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On the commuting graph of non-commutative rings of order pnq
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Abstract. Let R be a non-commutative ring with unity. The commuting graph of R denoted
by Γ(R), is a graph with vertex set R\Z(R) and two vertices a and b are adjacent iff ab = ba.
In this paper, we consider the commuting graph of non-commutative rings of order pq and p2q
with Z(R) = 0 and non-commutative rings with unity of order p3q. It is proved that CR(a)
is a commutative ring for every 0 ̸= a ∈ R \ Z(R). Also it is shown that if a, b ∈ R \ Z(R)
and ab ̸= ba, then CR(a) ∩ CR(b) = Z(R). We show that the commuting graph Γ(R) is the
disjoint union of k copies of the complete graph and so is not a connected graph.
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1. Introduction

Let G be a simple graph on vertex set V (G) and edge set E(G). A graph is said to
be connected if each pair of vertices are joined by a walk. The number of edges of the
shortest walk joining v and u is called the distance between v and u and denoted by
d(v, u). The maximum value of the distance function in a connected graph G is called
the diameter of G and denoted by diam(G). If G is a graph, then the complement of
G, denoted by Gc is a graph with vertex set V (G) in which two vertices are adjacent
if and only if they are not adjacent in G. The complete graph Kn is the graph with
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n vertices in which each pair of vertices are adjacent. We show G = tKm for disjoint
union of t complete graph of size m. G is complete t−partite graph if there is a partition
V1∪V2∪. . .∪Vt = V (G) of the vertex set, such that vi and vj are adjacent if and only if vi
and vj are in different parts of the partition. If |Vk| = nk, then G is denoted byKn1,n2,...,nt

.

Let R be a non-commutative ring with unity 1 and let Z(R) denotes the center
of R. We are assuming 1 ̸= 0. A ring with unity is a division ring if every non-zero
element a has a multiplicative inverse (that is, an element x with ax = xa = 1). If X
is either an element or a subset of the ring R, then CR(X) denotes the centralizer of
X in R. We introduce a graph with vertex set R \ Z(R) and join two vertices a and b
if a ̸= b and ab = ba. This graph is called the commuting graph of R and denoted by Γ(R).

Akbari et.al [3] determined the diameters of some induced subgraphs of Γ(Mn(D)),
for a division ring D and n ⩾ 3. Also they showed that if F is an algebraically closed
field or n is a prime number and Γ(Mn(F )) is a connected graph, then diameter of
Γ(Mn(F )) is equal to 4. Akbari and Raja [4] showed that if A, N , F and T are the
sets of all non-invertible, nilpotent, idempotent and involutions matrices over division
ring D, respectively, then Γ(A), Γ(N), Γ(F ) and Γ(T ) are connected graphs. In [1], two
rings with distinct cardinality and the same commuting graphs are introduced. In [2],
it has been shown that for a non-commutative ring R, the graph Γ(R)c is Hamiltonian
and ∂(Γ(R)c) ⩽ 2. In [9], it has been shown that for a non-commutative ring R, the
diameter of Γ(R)c is one if and only if R is the non-commutative ring on 4 elements. Also
they characterized all rings where the complements of their commuting graphs are planar.

In this work, we consider the commuting graph of non-commutative rings of order pq
and p2q with Z(R) = 0 and non-commutative rings with unity of order p3q. We show
that for 0 ̸= a ∈ R \ Z(R), CR(a) is a commutative ring . Also CR(a) ∩ CR(b) = Z(R)
for 0 ̸= a, b ∈ R \Z(R) and ab ̸= ba. The main result is that the commuting graph Γ(R)
is the disjoint union of some copies of complete graphs.

2. Commuting graph of non-commutative rings

Throughout this paper, p and q are distinct prime numbers.

Lemma 2.1 [8] Let R be a finite ring of order m with a unity. If m has a cube free
factorization, then R is a commutative ring.

As our first result, we prove the following Lemma.

Lemma 2.2 Let R be a non-commutative ring and Z(R) ̸= (0). Then [R : Z(R)] is not
prime.

Proof. Let [R : Z(R)] = t be prime. Then group (R,+)/(Z(R),+) is a cyclic group of
order t. Let (R,+)/(Z(R),+) = ⟨a+Z(R)⟩. Then for any two elements of x, y ∈ R, there
exist integer numbers n, m such that x+Z(R) = na+Z(R) and y+Z(R) = ma+Z(R).
So there exist elements z1 and z2 in Z(R) such that x = na+ z1 and y = ma+ z2. It is
clear that xy = yx. This contradicts the fact that R is non-commutative ring.

Lemma 2.3 Let R be a finite ring of order p2 or pq and Z(R) ̸= {0}. Then R is
commutative ring.
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Proof. On the contrary let R be a finite non-commutative ring and Z(R) ̸= (0). If
|R| = p2, then |Z(R)| = p. So for any a ∈ R \ Z(R), |CR(a)| = p2 and a ∈ Z(R). This
is contradiction. If |R| = pq, then |Z(R)| ∈ {p, q}. This is contradiction by Lemma 2.2.
Hence R is a commutative ring.

Lemma 2.4 Let R be a non-commutative ring and a, b ∈ R\Z(R) such that CR(a) and
CR(b) be commutative rings. If ab = ba, then CR(a) = CR(b).

Proof.Let x ∈ CR(a). Since ab = ba and CR(a) is commutative ring, xb = bx. So
CR(a) ⊆ CR(b). Similarly CR(b) ⊆ CR(a). Thus CR(a) = CR(b).

Lemma 2.5 Let R be a non-commutative ring of order p3 and |Z(R)| ̸= 0, then |Z(R)| =
p.

Proof. Since Z(R) is addition subgroup of R, |Z(R)| ∈ {1, p, p2, p3}. Also, since R
is a non-commutative ring and |Z(R)| ̸= 1, then |Z(R)| = p or p2. By Lemma 2.2,
[R : Z(R)] ̸= p. So |Z(R)| = p.

2.1 Orders pq and p2q

Lemma 2.6 Let R be a non-commutative ring of order pnq for n = 1, 2 and Z(R) = {0}.
Then for every 0 ̸= a ∈ R, CR(a) is a commutative ring.

Proof. Let 0 ̸= a ∈ R. If |R| = pq, then |CR(a)| = p, q or pq. If |CR(a)| = pq,
then R is a commutative ring. This is contradiction. So |CR(a)| is prime. Hence CR(a)
is a commutative ring. Let |R| = p2q. Since |CR(a)| | |R|, |CR(a)| ∈ {p, q, p2, pq}. If
|CR(a)| = p or q, then CR(a) is a commutative ring. Let CR(a) be a ring of order p2 or
pq. Since a ∈ Z(CR(a)), Z(CR(a)) ̸= (0). By Lemma 2.3, CR(a) is a commutative ring.
This completes the proof.

Theorem 2.7 Let R be a non-commutative ring of order pnq for n = 1, 2 and Z(R) =
{0}. If 0 ̸= a, b ∈ R and ab ̸= ba, then CR(a) ∩ CR(b) = {0}.

Proof. On the contrary suppose that CR(a)∩CR(b) ̸= 0. Suppose x ∈ CR(a)∩CR(b).
So xa = ax and xb = bx. By Lemmas 2.4 and 2.6, CR(a) = CR(x) = CR(b). Hence
ab = ba. This is impossible. Therefore CR(a) ∩ CR(b) = {0}.

Theorem 2.8 Let R be a non-commutative ring of order pq such that Z(R) = {0}.
Then the following is hold:

(i) Γ(R) = pq−1
p−1 Kp−1 if (p− 1) | (pq − 1).

(ii) Γ(R) = pq−1
q−1 Kq−1 if (q − 1) | (pq − 1).

(iii) Γ(R) = l1Kp−1 ∪ l2Kq−1 where l1(p− 1) + l2(q − 1) = pq − 1.

Proof. Let a, b ∈ R\Z(R) and ab ̸= ba. By Theorem 2.7, CR(a)∩CR(b) = {0}. Now if
x ∈ CR(a), y ∈ CR(b) and xy = yx, then by Lemma 2.4, CR(a) = CR(x), CR(b) = CR(y)
and CR(x) = CR(y). So CR(a) = CR(b), which is impossible. Therefore Γ(R) is the
disjoint union of the complete graphs. Since R is non-commutative ring, for 0 ̸= a ∈ R,
|CR(a)| = p or q. If for every 0 ̸= a ∈ R, |CR(a)| = p, then |V (Γ(R))| = l(p − 1).
On the other hand |V (Γ(R))| = pq − 1. Thus l = pq−1

p−1 . So Γ(R) = (pq−1
p−1 )K(p−1) if

(p − 1) | (pq − 1). If for every 0 ̸= a ∈ R, |CR(a)| = q, then Γ(R) = pq−1
q−1 K(q−1) if

(q − 1) | (pq − 1). Let |CR(a)| = p and |CR(b)| = q for some a, b ∈ R. Hence Γ(R) is
the disjoint union of l1 copies of complete graph K(p−1) and l2 copies of complete graph
K(q−1) where l1(p− 1) + l2(q − 1) = pq − 1. This completes the proof.
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Theorem 2.9 Let R be a non-commutative ring of order p2q such that Z(R) = {0}.
Then the following is hold:

(i) Γ(R) = p2q−1
t−1 Kt−1 such that t ∈ {p, q, p2, pq} and t | (p2q − 1).

(ii) Γ(R) = l1Kp−1 ∪ l2Kq−1 ∪ l3Kp2−1 ∪ l4Kpq−1 such that
∑4

i=1 li = p2q − 1.

Proof. Likewise the proof of Theorem 2.8, Γ(R) is the disjoint union of the complete
graphs. Since R is non-commutative ring, for 0 ̸= a ∈ R, |CR(a)| ∈ {p, q, p2, pq}. If for
every 0 ̸= a ∈ R, |CR(a)| = t for t ∈ {p, q, p2, pq}, then |V (Γ(R))| = l(t − 1). Also

|V (Γ(R))| = p2q − 1. Thus Γ(R) = p2q−1
t−1 Kt−1 if (t − 1) | (p2q − 1) for t ∈ {p, q, p2, pq}.

Now let |{r ∈ R \ Z(R) ; |CR(r)| = p}| = l1, |{r ∈ R \ Z(R) ; |CR(r)| = q}| = l2, |{r ∈
R\Z(R) ; |CR(r)| = p2}| = l3 and |{r ∈ R\Z(R) ; |CR(r)| = pq}| = l4. Then |V (Γ(R))| =
l1(p−1)+l2(q−1)+l3(p

2−1)+l4(pq−1). Thus Γ(R) = l1Kp−1∪l2Kq−1∪l3Kp2−1∪l4Kpq−1

where
∑4

i=1 li = p2q − 1. This completes the proof.

2.2 Order p3q

Theorem 2.10 Let R be a non-commutative ring with a unity of order p3q and a ∈
R \ Z(R). Then CR(a) is a commutative ring.

Proof. By Lemma 2.2 and since R is non-commutative ring with unity, |Z(R)| ∈
{p, p2, q, pq}.
Case 1: Let |Z(R)| = p. Since CR(a) is the addition subgroup of R and a ̸∈ Z(R),
|CR(a)| ∈ {p2, p3, pq, p2q}.
Subcase i: If |CR(a)| = p2, pq or p2q, then by Lemma 2.1, CR(a) is a commutative ring.
Subcase ii: If |CR(a)| = p3 and CR(a) is a non-commutative ring, then by Lemma 2.5,
|Z(CR(a)| = p. It is clear that Z(R) ∪ (a+ Z(R)) ⊆ Z(CR(a)). Thus p+ p ⩽ p. This is
impossible.
Case 2: Let |Z(R)| = p2. Since |Z(R)| | |CR(a)|, |CR(a)| ∈ {p3, p2q}. If |CR(a)| = p2q,
then by Lemma 2.1, CR(a) is a commutative ring. If |CR(a)| = p3 and CR(a) is a non-
commutative ring, then likewise case 1, subcase ii, 2p2 ⩽ p. Hence CR(a) is a commutative
ring.
Case 3: Let |Z(R)| = q. Then CR(a) is of order pq or p2q. So this is a commutative ring.
Case 4: If |Z(R)| = pq, then |CR(a)| = p2q. Hence CR(a) is a commutative ring. This
completes the proof.

Theorem 2.11 Let R be a non-commutative ring with a unity of order p3q such that
|Z(R)| is not prime. If a, b ∈ R \ Z(R) and ab ̸= ba, then CR(a) ∩ CR(b) = Z(R).

Proof. Since |Z(R)| ∈ {p2, pq}, the proof falls naturally into two parts:
Part 1: If |Z(R)| = p2, then for every x ∈ R \ Z(R), |CR(x)| ∈ {p3, p2q}. Thus for
a, b ∈ R \ Z(R) there are three cases:
Case i: If |CR(a)| = |CR(b)| = p3, then |CR(a) ∩ CR(b)| = p2 or p3. Since ab ̸= ba,
|CR(a) ∩ CR(b)| ̸= p3. So CR(a) ∩ CR(b) = Z(R).
Case ii: If |CR(a)| = |CR(b)| = p2q, then |CR(a)∩CR(b)| = p2 or p2q. If |CR(a)∩CR(b)| =
p2q, then ab = ba. This is not true. Hence CR(a) ∩ CR(b) = Z(R).
Case iii: Let |CR(a)| = p3 and |CR(b)| = p2q. Then |CR(a) ∩ CR(b)| = p2. So CR(a) ∩
CR(b) = Z(R).
Part 2: If |Z(R)| = pq, then for every x ∈ R \ Z(R), |CR(x)| = p2q. Since |Z(R)| |
|CR(a)∩CR(b)| and |CR(a)∩CR(b)| | p2q, |CR(a)∩CR(b)| ∈ {pq, p2q}. If |CR(a)∩CR(b)| =
p2q, then ab = ba. This is impossible. So |CR(a)∩CR(b)| = pq. And CR(a)∩CR(b) = Z(R).
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Theorem 2.12 Let R be a non-commutative ring with a unity of order p3q. If |Z(R)|
is not prime, then the following is hold:

(i) Γ(R) = (pq−1
p−1 )K(p3−p2) if (p− 1) | (pq − 1).

(ii) Γ(R) = (pq−1
q−1 )K(p2q−p2) if (q − 1) | (pq − 1).

(iii) Γ(R) = l1K(p3−p2) ∪ l2K(p2q−p2) where l1(p− 1) + l2(q − 1) = pq − 1.
(iv) Γ(R) = (p+ 1)K(p2q−pq).

Proof. Since |Z(R)| ∈ {p2, pq}, the proof falls naturally into two parts:

Part 1: If |Z(R)| = p2, then |CR(a)| ∈ {p3, p2q} for every a ∈ R \ Z(R). Sup-
pose |CR(a)| = p3 for every a ∈ R \ Z(R). Let a, b ∈ R \ Z(R) and ab ̸= ba. By
Theorem 2.11, CR(a) ∩ CR(b) = Z(R). Now if x ∈ CR(a), y ∈ CR(b) and xy = yx,
then by Lemma 2.4, CR(a) = CR(x), CR(b) = CR(y) and CR(x) = CR(y). So
CR(a) = CR(b), which is impossible. Therefore Γ(R) is the disjoint union of l copies
of the complete graph of size p3 − p2. So |V (Γ(R))| = l(p3 − p2). On the other hand
|V (Γ(R))| = |R| − |Z(R)| = p3q − p2. Thus l = pq−1

p−1 . Hence Γ(R) = (pq−1
p−1 )K(p3−p2) if

(p − 1) | (pq − 1). Suppose |CR(a)| = p2q for every a ∈ R \ Z(R). By similar argument
Γ(R) is the disjoint union of l copies of the complete graph of size p2q−p2 where l = pq−1

q−1 .

So Γ(R) = (pq−1
q−1 )K(p2q−p2) if (q − 1) | (pq − 1). Let |CR(a)| = p3 and |CR(b)| = p2q

for some a, b ∈ R \ Z(R). Then by Theorem 2.11, CR(a) ∩ CR(b) = Z(R). It is easy to
see that if x ∈ CR(a) and y ∈ CR(b), then xy ̸= yx. Hence Γ(R) is the disjoint union
of l1 copies of the complete graph of size p3 − p2 and l2 copies of the complete graph
of size p2q − p2. So |V (Γ(R))| = l1(p

3 − p2) + l2(p
2q − p2). On the other hand we have

|V (Γ(R))| = |R|−|Z(R)| = p3q−p2. Thus p3q−p2 = l1(p
3−p2)+ l2(p

2q−p2). Therefore
Γ(R) = l1K(p3−p2) ∪ l2K(p2q−p2), where l1 and l2 satisfy in l1(p− 1) + l2(q − 1) = pq − 1,
and this prove the Part (iii).
Part 2: If |Z(R)| = pq, then |CR(a)| = p2q. Likewise Part 1, Γ(R) is the disjoint union
of l copies of the complete graph of size p2q− pq where l(p2q− pq) = p3q− pq. Therefore
Γ(R) = (p+ 1)K(p2q−pq).
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