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Abstract. Let G be a group with identity e and R be a commutative G-graded ring with
nonzero identity, S C h(R) a multiplicatively closed subset of R and M be a graded R-
module. A graded submodule N of M with (N :r M)N.S = ( is said to be graded S-strongly
prime if there exists s € S such that whenever ((N 4+ Rxzgy) :r M)y, C N, then szy € N or
syn € N for all zg4,yn € h(M). The aim of this paper is to introduce and investigate some
basic properties of the notion of graded S-strongly prime submodules, especially in graded
multiplication modules. Moreover, we investigate the behaviour of this structure under graded
module homomorphisms, localizations of graded modules, quotient graded modules, Cartesian
product.

Keywords: Graded S-prime submodule, graded S-strongly prime submodule, graded
multiplication module.
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1. Introduction

In recent years, rings with a group-graded structure have become increasingly impor-
tant and consequently, the graded analogues of different concepts are widely studied in
(@, 2, AR, 00, T2-05]. In this paper, first, we introduce and study the notions of graded
S-strongly prime submodules and graded S-strongly semiprime submodules of a graded
R-module M as a generalization of graded prime submodules and we investigate some
properties of such graded submodules. For example, we show that if N is a graded S-
strongly prime submodule of M, then NN is a graded S-strongly semiprime submodule
and (N :p M) is a graded S-prime ideal of R. Also, we give some characterizations
of graded S-strongly prime submodules in graded multiplication modules. Second, we
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investigate the behaviour of this structure under graded module homomorphisms, local-
izations, quotient graded modules, Cartesian product.

Let G be a group with identity e and R be a ring. Then R is said to be a G-graded if
R=6& e Ry such that RyRy C Ry, for all g,h € G, where R, is an additive subgroup
of R for all g € G [[3]. The elements of R, are homogeneous of degree g. An element
r of R has a unique decomposition as r = ) gec g With rg € Ry for all g € G, but
the sum being a finite sum, i.e. almost all 7, zero. Let R = EBgeG R, be a graded ring
and I be an ideal of a graded ring R. Then [ is said to be a graded ideal of R, if
1= @geG(I NRy), e, forzel, x= deG x4, where x4 € I for all g € G. Moreover,
R/I becomes a G-graded ring with g-component (R/I), = (Rq+ I)/I for g € G [13]. A
graded ring R is called graded quasilocal ring if it has a unique graded maximal ideal
[[2]. We call S C h(R) is a multiplicatively closed subset of R if 0 ¢ S, 1 € S and
sgs’g, € S for all s, s;, € S [17]. Let R be a graded ring and M an R-module. We say
that M is a graded R-module if there exists a family of subgroups {Mg}4cq of M such
that M = @geG Mgy and RyM; C Mgy, for all g,h € G. The elements of M, are called
homogeneous of degree g. It is clear that M, is an R.-submodule of M for all g € G.
Moreover, h(M) = {J,cq My [13]. Let N be an R-submodule of a graded R-module M.
Then N is said to be a graded R-submodule if N = @geG(N N My), i.e. for m € N,
m = deG mg, where my, € N for all ¢ € G. Moreover, M /N becomes a G-graded
module with g-component (M/N), = (Mg + N)/N for g € G [I3]. A proper graded
submodule N of a graded R-module M is said to be graded prime if rym; € N where
rg € h(R) and my, € h(M), then mj, € N or ry € (N : M). A graded R-module M is
called graded prime if the zero graded submodule is graded prime in M [2]. A proper
graded submodules N of a graded R-module M is call graded semiprime if r’;mh eN
for some 14, € h(R), my € h(M) and k € N, then rymy, € N [U]. Let S C h(R) be a
multiplicatively closed subset of R and N be a graded submodule of a graded R-module
M with (N :g M) NS = 0. Then N is said to be a graded S-prime submodule if there
exists s € S such that whenever romy € N, then smy, € N or sry € (N : M) for each
rg € h(R) and my, € h(M) [I5]. A graded R-module M is called graded finitely generated
if M = Rmg, + Rmg, + --- + Rmy, for some mg,,...,mgy, € h(M) [2]. Let S C h(R)
be a multiplicatively closed subset of R and M be a graded R-module. Then S~'M is a
graded S~!R-module with

(ST'M)y = (= : (degm)(degs)”* = g}

and (S7'R)y = {L : (degr)(degs)™' =g} [13] Let M = Dy My and M' =P M,
be two graded R-modules. A mapping f from M into M’ is said to be a graded homo-
morphism, if for all m,n € M;

(1) f(m+mn)= f(m)+ f(n),
(2) f(rm) =rf(m), for any r € R and m € M,
(3) For any g € G; f(My) € M, [12].

Let Ry and Ry be G-graded rings. Then R = R; X Ry is a G-graded ring with R, =
(R1)g X (Rg)g for all g € G. Let My be a G-graded Ri-module, M> be a G-graded
Ro-module and R = R; X Ro. Then M = M; x Ms is a G-graded R-module with
My = (My)g x (M), for all g € G. Also, if S C h(Ry) is a multiplicatively closed subset
of Ry and Sy C h(R3) is a multiplicatively closed subset of Ry, then S = S; x Ss is a
multiplicatively closed subset of R. Furthermore, each graded submodule of M is of the
form N = Ny x Ny where N; is a graded submodule of M; for i = 1,2 [12]. A graded
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R-module M is called graded multiplication module, if every graded submodule N of M,
N = IM for some graded ideal I of R [3].

Throughout this work, R is a commutative graded rings with identity and M is a
graded R-module. Also, S C h(R) is a multiplicatively closed subset of R.

2. Characterizations of graded S-strongly prime submodules

Definition 2.1 (a) A proper graded submodule N of M is said to be a graded strongly
prime submodule if ((N + Rzy) :g M)y, C N, then 2z, € N or y, € N for each
Zg,yn € h(M).

(b) A graded submodule N of M with (N :g M)NS = () is said to be graded S-strongly
prime if there exists s € S such that whenever ((N + Rxg) :r M)y, C N, then sz, € N
or sy, € N for each xg4,yy € h(M).

Note that if we consider R as a graded R-module, then graded S-strongly prime sub-
modules are exactly graded S-prime ideals of R.
The following Lemma is known, but we write it here for the sake of references.

Lemma 2.2 Let M be a graded module over a graded ring R. Then the following hold:

(i) If I and J are graded ideals of R, then I + .J and I()J are graded ideals of R.

(ii) If I is a graded ideal of R, N is a graded submodule of M, 4 € h(R) and z), € h(M),
then Rz, IN, rgN and (0 :p I) are graded submodules of M.

(iii) If N and K are graded submodules of M, then N + K and N[ K are also graded
submodules of M and (N :g M) is a graded ideal of R. Also, Anng(M) = (0:g M) is
a graded ideal of R.

(iv) Let {Nx}aea be a collection of graded submodules of M. Then ), Ny and [, N, are
graded submodues of M.

Proposition 2.3

(i) Every graded strongly prime submodule N of M with (N :xp M) NS = () is also a
graded S-strongly prime submodule of M.

(ii) Let S C h(R) be a multiplicatively closed subset of R consisting of units in R. Then
a graded submodule N of M is graded strongly prime if and only if N is graded
S-strongly prime.

Proof. The proof is completely straightforward. [ ]

By setting S = {1}, we conclude that every graded strongly prime submodule is a
graded S-strongly prime submodule by Proposition E23. The following example shows
that the converse is not true in general.

Example 2.4

(i) Let us observe R = Z as a trivially Zo-graded ring and M = Z/nZ x Z/nZ be a Zs-
graded R-module with My = Z/nZ x {0} and M; = {0} x Z/nZ where n is a positive
integer with Mj. Let p be a prime factor of n and S = Z — pZ. Then the submodule
pZ/nZ x {0} is a graded S-strongly prime submodule of M.

(ii) Let R = Zl[i] be Zg-graded R-module with Ry = Z and Ry = iZ and S = {2" | n €
NU{0}}. Consider the graded submodule N = (47) of graded R-module R. Put s = 4.
It is easy to see that IV is a graded S-strongly prime submodule. But N is not a graded
strongly prime submodule.
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Definition 2.5 (a) Let N be a graded submodule of M such that (N :g M)NS = 0.
Then N is said to be a graded S-semiprime submodule if there exists s € S such that
whenever r2my, € N, then srymy, € N for all r4 € h(R) and my, € h(M).

(b) Let N be a graded submodule of M such that (N :g M) NS = 0. Then N is said
to be a graded S-strongly semiprime submodule if there exists s € S such that whenever
((N+ Rxgy) :r M)xy C N, then szy € N for all z, € h(M).

(c) A graded ideal I of R is called graded S-semiprime if I NS = () and there exists
s € S such that whenever a2 € I, then say € I for all ay € h(R).

Lemma 2.6 Every graded S-strongly semiprime submodule is a graded S-semiprime
submodule.

Proof. Let N be a graded S-strongly semiprime submodule of M and suppose rgmh eEN
where 4 € h(R) and my, € h(M). Thus, (N + R(rgmp)) :r M)(rgmp) = re((N +
R(rgmp)) :r M)myp, Crg(N + R(rgmp)) € N. Since N is a graded S-strongly semiprime
submodule, there exists s € S such that srym; € N. Therefore, N is a graded S-
semiprime submodule. |

Proposition 2.7 If N is a graded S-strongly semiprime submodule of M, then (N :p M)
is a graded S-semiprime ideal of R.

Proof. Let a2 € (N :g M) where ay € h(R). Let m € M. Hence m = Y, mj, where
mp, € My, for all h € G. Suppose my, € M. Thus (N + R(agmy)) :r M)(agmy) =
ag((N + R(agmy)) :r M)my, C ag(N + R(agmyp)) € N. Since N is graded S-strongly
semiprime, there exists s € S such that sagmy € N, so sagm € N and sag € (N :g M).
Therefore, (N :g M) is a graded S-semiprime ideal of R. [ |

The following example shows that the converse of Proposition P22 is not hold.

Example 2.8 Let R = Z be a trivially Zs-graded ring and M = QxQ where Q is the field
of rational numbers be a Zs-graded module with My = Q x {0} and M; = {0} x Q. Take
the graded submodule N = Z x {0} and the multiplicatively closed subset S = Z—{0} of
Z. Then the graded ideal (N :z M) = 0 is a graded S-semiprime, but N is not a graded
S-strongly semiprime submodule of M. Let s be an arbitrary element of S. Choose a
prime number p with ged(p,s) = 1. Note that ((N + R(%,O)) ‘R M)(%,O) C N, but

(5,0) ¢ N.
Proposition 2.9

(i) Every graded S-strongly prime submodule is a graded S-prime submodule.

(ii) Every graded S-strongly prime submodule is a graded S-strongly semiprime submod-
ule.

(iii) Every graded maximal submodule N of M with (N :g M) NS = () is a graded S-

strongly prime submodule.

Proof. (i) Let N be a graded S-strongly prime submodule of M. Thus there exists
s € S such that whenever (N + Rzy) : M)y, € N for all zg,y, € h(M), implies
that sxg € N or sy, € N. Let r¢gmp € N and smy ¢ N for some ry € h(R) and
my, € h(M). We show that sry € (N :g M). Let x = ), oxr € M. Thus we have
((N + Rmy) :r M)(rqzi) = rg((N + Rmy) :r M)z C rg(N + Rmy) € N for any
T € My, since smp ¢ N and N is a graded S-strongly prime submodule of M, we
conclude sryxp € N for any zj, € Mj. Hence srgz € N. Therefore sryM C N and so
srg € (N :g M).

(3) It is clear.
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(i4i) Let N be a graded maximal submodule of M such that (N :g M) N S = 0.
Let zg4,yp € R(M) and (N + Rzy) : M)y, € N. Let 4 ¢ N. Thus N + Rxy = M,
hence (N + Rzy :r M) = R and we conclude y, € N. Therefore N is a graded strongly
prime submodule, and since (N :g M) NS = (0, then by Proposition P23, N is a graded
S-strongly prime submodule of M. [ |

The following example shows that the concept of graded S-strongly prime submodules
is different from the concept of graded S-prime submodules.

Example 2.10 Let R be a G-graded ring, P be a graded prime ideal of R and S =
h(R)—P. Then P x P is a graded S-prime submodule of graded R-module R x R, because
P x P is a graded prime submodule of Rx Rand (PXx P :g Rx R)NS =PNS = (. But
it is not a graded S-strongly prime submodule of M. Let s be an arbitrary element of .S.
Then ((Px P+ R(1,0)) :g RxR)(0,1) C Px P, but s(1,0) ¢ Px P and s(0,1) ¢ Px P.

Proposition 2.11 Let M be a graded module over a graded field R and N be a proper
graded submodule of M. Then N is a graded maximal submodule of M if and only if N
is a graded S-strongly prime submodule of M.

Proof. Let N be a graded maximal submodule of M. We have (N :g M)NS = 0,
because if s € (N :g M)N S, then 1 = s7ts € (N :g M), a contradiction. Thus by
Proposition 9, N is a graded S-strongly prime submodule of M. Conversely, let N be
a graded S-strongly prime submodule of M which is not a graded maximal submodule
of M. Then there exists x4 € h(M)\ N such that Rxy+N # M. Let y =Y, cayn € M.
Hence for any y, € My, we have (N + Rzy) :r M)y, = {0}y, = {0} € N. Thus
there exists s € S such that sz, € N or sy, € N since N is a graded S-strongly prime
submodule of M. Since x4 € N, so sy € N. We conclude that sy, € N and y, € N, so
y € N. Thus, N = M, which is a contradiction. [ |

Corollary 2.12 Let N a graded submodule of M with (N : M) = Pand S = h(R)—P. If
P is a graded maximal ideal of R, then there exists a graded S-strongly prime submodule
M of M with (M : M) = P.

Proof. Note that M/N is a graded module over the graded field R/P, so it has a
graded maximal submodule, say M /N. Then M is a graded maximal submodule of M
containing of N and hence P = (N : M) C (M : M), we have (M : M) = P. Since
(M : M)NnS =0, then by Proposition 29, M is a graded S-strongly prime submodule
of M. [ ]

Definition 2.13 A graded submodule N of a graded R-module M is called graded S-
I-maximal if (N :p M) = I and there exists s € S such that whenever K is a graded
submodule of M containing of N with (K :gp M) = I, then sK C N.

Theorem 2.14 Let M be a graded R-module and N be a graded submodule of M.

(i) N is a graded S-strongly prime submodule of M.
(ii) N is a graded S-strongly semiprime submodule of M and N is a graded S-prime
submodule of M.
(iii) N is a graded S-strongly semiprime submodule of M and (N :p M) is a graded
S-prime ideal of R.
(iv) N is a graded S-(N :p M)-maximal submodule of M.

Then (i) = (i1) = (i) = (iv).

Proof. (i) = (ii) Apply Proposition 9.
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(73) = (i4i) Note that for every graded S-prime submodule N of M, the graded ideal
(N :gr M) is a graded S-prime ideal of R (see [I5, Proposition 2.6]).

(731) = (iv) Since N is a graded S-strongly semiprime submodule of M, there exists
s € S such that whenever ((N + Rzy) : M)xzy C N, then szy € N for all , € M. Let
K be a graded submodule of M containing of N with (K :g M) = (N :g M). We show
that sK C N. Let x = EgGG x4 be an arbitrary element of K. Since N C N 4+ Rz, C K
for any g € G, then (N :g M) C (N + Rxy) :r M) C (K :g M) = (N :g M) and
so (N + Rxg) :g M) = (N :p M). Thus, (N + Rzy) :p M)xyg = (N :g M)zy C N,
since IV is a graded S-strongly semiprime submodule of M, sz, € N and hence sz € N.
Therefore, sK C N as required. |

Proposition 2.15 Let {N;}icr be a family of graded S-strongly prime submodules of M
such that (N; :gp M) = P for all i € I.If [;c; N; is a graded S-strongly prime submodule
of M, then there exists s € S such that sN; C N; for all 4,5 € I.

Proof. Let N =(),c; N;. Thus ,(N :g M) = (\;c;(N; :r M) = P = (N; :p M) for each
j € I. Since N is graded S-strongly semiprime and by Proposition ET4((i) = (iv)), N is
graded S-(N :p M)-maximal and N C N; with (N :g M) = (N; :g M), so there exists
s € S such that sN; C N for all j € I. [ |

Lemma 2.16 Let N be a graded S-strongly prime submodule of a graded R-module
M. Then the following statements hold for some s € S.

(i) (N:p8) S (Nipss)forall s’ eS.
(11) ((N ‘R M) ‘R 8/) - ((N ‘R M) ‘R 8) for all s’ es.

Proof. (i) Let m = 37 comg € (N iy 8') where s’ € S. Then s'my, € N for any
mg € h(M). Since every graded S-strongly prime is graded S-prime, there exists s € S
such that smy € N or ss’ € (N :g M). As (N :g M)NS = 0, we get smy € N so
sm € N, namely m € (N :pr ).

(73) It follows from (7). [ |

Theorem 2.17 Let N be a graded submodule of a graded R-module M provided (N :p
M)NS = (). Then N is a graded S-strongly prime submodule of M if and only if (N :j; s)
is a graded strongly prime submodule of M for some s € S.

Proof. Assume that N is a graded S-strongly prime submodule of M. Then there exists
s € S such that whenever ((N + Rzy) :p M)y, C N, then sz, € N or sy, € N for all
xg,yn € h(M). We prove that (N :ps s) is a graded strongly prime submodule. Taking
Tg,yn € M with (N :p 8) + Rzg) :r M)yn C (N 1 8), we have (((N s s) + Rxg) ir
M)(syn) € s(N :p s) € N. Since N C (N :pr s), (N + Rxy) :r M)(syn) € N.
Thus, sz, € N or s?y, € N. If sz, € N, then z, € (N :p s). If s?y, € N, then
yn € (N 131 8%) € (N :pr s) by Lemma 2I8. Hence ,(N 1/ s) is a graded strongly prime
submodule of M. Conversely, assume that (N :js s) is a graded strongly prime submodule
of M. Let (N + Rxg) :r M)y, C N for some x4,y € h(M). Since N C (N :ps s), we
have x4 € (N :pr s) or yp, € (N :ar s). Thus, szg € N or sy, € N, and so N is a graded
S-strongly prime submodule of M. [ |

Theorem 2.18 Let N be a graded submodule of M provided (N :g M) C Jac9"(R),
where Jac9"(R) is the intersection of all graded maximal ideals of R. Then the following
statements are equivalent:

(i) N is a graded strongly prime submodule of M.
(ii) N is a graded prime submodule of M and N is a graded (h(R) — m)-strongly prime
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submodule of M for each graded maximal ideal m.

Proof. (i) = (ii) Let N be a graded strongly prime submodule of M. Then N is a
graded prime submodule of M. Since (N :g M) C Jac9"(R), (N :g M) C m for each
graded maximal ideal m and so (N :g M) N (h(R) — m) = (. Thus, N is a graded
(h(R) — m)-strongly prime submodule of M by Proposition EZ3.

(11) = (i) Suppose that N is a graded prime submodule of M and N is a graded
(h(R) —m)-strongly prime submodule of M for each graded maximal ideal m. Let ((N +
Rxg) :r M)y, € N and yp, ¢ N for some x4,y € h(M). Let m be a graded maximal
ideal of R. Since N is a graded (h(R) — m)-strongly prime submodule of M, there exists
Sm € h(R) —m such that sqzy € N or sy, € N. If sy, € N, then since N is a
graded prime submodule of M and y, & N, sm € (N :g M) which is a contradiction.
Hence, smzgy € N. Consider the set Q = {sy | Im € Maz9"(R); s € m and smxy € N}.
Suppose that (@) # R. Take any graded maximal ideal m’ containing (). Then the
definition of @) requires that there exists sy € Q and sy € m/, which is a contradiction.
Thus, (Q) = R and 1 = 718w, + 728m, + -+ + TpSm, for some r; € R and sy, ¢ m; with
Sm,Tg € N, where m; € Max9"(R) for each i = 1,2,...,n. Therefore, x4 = rism, x4 +
T28m,Tg + -+ TpSm,Tg € N. Hence N is a graded strongly prime submodule of M. H

By the previous theorem we have the following result:

Corollary 2.19 Let M be a graded module over a graded quasilocal ring (R, m). Then
the following statements are equivalent:

(i) N is a graded strongly prime submodule of M.
(ii) N is a graded prime submodule of M and N is a graded (h(R) — m)-strongly prime
submodule of M.

Now, we characterize graded S-strongly prime submodules of a graded multiplication
module.

Theorem 2.20 Let M be a graded multiplication R-module and N be a graded sub-
module of M provided that (N :g M) NS = (. Then the following statements are
equivalent:

(i) N is a graded S-strongly prime submodule of M.
(ii) (N :g M) is a graded S-prime ideal of R.
(iii) N = IM for some graded S-prime ideal I of R with ann(M) C I.

Proof. (i) = (i) It follows from Theorem PT4.

(13) = (4t7) Consider I = (N :p M).

(i4i) = (i) By [0H, Proposition 2.8], N is a graded S-prime submodule of M. Thus,
there exists s € S such that whenever rym; € N, then smy € N or sry € (N :g M)
for all my, € h(M) and r4 € h(R). Now, we show that N is a graded S-strongly prime
submodule of M. Let ((N + Rzy) :r M)y, C N and sy, ¢ N for some x4,y € h(M).
Since N is a graded S-prime submodule of M, s((N + Rzy) :r M) C (N :p M). As M
is a graded multiplication R-module, we have

s(N + Rzy) = s((N + Rxg) :g M)M C (N :p M)M = N.

Therefore, sz, € N and N is a graded S-strongly prime submodule of M. [ ]

Lemma 2.21 Let @ be a graded S-primary ideal of R. Then Grad(Q) is a graded
S-prime ideal of R.
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Proof. First note that Grad(Q)NS = (), because if s € Grad(Q)NS, then s™ € QNS for
some n € N, a contradiction. Let ayb, € Grad(Q) where ag, b, € h(R). Thus, (azby)* € Q
for some k € N. Since @ is a graded S-primary ideal of R, there exists s € .S such that
sa'; € Q or sbf € Grad(Q). We conclude sa;, € Grad(Q) or sb, € Grad(Q). Hence,
Grad(Q) is a graded S-prime ideal of R. [ |

Lemma 2.22 Let M be a finitely generated multiplication R-module and N be a sub-
module of M. Then (Grad(N) :g M) = Grad((N :r M)).

Proof. The proof is similar to Theorem 4 of [IT]. [ |

Theorem 2.23 Let M be a graded finitely generated multiplication R-module. If N is
a graded S-strongly prime submodule of M, then Grad(N) is a graded S-strongly prime
submodule of M.

Proof. Since N is a graded S-strongly prime submodule of M, (N :p M) is a graded
S-prime ideal of R by Theorem PZ14. Thus, by Lemma 220, Grad((N :g M)) is a graded
S-prime ideal of R. By Lemma P22, we have (Grad(N) :g M) = Grad((N :g M)).
Thus, (Grad(N) :r M) is a graded S-prime submodule of M. Now, the result follows
from Theorem PZ20. [ |

3. Behaviour of graded S-strongly prime submodules

In this section, we investigate the behaviour of graded S-strongly prime submodules
under graded module homomorphisms, localizations, quotient graded modules and Carte-
sian product.

Proposition 3.1 Let f: M — M’ be a graded R-homomorphism. Then the following
statements hold:

(i) If N'is a graded S-strongly prime submodule of M’ such that (f~1(N’) :g M)NS = 0,
then f~!(N’) is a graded S-strongly prime submodule of M.

(ii) If f is a graded epimorphism and N is a graded S-strongly prime submodule of M
containing Ker(f), then f(N) is a graded S-strongly prime submodule of M.

Proof. (i) Let ((f7*(N') + Rxy) :r M)y, C f~Y(N') for some x4, y, € h(M). Thus,
FU(f~H(N")+Rzg) :r M)yn) C f(f(N")) C N'. Since f is a graded R-homomorphism,
(f7Y(N") + Rzy) :r M)f(yn) € N'. Now, we show that ((N' + Rf(x,)) :r M') C
(f7Y(N") + Rzy) :r M). Take r € ((N' + Rf(xy)) :r M’). Then M’ C N’ + Rf(z,).
Since f(M) C M', we have f(rM) = rf(M) C rM'" C N’ + Rf(z4). This implies
that M C f~Y(N' + f(Rxz)). It is clear that f~'(N' + f(Rz,)) C f~Y(N') + Rz,
Thus, r € (N’ + Rzy) :r M) and so (N' + Rf(z4)) :r M')f(yn) € N’. Since N’ is a
graded S-strongly prime submodule of M’, there exists s € S such that sf(zy) € N’ or
sf(yn) € N'. Therefore, sz, € f~H(N') or sy, € f~1(N’) as needed.

(i7) First note that (f(N) :g M")NS = 0. Otherwise, there exists s € (f(N) :p M')NS.
Hence, sM’' C f(N) and then f(sM) =sf(M)=sM' C f(N) and sM C N+ Ker(f) =
N. That means s € (N :g M), which is a contradiction. Let ((f(N) + Rxy) :r M')y;, C
f(N) where z7,y, € h(M'). Since f is a graded epimorphism, f(zy) = 2} and f(yn) = ¥,
for some x4, yp, € h(M). Thus (f(N + Rxg) :r M')f(yn) € f(N). It is easy to see that
(N 4+ Rzy) :r M) C (f(N + Rzy) :r M'). Hence f(((N + Rzg) :r M)yy) C f(N)
and (N + Rzy) :r M)y, € N + Ker(f) € N. Thus, there exists s € S such that
sry € N or sy, € N since N is a graded S-strongly prime submodule of M. Therefore,
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sf(xg) € f(N) or sf(yn) € f(N), and so f(IV) is a graded S-strongly prime submodule
of M. [

Proposition 3.2 Let N and K be graded submodules of M with K C N. Then the
following assertions hold:

(i) If N’ is a graded S-strongly prime submodule of M with (N’ :g K) NS = (), then
K N N'is a graded S-strongly prime submodule of K.

(i) N is a graded S-strongly prime submodule of M if and only if N/K is a graded
S-strongly prime submodule of M/K.

Proof. (i) Consider the injection i : K — M defined by i(x) = z for all x € K. Then
iT!(N') = KNN'. By (N :g K)N S =0, we give (i *(N") :g K) NS = 0. Thus, the
rest follows from Proposition B7(7).

(7i) Let N be a graded S-strongly prime submodule of M. Then consider the canonical
homomorphism 7 : M — M /K defined by m(m) = m+ K for all m € M. Then note that
7 is a graded epimorphism and Ker(r) = K C N. Thus by Proposition B(i:), N/K is a
graded S-strongly prime submodule of M /K. Conversely, assume that N/K is a graded
S-strongly prime submodule of M /K. Let (N+Rxzg) :r M)yp, C N where x4, y, € h(M).
We have (N + Rzy)/K :p M/K) = (R(zg+ K)+ N/K :p M/K) = (N + Rzy) :r M).
Thus, ((R(zy + K) + N/K) :p M/K)(y, + K) € N/K. Since N/K is a graded S-
strongly prime submodule of M /K, there exists s € S such that s(zy + K) € N/K or
s(yn, + K) € N/K. Thus, szy € N or sy, € N, and so N is a graded S-strongly prime
submodule of M. [ ]

Let S C h(R) be a multiplicatively closed subset of R. The saturation S* of S is
defined as S* = {z € h(R) | £ is a homogeneous unit of S™'R}. Note that 5* C h(R) is
a multiplicatively closed subset of R containing S.

Proposition 3.3

(i) Let S; € S C h(R) be multiplicatively closed subsets of R. If N is a graded S;-
strongly prime submodule and (N :g M) N Sy = 0, then N is a graded Ss-strongly
prime submodule.

(ii) A graded submodule N of M is a graded S-strongly prime submodule if and only if it
is a graded S*-strongly prime submodule.

(iii) If N is a graded S-strongly prime submodule of M, then S™!N is a graded strongly
prime submodule of graded S~!R-module S~'M.

Proof. (i) It is clear.

(73) Let N be a graded S-strongly prime submodule. Assume that (N :g M) N S* #
and r € (N :g M) N S*. Let r = > o1y where 1y € Ry for all g € G. Hence, L
is a homogeneous unit of S™!'R, that is, S % for some a € h(R) and s € S. Thus,
us = urga € S for some u € S. Then us = urya € (N :g M)NS, which is a contradiction.
Thus, (N :g M) N S* = (. Since S C S*, by (i), N is a graded S*-strongly prime
submodule of M. Conversely, assume that N is a graded S*-strongly prime submodule.
Let (N + Rzy) :r M)yy C N for some x4,y € h(M). Since N is a graded S*-strongly

/

. . S . .
prime submodule, there exists s’ € S* so that s'z, € N or s'y, € N. As Tisa unit of

S~IR, there exist u,s € S and a € h(R) such that su = us’a. Put us’ = s” € S. Then
note that s"z, € N or "y, € N. Therefore, N is a graded S-strongly prime submodule
of M.

(#41) Let N be a graded S-strongly prime submodule. Thus, we have (N :g M)NS =)
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and there exists s € S such that whenever (N + Rxgy) : M)y, C N, then szy € N or
syp, € N for all zg,yp € h(M). Let

((S’lN + S*lR(%)) iR S*1M> %h c SN

where 22, % € S~1M. We show that ((N 4 Rxy) :r M)(sys) € N. If r € (N + Ray) :g
M), then we can write 7 =), -~ 71, where r;, € Ry, for any k € G. Hence, for any k € G,
reM C N + Rz, and (%)S—%M C SN+ S7'R(%) = STIN + S7'R(%2) and so
(%)(%) € STIN. Hence, there exist n € N and ¢y,t; € S such that to(t;rpy, —vn) = 0.
Thus, (tot1)rryn € N, and since N is a graded S-prime submodule, we get stity €
(N :g M) or srpyp, € N. As (N :g M)NS = 0, we have sriy, € N for every k € G
and so sryp, € N. Hence, ((N + Rxy) :p M)(syy,) € N. It follows that sz, € N or
s?yy € N since N is a graded S-strongly prime submodule. Therefore, %" = % € SIN

or 4 — S;Tylj € S~IN. Thus, S™!'N is a graded strongly prime submodule of S™'M/. W

(2

The following example shows that the converse of part (iii) of Proposition B3 is not
true in general.

Example 3.4 Consider R = Z and G = Zs. Then R is trivially G-graded by Ry = Z and
R; = {0}. Consider the R-module U = Q[i]. Then U is G-graded by Uy = @ and U; = iQ.
Thus M = U x U is a G-graded R-module with My = Uy x Uy and M1 = Uy x U;. Take
the graded submodule N = Z x {0} and the multiplicatively closed subset S = Z — {0}
of Z. Then ((N+ R(x,y)) :r M) =0 for any (z,y) € M. Let s be an arbitrary element of
S. Choose prime numbers p, ¢ of Z. Then note that ((N+R(%, 0)) :r M)(0, %) C N. But
(%, 0) ¢ N and (0, 3) ¢ N, it follows that NN is not a graded S-strongly prime submodule
of M. Since S™'Z = Q, S™'N is a graded strongly prime submodule of S~!1M.

Proposition 3.5 Let M be a graded finitely generated R-module and N be a graded
submodule of M satisfying (N :g M) NS = (). Then the following statements are equiv-
alent:

(i) N is a graded S-strongly prime submodule of M.
(i) ST!N is a graded strongly prime submodule of S~'M and there is an s € S satisfying
(N:pps') C(N:ps) forall s’ €S.

Proof. (i) = (i7) It follows from Proposition B33 and Lemma PI8.

(i4) = (i) Let ((N + Rzy) :r M)yp C N for some x4,y € h(M). We have ((STIN +
STIR(%)) :g-1r STIM)¥: C STIN. Then %¢ € S™'N or ¥+ € !N since S™'N is a
graded strongly prime submodule of S~'M. Thus, uz, € N or ty, € N for some u,t € S.
By assumption, there exists s € S so that (N :p7 u) C (N :ps 8) and (N :pr t) C (N :ar S).
Thus, sx4 € N or sy, € N and so N is a graded S-strongly prime submodule of M. ®

Lemma 3.6 Let R = Ry X Ry and S = (51 X S3) N h(R) where S; C h(R;) is a
multiplicatively closed subset of R; for each ¢ = 1,2. Suppose that P = P; x P, is a
graded ideal of R. If P is a graded S-prime ideal of R, then P; is a graded Si-prime ideal
of Ry and P, N Sy # () or P, is a graded Sa-prime ideal of Ry and P NSy # (.

Proof. Suppose P is a graded S-prime ideal of R. Since (1,0)(0,1) = (0,0) € P, there
exists s = (s1,s2) € S so that s(1,0) = (s1,0) € P or s(0,1) = (0,s2) € P and thus,
PiNSy # 0 or PN Sy # (. We may assume that Py NS # 0. As PN S = (), we have
Py NSy = 0. Let x4y, € P for some zg4,y, € Ro. Since (0,24)(0,y,) € P and P is a
graded S-prime ideal, we get either s(0,z4) = (0, s224) € P or s(0,y) = (0, s2y) € P and
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this yields soxy € P or sayp € Po. Therefore, Ps is a graded Sa-prime ideal of Ry. In the
other case, one can easily show that P; is a graded Si-prime ideal of Rj. |

Theorem 3.7 Let M = M; x Ms be a graded R = R; x Ro-module and S = (57 X
S2) N h(R) be a multiplicatively closed subset of R where M; is a graded R;-module and
S; € h(R;) is a multiplicatively closed subset of R; for each i = 1,2. Suppose that Ny
is a graded submodule of M7 and N» is a graded submodule of Ms and N = N7 X No.
If N is a graded S-strongly prime submodule of M, then N; is a graded Si-strongly
prime submodule of My and (N3 :g, M2) NSe # 0 or Ny is a graded Sy-strongly prime
submodule of My and (N7 :g, M7) NSy # 0.

Proof. Assume that NV is a graded S-strongly prime submodule of M. First, note that
(N :g M) = (N1 :g, M1) x (N2 :p, M) is a graded S-prime ideal of R by Theorem
214. Hence, by Lemma B®, (Ny :g M1)NS1 # 0 or (Ny :gp M2) NSy # (0. We may
assume that (N7 :g M7) N Sy # 0. We will show that N is a graded S-strongly prime
submodule of Ms. Let ((Na+ Ra(x2)g) :r, M2)(y2)n € Na for some (22)g, (y2)n € h(Ma).
We have ((N1 x Na + R(0, (x2)g)) :r M1 x M2)(0, (y2)n) € N1 x Na because if (r1,72) €
((Nl x Ny + R(O, (.’1}2)9)) ‘r My x Mg), then (7’1,7’2)(M1 X Mg) C N1 X Ny + R(O, (.%'2)9).
We get roMs C Ny + R(x2)y. Thus, (r1,72)(0, (y2)n) = (0,72(y2)n) € N1 x N2 and so
((Nl XN2+R(0, (1‘2)9)) :r My XMQ)(O, (yQ)h) C Ni X No. Then there exists s = (81, 82) S
S such that (s1,52)(0, (z2)g) € N1 x Nz or (s1,52)(0, (y2)n) € N1 x Ny since N1 x N»
is a graded S-strongly prime submodule of M, hence sy(z2)y € Na or s2(y2)n € No.
Therefore, Ns is a graded S-strongly prime submodule of Mj. In the other case, it can
be similarly shown that Ny is a graded Si-strongly prime submodule of Mj. [ |

Corollary 3.8 Let M = My x My X --- x M,, be a graded R = Ry X Ry X -+ X Ry~
module and S = 51 x Sg X - -+ xS, Nh(R) be a multiplicatively closed subset of R where
M; is a graded R;-module and S; C h(R;) is a multiplicatively closed subset of R; for
each ¢ = 1,2,...,n. Suppose that N = N; X Ny X --- X N, is a graded submodule of
M. If N is a graded S-strongly prime submodule of M, then N; is a graded S;-strongly
prime submodule of M; for some i € {1,2,...,n} and (N; :g, M;)NS; # 0 for all
jed{1,2,...,n} —{i}.

Proof. We apply induction on n. For n = 1, the result is true. If n = 2, then it
follows from Theorem BZ4. Let it hold when k& < n. Now, we will prove if £k = n. Let
N =N XNygx-+-xN,. Put NN= Ny x Ng x --- X Np_y and §' = 51 x Sy x -+ %
Sp—1 N h(Ry X Ry X -+ X Ry_1). Then, by Theorem B72, for N = N’ x N, is a graded
S-strongly prime submodule of M that N’ is a graded S’-strongly prime submodule of
M’ and (N, :r, M,)NS,, # 0 or N, is a graded S,-strongly prime submodule of M,, and
(N/ ‘R M’)QS,#QWhGTeM,:MlXMQX"-XMTL,1 andR’:Rlngx---an,l.
The rest follows from the induction hypothesis. |

4. Conclusions

In this article, we introduced the concept of graded S-strongly prime submodules
of a graded module over a commutative graded ring. In fact, the concept of graded
S-strongly prime submodules is different from the concept of graded strongly prime
submodules and many results for graded strongly prime submodules do not apply to
graded S-strongly prime submodules. Several properties, examples and characterizations
of graded S-strongly prime submodules, especially in graded multiplication modules, have
been investigated. Moreover, we explored the behaviour of graded S-strongly prime sub-
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modules under graded module homomorphisms, localizations, quotient graded modules,
Cartesian product.
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