^j} = \sum_{j=0}^{+\infty} \frac{1}{j!} \frac{\partial^j \phi^r(x, y, t; q)}{\partial q^j} \sum_{m=j+1}^{+\infty} \frac{1}{j!} \frac{\partial^j \phi^r(x, y, t; q)}{\partial q^j} = \sum_{j=0}^{+\infty} \frac{1}{j!} \frac{\partial^j \phi^r(x, y, t; q)}{\partial q^j} \sum_{m=j+1}^{+\infty} \frac{1}{j!} \sum_{m=j+1}^{+\infty} \frac{1}{j!} \frac{\partial^j \phi^r(x, y, t; q)}{\partial q^j} \sum_{m=j+1}^{+\infty} \frac{1}{j!} \sum_{m=j+1}^{+\infty} \frac$$

$$[\sum_{j=0}^{+\infty} u_j]^r \sum_{i=0}^{+\infty} u_i = [\sum_{m=0}^{+\infty} u_m]^{r+1}.$$

Theorem 3.2 If the series solution (6) of problem (1) obtained from the HAM and also the series $\sum_{m=0}^{+\infty} \frac{\partial u_m}{\partial t} \sum_{m=0}^{+\infty} \frac{\partial u_m^p}{\partial x}$, $\sum_{m=0}^{+\infty} \frac{\partial^3 u_m^l}{\partial x^3}$ and $\sum_{m=0}^{+\infty} \frac{\partial^3 u_m^k}{\partial y^2 \partial x}$ are convergent then (6) converges to the exact solution of the Eq. (1).

Proof. Let,

$$u(x, y, t) = \sum_{m=0}^{+\infty} u_m(x, y, t)$$

where

$$\lim_{m \to +\infty} u_m(x, y, t) = 0.$$
(12)

We can write,

$$\sum_{m=1}^{n} [u_m(x,y,t) - \chi_m u_{m-1}(x,y,t)] = u_1 + (u_2 - u_1) + (u_3 - u_2) + \dots + (u_n - u_{n-1}) = u_n(x,y,t),$$

using (12), we have,

$$\sum_{m=1}^{+\infty} [u_m(x, y, t) - \chi_m u_{m-1}(x, y, t)] = \lim_{n \to +\infty} u_n(x, y, t) = 0.$$

Since L is a linear operator, we can write

$$\sum_{m=1}^{+\infty} L[u_m(x,y,t) - \chi_m u_{m-1}(x,y,t)] = L \sum_{m=1}^{+\infty} [u_m(x,y,t) - \chi_m u_{m-1}(x,y,t)] = 0.$$

From above expression and equation (8), we obtain

$$\sum_{m=1}^{+\infty} L[u_m(x,y,t) - \chi_m u_{m-1}(x,y,t)] = hH(x,y,t) \sum_{m=1}^{+\infty} [R_m(\overrightarrow{u}_{m-1})].$$

Since $h \neq 0$ and $H(x, y, t) \neq 0$, we have

$$\sum_{m=1}^{+\infty} [R_m(\vec{u}_{m-1})] = 0.$$
(13)

From (9), it holds

$$\sum_{m=1}^{+\infty} [R_m(\overrightarrow{u}_{m-1})] =$$

$$\sum_{m=1}^{+\infty} \left[\frac{1}{(m-1)!} \frac{\partial^{m-1}}{\partial q^{m-1}} \left[\frac{\partial \phi(x,y,t;q)}{\partial t} + a \frac{\partial \phi^p(x,y,t;q)}{\partial x} + b \frac{\partial^3 \phi^l(x,y,t;q)}{\partial x^3} + c \frac{\partial^3 \phi^k(x,y,t;q)}{\partial y^2 \partial x} \right] \Big|_{q=0} \right]$$
(14)

.

According to the hypotheses of the theorem and also lemma 3.1, we have,

$$\begin{split} &\sum_{m=1}^{+\infty} [R_m(\overrightarrow{u}_{m-1})] = \\ &\sum_{m=1}^{+\infty} \left[\frac{1}{(m-1)!} \left[\frac{\partial \partial^{m-1} \phi(x,y,t;q)}{\partial t \partial q^{m-1}} + a \frac{\partial \partial^{m-1} \phi^p(x,y,t;q)}{\partial x \partial q^{m-1}} + \right. \\ & \left. b \frac{\partial^3 \partial^{m-1} \phi^l(x,y,t;q)}{\partial x^3 \partial q^{m-1}} + c \frac{\partial^3 \partial^{m-1} \phi^k(x,y,t;q)}{\partial y^2 \partial x \partial q^{m-1}} \right] \Big|_{q=0} \right] = \end{split}$$

$$\frac{\partial}{\partial t}\sum_{m=0}^{+\infty}u_m + a\frac{\partial}{\partial x}\left[\sum_{m=0}^{+\infty}u_m\right]^p + b\frac{\partial^3}{\partial x^3}\left[\sum_{m=0}^{+\infty}u_m\right]^l + c\frac{\partial^3}{\partial y^2\partial x}\left[\sum_{m=0}^{+\infty}u_m\right]^k.$$
(15)

From (13) and (15), we have

$$u_t + a(u^p)_x + b(u^l)_{xxx} + c(u^k)_{yyx} = 0.$$

4. Conclusion

In this paper, we proved a theorem on the convergence of the homotopy analysis method to solve the Zakharov-Kuznetsov equation. Since the nonlinearity part of the equation is complicated, we applied an auxiliary relation which was proved in a lemma and used mathematical induction to complete the proof of the convergence theorem. Therefore, the HAM can be an efficient and reliable method to solve a nonlinear partial differential equation with strong nonlinearity like ZK equation.

Aknowledgements

The authors are thankful to the Islamic Azad University, central Tehran branch, for their supports during this research.

References

- S. Abbasbandy, Y. Tan, S. J. Liao, Newton-homotopy analysis method for nonlinear equations, Appl. Math. Comput., 188 (2007) 1794-1800.
- [2] S. Abbasbandy, Homotopy analysis method for the Kawahara equation, Nonlinear Analysis: Real World Applications, 11 (2010) 307-312.
- [3] J. Biazar, F. Badpeimaa, F. Azimi, Application of the homotopy perturbation method to Zakharov-Kuznetsov equations, Computers and Mathematics with Applications 58 (2009) 2391-2394.
- [4] W. Huang, A polynomial expansion method and its application in the coupled Zakharov-Kuznetsov equations, Chaos Solitons Fractals, 29 (2006) 365-371.
- [5] S. Hesam, A. Nazemi, A. Haghbin, Analytical solution for the Zakharov-Kuznetsov equations by differential transform method, International Journal of Engineering and Natural Sciences 4 (4) (2010).
- M. Inc, Exact solutions with solitary patterns for the Zakharov-Kuznetsov equations with fully nonlinear dispersion, Chaos Solitons Fractals, 33 (15) (2007) 1783-1790.

- [7] S. J. Liao, Beyond pertubation: Introduction to the homotopy Analysis Method, Chapman and Hall/CRC Press, Boca Raton, (2003).
- [8] S.J. Liao, Notes on the homotopy analysis method: some definitions and theorems, Communication in Nonlinear Science and Numnerical Simulation, 14 (2009) 983-997.
- [9] M. A. Fariborzi Araghi, A. Fallahzadeh, On the convergence of the Homotopy Analysis method for solving the Schrodinger Equation, Journal of Basic and Applied Scientific Research, 2(6) (2012) 6076-6083.
- [10] M. A. Fariborzi Araghi, A. Fallahzadeh, Explicit series solution of Boussinesq equation by homotopy analysis method, Journal of American Science, 8(11) 2012.
- [11] M. A. Fariborzi Araghi, S. Naghshband, On convergence of homotopy analysis method to solve the Schrodinger equation with a power law nonlinearity, Int. J. Industrial Mathematics, 5 (4) (2013) 367-374.
- [12] S. Monro, E. J. Parkes, The derivation of a modified ZakharovKuznetsov equation and the stability of its solutions, Journal of Plasma Physics, 62 (3) (1999) 305-317.
- [13] S. Monro, E. J. Parkes, Stability of solitary-wave solutions to a modified ZakharovKuznetsov equation, Journal of Plasma Physics, 64 (3) (2000) 411-426.
 [14] M. Usman, I. Rashid, T. Zubair, A. Waheed, S. T. Mohyuddin, Homotopy analysis method for Zakharov-
- [14] M. Usman, I. Rashid, T. Zubair, A. Waheed, S. T. Mohyuddin, Homotopy analysis method for Zakharov-Kuznetsov (ZK) equation with fully nonlinear dispersion, Scientific Research and Essays, 8(23) 1065-1072 (2013).
- [15] A. M. Wazwaz, The extended tanh method for the Zakharov-Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms, Communications in Nonlinear Science and Numerical Simulation, 13 (2008) 1039-1047.
- [16] X. Zhao, H. Zhou, Y. Tang, H. Jia, Travelling wave solutions for modified Zakharov-Kuznetsov equation, Applied Mathematics and Computation, 181 (2006) 634-648.