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Abstract. Let R be a non-commutative ring with unity. The commuting graph of R denoted
by I'(R), is a graph with vertex set R\ Z(R) and two vertices a and b are adjacent iff ab = ba.
In this paper, we consider the commuting graph of non-commutative rings of order pq and pq
with Z(R) = 0 and non-commutative rings with unity of order p®q. It is proved that Cr(a)
is a commutative ring for every 0 # a € R\ Z(R). Also it is shown that if a,b € R\ Z(R)
and ab # ba, then Cr(a) N Cr(b) = Z(R). We show that the commuting graph I'(R) is the
disjoint union of k£ copies of the complete graph and so is not a connected graph.
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1. Introduction

Let G be a simple graph on vertex set V(G) and edge set F(G). A graph is said to
be connected if each pair of vertices are joined by a walk. The number of edges of the
shortest walk joining v and u is called the distance between v and u and denoted by
d(v,u). The maximum value of the distance function in a connected graph G is called
the diameter of G and denoted by diam(G). If G is a graph, then the complement of
G, denoted by G¢ is a graph with vertex set V(G) in which two vertices are adjacent
if and only if they are not adjacent in G. The complete graph K, is the graph with

*Corresponding author.
E-mail address: vatandoost@sci.ikiu.ac.ir (E. Vatandoost).

Print ISSN: 2252-0201 (© 2014 TAUCTB. All rights reserved.
Online ISSN: 2345-5934 http://jlta.iauctb.ac.ir



2 E. Vatandoost et al. / J. Linear. Topological. Algebra. 03(01) (2014) 1-6.

n vertices in which each pair of vertices are adjacent. We show G = tK,, for disjoint
union of ¢t complete graph of size m. G is complete t—partite graph if there is a partition
ViUWaU. ..UV, = V(Q) of the vertex set, such that v; and v; are adjacent if and only if v;
and v; are in different parts of the partition. If |Vj| = ny, then G is denoted by K, 5, ..., -

Let R be a non-commutative ring with unity 1 and let Z(R) denotes the center
of R. We are assuming 1 # 0. A ring with unity is a division ring if every non-zero
element a has a multiplicative inverse (that is, an element z with ax = za = 1). If X
is either an element or a subset of the ring R, then Cr(X) denotes the centralizer of
X in R. We introduce a graph with vertex set R\ Z(R) and join two vertices a and b
if a # b and ab = ba. This graph is called the commuting graph of R and denoted by T'(R).

Akbari et.al [3] determined the diameters of some induced subgraphs of I'(M, (D)),
for a division ring D and n > 3. Also they showed that if I’ is an algebraically closed
field or n is a prime number and T'(M,(F)) is a connected graph, then diameter of
(M, (F)) is equal to 4. Akbari and Raja [4] showed that if A, N, F and T are the
sets of all non-invertible, nilpotent, idempotent and involutions matrices over division
ring D, respectively, then I'(A), I'(NV), I'(F) and I'(T") are connected graphs. In [1], two
rings with distinct cardinality and the same commuting graphs are introduced. In [2],
it has been shown that for a non-commutative ring R, the graph I'(R)¢ is Hamiltonian
and O(I'(R)°) < 2. In [9], it has been shown that for a non-commutative ring R, the
diameter of I'(R) is one if and only if R is the non-commutative ring on 4 elements. Also
they characterized all rings where the complements of their commuting graphs are planar.

In this work, we consider the commuting graph of non-commutative rings of order pq
and p?q with Z(R) = 0 and non-commutative rings with unity of order p3q. We show
that for 0 # a € R\ Z(R), Cr(a) is a commutative ring . Also Cr(a) N Cr(b) = Z(R)
for 0 # a,b € R\ Z(R) and ab # ba. The main result is that the commuting graph I'(R)
is the disjoint union of some copies of complete graphs.

2. Commuting graph of non-commutative rings

Throughout this paper, p and ¢ are distinct prime numbers.

Lemma 2.1 [8] Let R be a finite ring of order m with a unity. If m has a cube free
factorization, then R is a commutative ring.

As our first result, we prove the following Lemma.

Lemma 2.2 Let R be a non-commutative ring and Z(R) # (0). Then [R : Z(R)] is not
prime.

Proof. Let [R: Z(R)] =t be prime. Then group (R, +)/(Z(R),+) is a cyclic group of
order t. Let (R,+)/(Z(R),+) = (a+Z(R)). Then for any two elements of z,y € R, there
exist integer numbers n, m such that x+ Z(R) = na+ Z(R) and y+ Z(R) = ma+ Z(R).
So there exist elements z; and z3 in Z(R) such that x = na + z; and y = ma + z2. It is
clear that xy = yx. This contradicts the fact that R is non-commutative ring.

Lemma 2.3 Let R be a finite ring of order p? or pq and Z(R) # {0}. Then R is
commutative ring.
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Proof. On the contrary let R be a finite non-commutative ring and Z(R) # (0). If
|R| = p?, then |Z(R)| = p. So for any a € R\ Z(R), |Cgr(a)| = p? and a € Z(R). This
is contradiction. If |R| = pq, then |Z(R)| € {p, ¢q}. This is contradiction by Lemma 2.2.
Hence R is a commutative ring.

Lemma 2.4 Let R be a non-commutative ring and a,b € R\ Z(R) such that Cr(a) and
Cr(b) be commutative rings. If ab = ba, then Cr(a) = Cr(b).

Proof.Let © € Cr(a). Since ab = ba and Cg(a) is commutative ring, b = bz. So
Cr(a) C Cgr(b). Similarly Cr(b) € Cg(a). Thus Cr(a) = Cr(b).

Lemma 2.5 Let R be a non-commutative ring of order p® and |Z(R)| # 0, then |Z(R)| =
.

Proof. Since Z(R) is addition subgroup of R, |Z(R)| € {1,p, p? p3}. Also, since R
is a non-commutative ring and |Z(R)| # 1, then |Z(R)| = p or p?. By Lemma 2.2,
[R: Z(R)] #p. So |Z(R)| =p

2.1 Orders pq and p3q

Lemma 2.6 Let R be a non-commutative ring of order p"q for n = 1,2 and Z(R) = {0}.
Then for every 0 # a € R, Cr(a) is a commutative ring.

Proof. Let 0 # a € R. If |R| = pq, then |Cgr(a)| = p,q or pq. If |Cr(a)| = pq,
then R is a commutative ring. This is contradiction. So |Cr(a)| is prime. Hence Cr(a)
is a commutative ring. Let |R| = p?q. Since |Cr(a)| | |R|, |Cr(a)| € {p,q,p? pq}. If
|Cr(a)| = p or q, then Cg(a) is a commutative ring. Let Cg(a) be a ring of order p? or
pq. Since a € Z(Cg(a)), Z(Cgr(a)) # (0). By Lemma 2.3, Cr(a) is a commutative ring.
This completes the proof.

Theorem 2.7 Let R be a non-commutative ring of order p™q for n = 1,2 and Z(R) =
{0}. If 0 # a,b € R and ab # ba, then Cr(a) N Cr(b) = {0}.

Proof. On the contrary suppose that Cr(a) NCg(b) # 0. Suppose x € Cr(a) N Cg(b).
So za = ax and xb = bzr. By Lemmas 2.4 and 2.6, Cr(a) = Cgr(z) = Cg(b). Hence
ab = ba. This is impossible. Therefore Cr(a) N Cr(b) = {0}.

Theorem 2.8 Let R be a non-commutative ring of order pg such that Z(R) = {0}.
Then the following is hold:

(i) T(R) = B K1 if (p—1) | (pg — 1).

(ii) T(R) = B Ky 1 if (g — 1) | (pg — 1)
(iii) T(R) = 1 Kp_1 UlaK, 1 where l1(p — 1) +la2(q — 1) = pq — 1.

Proof. Let a,b € R\ Z(R) and ab # ba. By Theorem 2.7, Cr(a)NCr(b ) {0}. Now if
z € Cr(a),y € Cr(b) and zy = yx, then by Lemma 2.4, Cr(a) = Cr(z), Cr(b) = Cr(y)
and Cr(z) = Cr(y). So Cr(a) = Cg(b), which is impossible. Therefore I'(R) is the
disjoint union of the complete graphs. Since R is non-commutative ring, for 0 # a € R,
|Cr(a)] = p or q. If for every 0 # a € R, |Cg(a)| = P, then |V(I'(R))| = l(p — 1).
On the other hand [V(I'(R))| = pg — 1. Thus I = P, So I'(R) = (qu VK (p—1y if

(p—1) | (pg — 1). If for every 0 # a € R, |Cr(a)] = ¢, then T'(R) = I;Q_—llK(q,l) if
(g—1) | (pg —1). Let |Cr(a)| = p and |Cr(b)| = ¢ for some a,b € R. Hence I'(R) is
the disjoint union of /; copies of complete graph K, ;) and Iy copies of complete graph

K4—1) where l1(p — 1) +l2(¢ — 1) = pg — 1. This completes the proof.
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Theorem 2.9 Let R be a non-commutative ring of order p?q such that Z(R) = {0}.
Then the following is hold:

(i) T(R) = pig_lth,l such that t € {p,q,p?, pq} and t | (p?q — 1).
(il) T(R) = hKp_1 UleK, 1 UlsKy2 1 UlyKp, 1 such that 30 I; = p?q — 1.

Proof. Likewise the proof of Theorem 2.8, I'(R) is the disjoint union of the complete
graphs. Since R is non-commutative ring, for 0 # a € R, |Cr(a)| € {p,q,p? pq}. If for
every 0 # a € R, |Cgr(a)| = t for t € {p,q,p% pq}, then |[V(I'(R))| = I(t — 1). Also
V(D(R))| = p*q — 1. Thus T(R) = L2 K,y if (t— 1) | (p?q — 1) for t € {p,q.p*, pq}.
Now let [{r € R\ Z(R); |Cr(r)| = p}| = li,{r € R\ Z(R); |Cr(r)| = ¢}| = o, [{r €
R\Z(R); |Cr(r)| = p*}| =l and |{r € R\Z(R); |C(r)| = pq}| = ls. Then |[V(I'(R))| =
ll(p—l)—l-lQ(q—1)+l3(p2—1)+l4(pq—1). Thus F(R) = lle_lUlqu_1Ul3Kp2,1Ul4qu_1
where Z?:l l; = p?q — 1. This completes the proof.

2.2 Order p3q

Theorem 2.10 Let R be a non-commutative ring with a unity of order p3q and a €
R\ Z(R). Then Cg(a) is a commutative ring.

Proof. By Lemma 2.2 and since R is non-commutative ring with unity, |Z(R)| €

{p,p* ¢, pq}

Case 1: Let |Z(R)| = p. Since Cg(a) is the addition subgroup of R and a ¢ Z(R),
|Cr(a)] € {p?,p*, pq, p*q}.

Subcase i: If |Cg(a)| = p?, pq or p?q, then by Lemma 2.1, Cg(a) is a commutative ring.
Subcase ii: If |Cr(a)| = p? and Cg(a) is a non-commutative ring, then by Lemma 2.5,
|Z(Cr(a)| = p. It is clear that Z(R) U (a + Z(R)) C Z(Cr(a)). Thus p + p < p. This is
impossible.

Case 2: Let |Z(R)| = p?. Since |Z(R)| | |Cr(a)l|, |Cr(a)| € {p*,p*q}. If |Cr(a)| = p3q,
then by Lemma 2.1, Cg(a) is a commutative ring. If |Cr(a)| = p* and Cg(a) is a non-
commutative ring, then likewise case 1, subcase ii, 2p? < p. Hence Cg(a) is a commutative
ring.

Case 3: Let |Z(R)| = q. Then Cg(a) is of order pq or p?q. So this is a commutative ring.
Case 4: If |Z(R)| = pq, then |Cgr(a)| = p*q. Hence Cg(a) is a commutative ring. This
completes the proof.

Theorem 2.11 Let R be a non-commutative ring with a unity of order p3q such that
|Z(R)| is not prime. If a,b € R\ Z(R) and ab # ba, then Cr(a) N Cr(b) = Z(R).

Proof. Since |Z(R)| € {p?, pq}, the proof falls naturally into two parts:
Part 1: If |Z(R)| = p?, then for every z € R\ Z(R), |Cgr(x)| € {p® p*q}. Thus for
a,b € R\ Z(R) there are three cases:
Case i: If |Cgr(a)| = |Cr(b)| = p3, then |Cr(a) N Cr(b)| = p? or p3. Since ab # ba,
|Cr(a) N Cr(b)| # p*. So Cr(a) N Cr(b) = Z(R).
Case ii: If |Cp(a)| = |Cr(b)] = p%q. then |Cr(a)Cr(b)| = 52 or p%q. If [Cr(a)Cr(t)] =
p?q, then ab = ba. This is not true. Hence Cr(a) N Cr(b ) Z(R).
Case iii: Let |Cgr(a)| = p® and |Cg(b)| = p?q. Then |Cr(a) N Cr(b)| = p?. So Cgr(a) N
Cr(b) = Z(R).
Part 2: If |Z(R)| = pq, then for every x € R\ Z(R), |Cr(x)| = p?q. Since |Z(R)| |
|Cr(a)NCr(b)| and |Cr(a)NCr(b)| | p?q, |Cr(a)NCR(b)| € {pg, p*q}. If |Cr(a)NCR(D)| =
p2q, then ab = ba. This is impossible. So |Cr(a)NCg(b)| = pg. And Cr(a)NCr(b) = Z(R).
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Theorem 2.12 Let R be a non-commutative ring with a unity of order p3q. If |Z(R)|
is not prime, then the following is hold:

(i) F(R) (pq 1)Kv(p —p2) lf( ) | (pq_ 1)'

(ii) I(R) = (pq 1)K g if (@ = 1) | (pg — 1)

(iii) I'(R) = llK(p _p2) Ula K (j2q_p2) where l1(p — 1) +l2(¢ — 1) = pg — 1.
(iv) T'(R) = (p+ 1)K, (P*q—pq)

Proof. Since |Z(R)| € {p?, pq}, the proof falls naturally into two parts:

Part 1: If |Z(R)| = p?, then |Cgr(a)] € {p? p*q} for every a € R\ Z(R). Sup-
pose |Cr(a)| = p* for every a € R\ Z(R). Let a,b € R\ Z(R) and ab # ba. By
Theorem 2.11, Cr(a) N Cr(b) = Z(R). Now if x € Cg(a),y € Cg(b) and zy = y=,
then by Lemma 2.4, Cr(a) = Cg(z), Cgr(b) = Cgr(y) and Cr(z) = Cg(y). So
Cr(a) = Cgr(b), which is impossible. Therefore I'(R) is the disjoint union of [ copies
of the complete graph of size p® — p2. So |V(I'(R ))\ = I(p® — p?). On the other hand
[V(T(R))| = |R| — |Z(R)| = p*q — p*. Thus | = 7;1 . Hence I'(R) = (p;%ll)K(ps_pﬂ if
(p—1) | (pg — 1). Suppose |Cr(a)| = p?q for every a € R\ Z(R). By similar argument

['(R) is the disjoint union of I copies of the complete graph of size p?q—p? where [ = ’;q_—*ll.

So I'(R) = (B5)K (g2 if (= 1) | (pg = 1). Let |Cr(a)] = p® and |Cr(b)| = p*q
for some a,b € R\ Z(R). Then by Theorem 2.11, Cr(a) N Cr(b) = Z(R). It is easy to
see that if x € Cg(a) and y € Cg(b), then zy # yx. Hence I'(R) is the disjoint union
of 11 copies of the complete graph of size p® — p? and Iy copies of the complete graph
of size p?q — p?. So |V(I'(R))| = l1(p® — p?) + l2(p*q — p*). On the other hand we have
[V(T(R)| = |R|-|Z(R)| = p*q—p*. Thus p*q—p® = l1(p* — p?) +la(p*q — p*). Therefore
L(R) = l1 K(ps_p2y U l2 K (2g_p2), where [; and lg satisfy in ly(p — 1) +l2(¢ — 1) = pg — 1,
and this prove the Part (iii).

Part 2: If |Z(R)| = pq, then |Cr(a)| = p*q. Likewise Part 1, I'(R) is the disjoint union
of [ copies of the complete graph of size p?q — pg where I(p?q — pq) = p>q — pq. Therefore
P(R) = (p + 1)K(p2quq)‘
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