

n-Jordan homomorphisms on C -algebras

Abasalt Bodaghi^a and Behrouz Shojaee ^b

^aDepartment of Mathematics, Garmsar Branch, Islamic Azad University, Garmsar, Iran ^bDepartment of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran

Abstract. Let $n \in \mathbb{N}$. An additive map $h: \mathcal{A} \longrightarrow \mathcal{B}$ between algebras \mathcal{A} and \mathcal{B} is called n-Jordan homomorphism if $h(a^n) = (h(a))^n$ for all $a \in \mathcal{A}$. We show that every n-Jordan homomorphism between commutative Banach algebras is a n-ring homomorphism when n < 8. For these cases, every involutive n-Jordan homomorphism between commutative C^* -algebras is norm continuous.

Keywords: n-homomorphism; n-ring.

1. Introduction

Let \mathcal{A} and \mathcal{B} be two algebras. An n-ring homomorphism from \mathcal{A} to \mathcal{B} is a map \mathcal{B} that is additive (i.e., h(a+b) = h(a) + h(b) for all a b *n*-multiplicative (i.e., $h(a_1a_2 \ a_n) = h(a_1)h(a_1) \ h(a_n)$ for all $a_1 \ a_2$ The map h: A \mathcal{B} is called n-Jordan homomorphism if it is additive and $h(a^n) = (h(a))^n$ for all a \mathcal{A} . It is clear that every n-ring homomorphism is n-Jordan homomorphism but the converse is not true. There are some examples of n-Jordan homomorphisms which are not n-ring homomorphisms (for example refer to [2]). It is shown in [2] that every n-Jordan homomorphism between commutative Banach algebras is also n-ring homomorphism when n3 4 . For n=2, the proof is simple and routine. For the non-commutative case, Zelazko in [9] showed that if \mathcal{A} is a Banach algebra which need not be commutative, and \mathcal{B} is a semisimple commutative Banach algebra, then each Jordan homomorphism $h: \mathcal{A}$ ring homomorphism.

An n-ring homomorphism $h: \mathcal{A}$ \mathcal{B} between C^* -algebras is said to be n-ring homomorphism if $h(a^*) = h(a)^*$ for all a \mathcal{A} . Similarly one can de ne n-n-Jordan homomorphism. If, in addition, h is linear, we say that h is involutive n-ring (Jordan) homomorphism.

One of the fundamental results in the study of C^* -algebras is that if $T: \mathcal{A} = \mathcal{B}$ is is a -homomorphism between C^* -algebras, then it is norm contractive [6, theorem 2.1.7]. In [4], authors ask: Is every involutive n-ring homomorphism between C^* -algebras continuous? Park and Trout in [7] answered this question and proved that every involutive n-ring homomorphism between C^* -algebras is in fact norm

^{*}Corresponding author. Email: abasalt.bodaghi@gmail.com

2

contractive. Some questions of automatic continuity for n-homomorphisms between Banach algebras were also investigated in [1, 5]. After that, Tomforde in [8, theorem 3.6] proved that if $\mathcal A$ and $\mathcal B$ are unital C^* -algebras and $: \mathcal A = \mathcal B$ is a unital -preserving ring homomorphism, then is contractive. Consequently, is also continuous.

In this paper, we prove that every n-Jordan homomorphism between commutative Banach algebras is n-ring homomorphism when n-5 6 7 (for the case n=5 this had been proved earlier by Eshaghi et al in [3] with a long proof). Finally, using these results, we show that every involutive n-Jordan homomorphism between commutative C^* -algebras is continuous.

2. Main Results

Theorem 2.1. Let \mathcal{A} and \mathcal{B} be two commutative algebras, and let $h: \mathcal{A}$ \mathcal{B} be an n-Jordan homomorphism. Then h is an n-ring homomorphism for n 3 4 5 6 7 .

Proof For the cases n = 3 4, refer to [3]. As for n = 5, the map h is additive such that $h(x^5) = (h(x))^5$ for all $x \in \mathcal{A}$. Using this equality, we have

$$h = \int_{k=1}^{4} \int_{k}^{5} x^{k} y^{5-k} = \int_{k=1}^{4} \int_{k}^{5} h(x)^{k} h(y)^{5-k}$$
 (1)

for all $x \ y \ \mathcal{A}$. Replacing x by x + z in (1), we obtain

$$h = \begin{cases} 4 & 4 & x^k z^{4-k} & y+2 & 3 & 3 & x^k z^{3-k} & y^2 \\ k=0 & & & & k=0 \end{cases}$$

$$+2 & 2 & 2 & x^k z^{2-k} & y^3 + xy^4 + zy^4$$

$$= \begin{pmatrix} 4 & 4 & k & h(x)^k h(z)^{4-k} & h(y) + 2 & 3 & 3 & h(x)^k h(z)^{3-k} & h(y)^2 \\ k=0 & k & h(x)^k h(z)^{2-k} & h(y)^3 + h(x)h(y)^4 + h(z)h(y)^4 \end{cases}$$

$$+2 & 2 & 2 & k & h(x)^k h(z)^{2-k} & h(y)^3 + h(x)h(y)^4 + h(z)h(y)^4 \qquad (2)$$

for all $x y z \in \mathcal{A}$. Combining (1) and (2) gives

$$h(2x^{3}zy + 3x^{2}z^{2}y + 2xz^{3}y + 3x^{2}zy^{2} + 3xz^{2}y^{2} + 2xzy^{3})$$

$$= 2h(x)^{3}h(z)h(y) + 3h(x)^{2}h(z)^{2}h(y) + 2h(x)h(z)^{3}h(y)$$

$$+3h(x)^{2}h(z)h(y)^{2} + 3h(x)h(z)^{2}h(y)^{2} + 2h(x)h(z)h(y)^{3}$$
(3)

for all x y z = A. Substituting z by x in (3), we obtain

$$h(x^4y + 2x^2y^3) = h(x)^4h(y) + 2h(x)^2h(y)^3$$
(4)

for all $x \ y \ \mathcal{A}$. Now, if we replace y by y+w in (4) and employ the same equality, we get

$$h(x^{2}y^{2}w + x^{2}yw^{2}) = h(x)^{2}h(y)^{2}h(w) + h(x)^{2}h(y)h(w)^{2}$$
(5)

Abasalt Bodaghi et al./ JLTA, 01 - 01 (2012) 1-7.

3

for all $x \ y \ w$ \mathcal{A} . Replacing x by x + u in (5), we have

$$h(xuy^{2}w + xuyw^{2}) = h(x)h(u)h(y)^{2}h(w) + h(x)h(u)h(y)h(w)^{2}$$
(6)

for all x y u w = A. Now, if we change y to y + v in (6), we conclude

$$h(xuyvw) = h(x)h(u)h(y)h(v)h(w)$$

for all $x \ y \ u \ v \ w$ \mathcal{A} . Therefore h is 5-ring homomorphism.

For the case n = 6, we assume that the map h is additive and $h(x^6) = (h(x))^6$ for all $x \in \mathcal{A}$. This fact implies the following equality if we replace x by x + y

$$h = \int_{k-1}^{5} \int_{k}^{6} x^{k} y^{6-k} = \int_{k-1}^{5} \int_{k}^{6} h(x)^{k} h(y)^{6-k}$$
 (7)

for all $x \ y \ \mathcal{A}$. Commuting x by x + z in (7), we obtain

for all x y z = A. Combining the above equality and (7), we get

for all x y z = A. Changing z to x in the last equality, we obtain

$$h(x^4y^2 + x^2y^4) = h(x)^4h(y)^2 + h(x)^2h(y)^4$$
(8)

for all $x \ y \ A$. Now, if we replace y by y + t in (8), we conclude

$$h(x^4yt + 2x^2yt^3 + 3x^2y^2t^2 + 2x^2y^3t) = h(x)^4h(y)h(t) + 2h(x)^2h(y)h(t)^3$$

$$+3h(x)^{2}h(y)^{2}h(t)^{2} + 2h(x)^{2}h(y)^{3}h(t)$$
(9)

for all $x \ y \ t$ \mathcal{A} . Substituting t by t + u in (9), we have

Abasalt Bodaghi et al./ JLTA, 01 - 01 (2012) 1-7.

$$h(x^2yt^2u + x^2ytu^2 + x^2y^2tu) = h(x)^2h(u)h(y)h(t)^2h(u) + h(x)^2h(u)h(y)h(t)h(u)^2$$

$$+h(x)^2h(y)^2h(t)h(u) (10)$$

for all $x \ y \ t \ u - A$. We replace u by u + v in (10) to obtain

$$h(x^2ytuv) = h(x)^2h(u)h(y)h(t)h(v)$$
(11)

for all $x \ y \ t \ u \ v$ \mathcal{A} . Finally if we change x to x + w in (11), we get

$$h(xytuvw) = h(x)h(y)h(t)h(u)h(v)h(w)$$

The above equality shows that the map h is 6-ring homomorphism. Now, for n = 7. Replacing x by x + y in equality $h(x^7) = (h(x))^7$, we have

$$h = \begin{cases} 6 & 7 \\ k & x^k y^{7-k} \end{cases} = \begin{cases} 6 & 7 \\ k & h(x)^k h(y)^{7-k} \end{cases}$$
(12)

for all $x \ y \ \mathcal{A}$. Commuting x by x + z in (12), we obtain

for all x y z = A. Combining (12) and the above equality, we get

for all x y z = A. Letting z to be x in the above, we obtain

$$h(3x^2y^5 + 5x^4y^3 + x^6y) = 3h(x)^2h(y)^5 + 5h(x)^4h(y)^3 + h(x)^6h(y)$$
 (13)

for all $x \ y$ \mathcal{A} . Now, if we replace y by y+t in (13) and use the same equality, we conclude

Edited with the demo version of Infix Pro PDF Editor

Abasalt Bodaghi et al./ JLTA, 01 - 01 (2012) 1-7.

5

$$h(x^{2}y^{4}t + 2x^{2}y^{3}t^{2} + 2x^{2}y^{2}t^{3} + x^{2}yt^{4} + x^{4}y^{2}t + x^{4}yt^{2})$$

$$= h(x)^{2}h(y)^{4}h(t) + 2h(x)^{2}h(y)^{3}h(t)^{2} + 2h(x)^{2}h(y)^{2}h(t)^{3}$$

$$+h(x)^{2}h(y)h(t)^{4} + h(x)^{4}h(y)^{2}h(t) + h(x)^{4}h(y)h(t)^{2}$$
(14)

for all $x \ y \ t$ \mathcal{A} . Substituting t by t + u in (14), we have

$$\begin{split} h(2x^2y^3tu + 3x^2y^2t^2u + 3x^2y^2tu^2 + 2x^2yt^3u + 3x^2yt^2u^2 + 2x^2ytu^3 + x^4ytu) \\ &= 2h(x)^2h(y)^3h(t)h(u) + 3h(x)^2h(y)^2h(t)^2h(u) \\ &+ 3h(x)^2h(y)^2h(t)h(u)^2 + 2h(x)^2h(y)h(t)^3h(u) \end{split}$$

 $+3h(x)^2h(y)h(t)^2h(u)^2+2h(x)^2h(y)h(t)h(u)^3+h(x)^4h(y)h(t)h(u)$ for all $x\ y\ t\ u$ \mathcal{A} . We replace u by u+v in the last equality to obtain

$$h(x^{2}y^{2}tuv + x^{2}yt^{2}uv + x^{2}ytu^{2}v + x^{2}ytuv^{2})$$

$$= h(x)^{2}h(y)^{2}h(t)h(u)h(v) + h(x)^{2}h(u)h(y)h(t)^{2}h(u)h(v)$$

$$+h(x)^{2}h(y)h(t)h(u)^{2}h(v) + h(x)^{2}h(y)h(t)h(u)h(v)^{2}$$
(15)

for all $x \ y \ t \ u \ v$ \mathcal{A} . Replacing v by v + w in (15), we deduce

$$h(x^2ytuvw) = h(x)^2h(y)h(t)h(u)h(v)h(w)$$
(16)

for all x y t u v w \mathcal{A} . Finally, if we change x to x + z in (16), we get

$$h(xyztuvw) = h(x)h(y)h(z)h(t)h(u)h(v)h(w)$$

for all $x \ y \ z \ t \ u \ v \ w$ \mathcal{A} . Hence the map h is 7-ring homomorphism.

3. Applications

An element a of a C^* -algebra \mathcal{A} is positive if a is hermitian, that is $a=a^*$, and (a) \mathbb{R}^+ , where (a) is the spectrum of a. We write $a \geq 0$ to mean a is positive. Also a linear map $T: \mathcal{A}$ \mathcal{B} between C^* -algebras is positive if $a \geq 0$ implies $T(a) \geq 0$ for all a \mathcal{A} . We say that the map T is completely positive if, for any natural number k, the induced map $T_k: M_k(\mathcal{A})$ $M_k(\mathcal{B}); T_k((a_{ij}))$ $(T(a_{ij}))$, on k k matrices is positive.

proposition 3.1. Let n N such that $2 \le n \le 7$. Suppose \mathcal{A} and \mathcal{B} are commutative C^* -algebras. Let and be nonnegative real numbers and let r s be real numbers, f be a map from \mathcal{A} into \mathcal{B} , and let r s be real numbers such that either (r-1)(s-1)>0 and $s \ge 0$ or (r-1)(s-1)>0, s<0, and f(0)=0. Assume that f satis es the system of functional inequalities

$$f(x+y+z^*)$$
 $f(x)$ $f(y)$ $f(z)^* \le (x^r + y^r + z^r)$ $f(x^n)$ $f(x)^n \le x^{ns}$

for all $x \ y \ \mathcal{A}$. Then, there exists a unique -n-ring homomorphism $h : \mathcal{A} \ \mathcal{B}$ such that

$$f(x) \quad h(x) \leqslant \frac{2}{2 \cdot 2^r} x^r$$

for all $x \in \mathcal{A}$.

Proof We can deduce the result from [3, theorem 2.1, theorem 2.2] and theorem 2.

The following theorem has been proved by Park and Trout in [7, theorm 3.2].

Theorem 3.1. Let : \mathcal{A} \mathcal{B} be an involutive *n*-homomorphism between C^* -algebras. If $n \geq 3$ is odd, then ≤ 1 , i.e., is norm-contractive.

corollary 3.1. Let n=3 5 7, and let \mathcal{A} and \mathcal{B} be commutative C^* -algebras. If $h:\mathcal{A}=\mathcal{B}$ is an involutive n-Jordan homomorphism, then $h\leqslant 1$, i.e., h is norm contractive.

Proof For n = 3, The result follows from [2, theorm 2.1] and theorem 2 and for n = 5 7, we can use theorem 2 and theorem 3.

For the even case, we need the following theorem which is proved in [7, theorm 2.3].

Theorem 3.2. Let : \mathcal{A} \mathcal{B} be an involutive *n*-homomorphism between C^* -algebras. If $n \ge 2$ is even, then is completely positive. Thus, is bounded.

corollary 3.2. Let n=4 6. If $h:\mathcal{A}=\mathcal{B}$ is an involutive n-Jordan homomorphism between commutative C^* -algebras, then h is completely positive. Thus, h is bounded.

Proof By using [2, theorm 2.1] and theorem 2 for n = 4 and theorems 2 and 3 for n = 6, we obtain the desired result.

Question. Let n be an arbitrary and xed natural number. Is every n-Jordan homomorphism between commutative algebras is also a n-ring homomorphism? If this is true, then every involutive n-Jordan homomorphism between commutative C^* -algebras is norm contractive. Is this true in the non-commutative case?

Acknowledgement. The authors sincerely thank the anonymous reviewer for his careful reading, constructive comments and fruitful suggestions to improve the quality of the manuscript.

References

 Bracic J., Moslehian M.S., On Aautomatic continuty of 3-homomorphisms on Banach algebra, Bull. Malays. Math. Sci., 30(2007), 195-200.

[2] Eshaghi Gordji M., n-Jodan Homomorphisms, Bull. Aust. Math. Soc., 80 (2009), 159-164.

[3] Eshaghi Gordgi M., Karimi T., and Kaboli Gharetapeh S., Approximately n-Jordan Homomorphisms on Banach Algebras, J. Ineq. Appl., (2009), 8.

[4] Hejazian S., Mirzavaziri M. and Moslehian M.S., n-Homomorphisms, Bull. Iranian Math. Soc., 1 (2005), 13-23.

 [5] Honary T.G., Shayanpour H., Automatic Continuity of n-Homomorphisms Between Banach Algebras, Quaest. Math., 33 (2010), 189-196.

[6] Murphy G.J., C*-algebras and Operator Theory, Acedemic Press, Sandiego, (1990).

- [7] Park E., Trout J., On the nonexistence of nontrivial involutive n-homomorphisms of C^* -algebras, Trans. Amer. Math. Soc, 361(2009), 1949-1961.
- [8] Tomforde M., Continiuty of ring *-homomorphisms between C*-algebras, New York J. Math. Soc., 15(2009), 161-167.
- [9] Zelazko W., A characterization of multiplicative linear functionals in complex Banach algebras, Studia Math, 30(1968), 83-85.