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Abstract. Let G be a group with identity e and R be a commutative G-graded ring with
nonzero identity, S ⊆ h(R) a multiplicatively closed subset of R and M be a graded R-
module. A graded submodule N of M with (N :R M)∩S = ∅ is said to be graded S-strongly
prime if there exists s ∈ S such that whenever ((N + Rxg) :R M)yh ⊆ N , then sxg ∈ N or
syh ∈ N for all xg, yh ∈ h(M). The aim of this paper is to introduce and investigate some
basic properties of the notion of graded S-strongly prime submodules, especially in graded
multiplication modules. Moreover, we investigate the behaviour of this structure under graded
module homomorphisms, localizations of graded modules, quotient graded modules, Cartesian
product.

Keywords: Graded S-prime submodule, graded S-strongly prime submodule, graded
multiplication module.
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1. Introduction

In recent years, rings with a group-graded structure have become increasingly impor-
tant and consequently, the graded analogues of different concepts are widely studied in
[1, 2, 4–8, 10, 12–15]. In this paper, first, we introduce and study the notions of graded
S-strongly prime submodules and graded S-strongly semiprime submodules of a graded
R-module M as a generalization of graded prime submodules and we investigate some
properties of such graded submodules. For example, we show that if N is a graded S-
strongly prime submodule of M , then N is a graded S-strongly semiprime submodule
and (N :R M) is a graded S-prime ideal of R. Also, we give some characterizations
of graded S-strongly prime submodules in graded multiplication modules. Second, we
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investigate the behaviour of this structure under graded module homomorphisms, local-
izations, quotient graded modules, Cartesian product.

Let G be a group with identity e and R be a ring. Then R is said to be a G-graded if
R =

⊕
g∈GRg such that RgRh ⊆ Rgh for all g, h ∈ G, where Rg is an additive subgroup

of R for all g ∈ G [13]. The elements of Rg are homogeneous of degree g. An element
r of R has a unique decomposition as r =

∑
g∈G rg with rg ∈ Rg for all g ∈ G, but

the sum being a finite sum, i.e. almost all rg zero. Let R =
⊕

g∈GRg be a graded ring
and I be an ideal of a graded ring R. Then I is said to be a graded ideal of R, if
I =

⊕
g∈G(I ∩ Rg), i.e., for x ∈ I, x =

∑
g∈G xg, where xg ∈ I for all g ∈ G. Moreover,

R/I becomes a G-graded ring with g-component (R/I)g = (Rg + I)/I for g ∈ G [13]. A
graded ring R is called graded quasilocal ring if it has a unique graded maximal ideal
[12]. We call S ⊆ h(R) is a multiplicatively closed subset of R if 0 ̸∈ S, 1 ∈ S and
sgs

′
g′ ∈ S for all sg, s

′
g′ ∈ S [12]. Let R be a graded ring and M an R-module. We say

that M is a graded R-module if there exists a family of subgroups {Mg}g∈G of M such
that M =

⊕
g∈GMg and RgMh ⊆ Mgh for all g, h ∈ G. The elements of Mg are called

homogeneous of degree g. It is clear that Mg is an Re-submodule of M for all g ∈ G.
Moreover, h(M) =

∪
g∈GMg [13]. Let N be an R-submodule of a graded R-module M .

Then N is said to be a graded R-submodule if N =
⊕

g∈G(N ∩ Mg), i.e. for m ∈ N ,

m =
∑

g∈Gmg, where mg ∈ N for all g ∈ G. Moreover, M/N becomes a G-graded

module with g-component (M/N)g = (Mg + N)/N for g ∈ G [13]. A proper graded
submodule N of a graded R-module M is said to be graded prime if rgmh ∈ N where
rg ∈ h(R) and mh ∈ h(M), then mh ∈ N or rg ∈ (N : M). A graded R-module M is
called graded prime if the zero graded submodule is graded prime in M [2]. A proper
graded submodules N of a graded R-module M is call graded semiprime if rkgmh ∈ N
for some rg ∈ h(R), mh ∈ h(M) and k ∈ N, then rgmh ∈ N [9]. Let S ⊆ h(R) be a
multiplicatively closed subset of R and N be a graded submodule of a graded R-module
M with (N :R M) ∩ S = ∅. Then N is said to be a graded S-prime submodule if there
exists s ∈ S such that whenever rgmh ∈ N , then smh ∈ N or srg ∈ (N : M) for each
rg ∈ h(R) and mh ∈ h(M) [15]. A graded R-module M is called graded finitely generated
if M = Rmg1 + Rmg2 + · · · + Rmgn for some mg1 , . . . ,mgn ∈ h(M) [2]. Let S ⊆ h(R)
be a multiplicatively closed subset of R and M be a graded R-module. Then S−1M is a
graded S−1R-module with

(S−1M)g = {m
s

: (degm)(deg s)−1 = g}

and (S−1R)g = { r
s : (deg r)(deg s)−1 = g} [13] Let M =

⊕
g∈GMg and M ′ =

⊕
g∈GM ′

g

be two graded R-modules. A mapping f from M into M ′ is said to be a graded homo-
morphism, if for all m,n ∈ M ;

(1) f(m+ n) = f(m) + f(n),
(2) f(rm) = rf(m), for any r ∈ R and m ∈ M ,
(3) For any g ∈ G; f(Mg) ⊆ M ′

g [12].

Let R1 and R2 be G-graded rings. Then R = R1 × R2 is a G-graded ring with Rg =
(R1)g × (R2)g for all g ∈ G. Let M1 be a G-graded R1-module, M2 be a G-graded
R2-module and R = R1 × R2. Then M = M1 × M2 is a G-graded R-module with
Mg = (M1)g× (M2)g for all g ∈ G. Also, if S1 ⊆ h(R1) is a multiplicatively closed subset
of R1 and S2 ⊆ h(R2) is a multiplicatively closed subset of R2, then S = S1 × S2 is a
multiplicatively closed subset of R. Furthermore, each graded submodule of M is of the
form N = N1 × N2 where Ni is a graded submodule of Mi for i = 1, 2 [12]. A graded
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R-module M is called graded multiplication module, if every graded submodule N of M ,
N = IM for some graded ideal I of R [3].

Throughout this work, R is a commutative graded rings with identity and M is a
graded R-module. Also, S ⊆ h(R) is a multiplicatively closed subset of R.

2. Characterizations of graded S-strongly prime submodules

Definition 2.1 (a) A proper graded submodule N of M is said to be a graded strongly
prime submodule if ((N + Rxg) :R M)yh ⊆ N , then xg ∈ N or yh ∈ N for each
xg, yh ∈ h(M).

(b) A graded submodule N of M with (N :R M)∩S = ∅ is said to be graded S-strongly
prime if there exists s ∈ S such that whenever ((N +Rxg) :R M)yh ⊆ N , then sxg ∈ N
or syh ∈ N for each xg, yh ∈ h(M).

Note that if we consider R as a graded R-module, then graded S-strongly prime sub-
modules are exactly graded S-prime ideals of R.

The following Lemma is known, but we write it here for the sake of references.

Lemma 2.2 Let M be a graded module over a graded ring R. Then the following hold:

(i) If I and J are graded ideals of R, then I + J and I
∩

J are graded ideals of R.
(ii) If I is a graded ideal of R, N is a graded submodule of M , rg ∈ h(R) and xh ∈ h(M),

then Rxh, IN , rgN and (0 :M I) are graded submodules of M .
(iii) If N and K are graded submodules of M , then N + K and N

∩
K are also graded

submodules of M and (N :R M) is a graded ideal of R. Also, AnnR(M) = (0 :R M) is
a graded ideal of R.

(iv) Let {Nλ}λ∈Λ be a collection of graded submodules of M . Then
∑

λNλ and
∩

λNλ are
graded submodues of M .

Proposition 2.3

(i) Every graded strongly prime submodule N of M with (N :R M) ∩ S = ∅ is also a
graded S-strongly prime submodule of M .

(ii) Let S ⊆ h(R) be a multiplicatively closed subset of R consisting of units in R. Then
a graded submodule N of M is graded strongly prime if and only if N is graded
S-strongly prime.

Proof. The proof is completely straightforward. ■

By setting S = {1}, we conclude that every graded strongly prime submodule is a
graded S-strongly prime submodule by Proposition 2.3. The following example shows
that the converse is not true in general.

Example 2.4

(i) Let us observe R = Z as a trivially Z2-graded ring and M = Z/nZ × Z/nZ be a Z2-
graded R-module with M0 = Z/nZ×{0} and M1 = {0}×Z/nZ where n is a positive
integer with M0. Let p be a prime factor of n and S = Z − pZ. Then the submodule
pZ/nZ× {0} is a graded S-strongly prime submodule of M .

(ii) Let R = Z[i] be Z2-graded R-module with R0 = Z and R1 = iZ and S = {2n | n ∈
N∪{0}}. Consider the graded submodule N = ⟨4i⟩ of graded R-module R. Put s = 4.
It is easy to see that N is a graded S-strongly prime submodule. But N is not a graded
strongly prime submodule.
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Definition 2.5 (a) Let N be a graded submodule of M such that (N :R M) ∩ S = ∅.
Then N is said to be a graded S-semiprime submodule if there exists s ∈ S such that
whenever r2gmh ∈ N , then srgmh ∈ N for all rg ∈ h(R) and mh ∈ h(M).

(b) Let N be a graded submodule of M such that (N :R M) ∩ S = ∅. Then N is said
to be a graded S-strongly semiprime submodule if there exists s ∈ S such that whenever
((N +Rxg) :R M)xg ⊆ N , then sxg ∈ N for all xg ∈ h(M).

(c) A graded ideal I of R is called graded S-semiprime if I ∩ S = ∅ and there exists
s ∈ S such that whenever a2g ∈ I, then sag ∈ I for all ag ∈ h(R).

Lemma 2.6 Every graded S-strongly semiprime submodule is a graded S-semiprime
submodule.

Proof. LetN be a graded S-strongly semiprime submodule ofM and suppose r2gmh ∈ N
where rg ∈ h(R) and mh ∈ h(M). Thus, ((N + R(rgmh)) :R M)(rgmh) = rg((N +
R(rgmh)) :R M)mh ⊆ rg(N +R(rgmh)) ⊆ N . Since N is a graded S-strongly semiprime
submodule, there exists s ∈ S such that srgmh ∈ N . Therefore, N is a graded S-
semiprime submodule. ■

Proposition 2.7 IfN is a graded S-strongly semiprime submodule ofM , then (N :R M)
is a graded S-semiprime ideal of R.

Proof. Let a2g ∈ (N :R M) where ag ∈ h(R). Let m ∈ M . Hence m =
∑

h∈Gmh where
mh ∈ Mh for all h ∈ G. Suppose mh ∈ Mh. Thus ((N + R(agmh)) :R M)(agmh) =
ag((N + R(agmh)) :R M)mh ⊆ ag(N + R(agmh)) ⊆ N . Since N is graded S-strongly
semiprime, there exists s ∈ S such that sagmh ∈ N , so sagm ∈ N and sag ∈ (N :R M).
Therefore, (N :R M) is a graded S-semiprime ideal of R. ■

The following example shows that the converse of Proposition 2.7 is not hold.

Example 2.8 LetR = Z be a trivially Z2-graded ring andM = Q×Q whereQ is the field
of rational numbers be a Z2-graded module with M0 = Q×{0} and M1 = {0}×Q. Take
the graded submodule N = Z×{0} and the multiplicatively closed subset S = Z−{0} of
Z. Then the graded ideal (N :Z M) = 0 is a graded S-semiprime, but N is not a graded
S-strongly semiprime submodule of M . Let s be an arbitrary element of S. Choose a
prime number p with gcd(p, s) = 1. Note that ((N + R(1p , 0)) :R M)(1p , 0) ⊆ N , but

( sp , 0) ̸∈ N .

Proposition 2.9

(i) Every graded S-strongly prime submodule is a graded S-prime submodule.
(ii) Every graded S-strongly prime submodule is a graded S-strongly semiprime submod-

ule.
(iii) Every graded maximal submodule N of M with (N :R M) ∩ S = ∅ is a graded S-

strongly prime submodule.

Proof. (i) Let N be a graded S-strongly prime submodule of M . Thus there exists
s ∈ S such that whenever ((N + Rxg) : M)yh ⊆ N for all xg, yh ∈ h(M), implies
that sxg ∈ N or syh ∈ N . Let rgmh ∈ N and smh ̸∈ N for some rg ∈ h(R) and
mh ∈ h(M). We show that srg ∈ (N :R M). Let x =

∑
k∈G xk ∈ M . Thus we have

((N + Rmh) :R M)(rgxk) = rg((N + Rmh) :R M)xk ⊆ rg(N + Rmh) ⊆ N for any
xk ∈ Mk, since smh ̸∈ N and N is a graded S-strongly prime submodule of M , we
conclude srgxk ∈ N for any xk ∈ Mk. Hence srgx ∈ N . Therefore srgM ⊆ N and so
srg ∈ (N :R M).

(ii) It is clear.
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(iii) Let N be a graded maximal submodule of M such that (N :R M) ∩ S = ∅.
Let xg, yh ∈ h(M) and ((N + Rxg) : M)yh ⊆ N . Let xg ̸∈ N . Thus N + Rxg = M ,
hence (N + Rxg :R M) = R and we conclude yh ∈ N . Therefore N is a graded strongly
prime submodule, and since (N :R M) ∩ S = ∅, then by Proposition 2.3, N is a graded
S-strongly prime submodule of M . ■

The following example shows that the concept of graded S-strongly prime submodules
is different from the concept of graded S-prime submodules.

Example 2.10 Let R be a G-graded ring, P be a graded prime ideal of R and S =
h(R)−P . Then P×P is a graded S-prime submodule of graded R-module R×R, because
P ×P is a graded prime submodule of R×R and (P ×P :R R×R)∩S = P ∩S = ∅. But
it is not a graded S-strongly prime submodule of M . Let s be an arbitrary element of S.
Then ((P ×P +R(1, 0)) :R R×R)(0, 1) ⊆ P ×P , but s(1, 0) ̸∈ P ×P and s(0, 1) ̸∈ P ×P .

Proposition 2.11 Let M be a graded module over a graded field R and N be a proper
graded submodule of M . Then N is a graded maximal submodule of M if and only if N
is a graded S-strongly prime submodule of M .

Proof. Let N be a graded maximal submodule of M . We have (N :R M) ∩ S = ∅,
because if s ∈ (N :R M) ∩ S, then 1 = s−1s ∈ (N :R M), a contradiction. Thus by
Proposition 2.9, N is a graded S-strongly prime submodule of M . Conversely, let N be
a graded S-strongly prime submodule of M which is not a graded maximal submodule
of M . Then there exists xg ∈ h(M)\N such that Rxg +N ̸= M . Let y =

∑
h∈G yh ∈ M .

Hence for any yh ∈ Mh, we have ((N + Rxg) :R M)yh = {0}yh = {0} ⊆ N . Thus
there exists s ∈ S such that sxg ∈ N or syh ∈ N since N is a graded S-strongly prime
submodule of M . Since xg ̸∈ N , so sxg ̸∈ N . We conclude that syh ∈ N and yh ∈ N , so
y ∈ N . Thus, N = M , which is a contradiction. ■

Corollary 2.12 LetN a graded submodule ofM with (N : M) = P and S = h(R)−P . If
P is a graded maximal ideal of R, then there exists a graded S-strongly prime submodule
M of M with (M : M) = P .

Proof. Note that M/N is a graded module over the graded field R/P , so it has a
graded maximal submodule, say M/N . Then M is a graded maximal submodule of M
containing of N and hence P = (N : M) ⊆ (M : M), we have (M : M) = P . Since
(M : M) ∩ S = ∅, then by Proposition 2.9, M is a graded S-strongly prime submodule
of M . ■

Definition 2.13 A graded submodule N of a graded R-module M is called graded S-
I-maximal if (N :R M) = I and there exists s ∈ S such that whenever K is a graded
submodule of M containing of N with (K :R M) = I, then sK ⊆ N .

Theorem 2.14 Let M be a graded R-module and N be a graded submodule of M .

(i) N is a graded S-strongly prime submodule of M .
(ii) N is a graded S-strongly semiprime submodule of M and N is a graded S-prime

submodule of M .
(iii) N is a graded S-strongly semiprime submodule of M and (N :R M) is a graded

S-prime ideal of R.
(iv) N is a graded S-(N :R M)-maximal submodule of M .

Then (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).

Proof. (i) ⇒ (ii) Apply Proposition 2.9.
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(ii) ⇒ (iii) Note that for every graded S-prime submodule N of M , the graded ideal
(N :R M) is a graded S-prime ideal of R (see [15, Proposition 2.6]).

(iii) ⇒ (iv) Since N is a graded S-strongly semiprime submodule of M , there exists
s ∈ S such that whenever ((N + Rxg) : M)xg ⊆ N , then sxg ∈ N for all xg ∈ M . Let
K be a graded submodule of M containing of N with (K :R M) = (N :R M). We show
that sK ⊆ N . Let x =

∑
g∈G xg be an arbitrary element of K. Since N ⊆ N +Rxg ⊆ K

for any g ∈ G, then (N :R M) ⊆ ((N + Rxg) :R M) ⊆ (K :R M) = (N :R M) and
so ((N + Rxg) :R M) = (N :R M). Thus, ((N + Rxg) :R M)xg = (N :R M)xg ⊆ N ,
since N is a graded S-strongly semiprime submodule of M , sxg ∈ N and hence sx ∈ N .
Therefore, sK ⊆ N as required. ■

Proposition 2.15 Let {Ni}i∈I be a family of graded S-strongly prime submodules of M
such that (Ni :R M) = P for all i ∈ I. If

∩
i∈I Ni is a graded S-strongly prime submodule

of M , then there exists s ∈ S such that sNi ⊆ Nj for all i, j ∈ I.

Proof. Let N =
∩

i∈I Ni. Thus ,(N :R M) =
∩

i∈I(Ni :R M) = P = (Nj :R M) for each
j ∈ I. Since N is graded S-strongly semiprime and by Proposition 2.14((i) ⇒ (iv)), N is
graded S-(N :R M)-maximal and N ⊆ Nj with (N :R M) = (Nj :R M), so there exists
s ∈ S such that sNj ⊆ N for all j ∈ I. ■

Lemma 2.16 Let N be a graded S-strongly prime submodule of a graded R-module
M . Then the following statements hold for some s ∈ S.

(i) (N :M s′) ⊆ (N :M s) for all s′ ∈ S.
(ii) ((N :R M) :R s′) ⊆ ((N :R M) :R s) for all s′ ∈ S.

Proof. (i) Let m =
∑

g∈Gmg ∈ (N :M s′) where s′ ∈ S. Then s′mg ∈ N for any

mg ∈ h(M). Since every graded S-strongly prime is graded S-prime, there exists s ∈ S
such that smg ∈ N or ss′ ∈ (N :R M). As (N :R M) ∩ S = ∅, we get smg ∈ N so
sm ∈ N , namely m ∈ (N :M s).

(ii) It follows from (i). ■

Theorem 2.17 Let N be a graded submodule of a graded R-module M provided (N :R
M)∩S = ∅. Then N is a graded S-strongly prime submodule of M if and only if (N :M s)
is a graded strongly prime submodule of M for some s ∈ S.

Proof. Assume that N is a graded S-strongly prime submodule of M . Then there exists
s ∈ S such that whenever ((N + Rxg) :R M)yh ⊆ N , then sxg ∈ N or syh ∈ N for all
xg, yh ∈ h(M). We prove that (N :M s) is a graded strongly prime submodule. Taking
xg, yh ∈ M with (((N :M s) + Rxg) :R M)yh ⊆ (N :M s), we have (((N :M s) + Rxg) :R
M)(syh) ⊆ s(N :M s) ⊆ N . Since N ⊆ (N :M s), ((N + Rxg) :R M)(syh) ⊆ N .
Thus, sxg ∈ N or s2yh ∈ N . If sxg ∈ N , then xg ∈ (N :M s). If s2yh ∈ N , then
yh ∈ (N :M s2) ⊆ (N :M s) by Lemma 2.16. Hence ,(N :M s) is a graded strongly prime
submodule ofM . Conversely, assume that (N :M s) is a graded strongly prime submodule
of M . Let ((N + Rxg) :R M)yh ⊆ N for some xg, yh ∈ h(M). Since N ⊆ (N :M s), we
have xg ∈ (N :M s) or yh ∈ (N :M s). Thus, sxg ∈ N or syh ∈ N , and so N is a graded
S-strongly prime submodule of M . ■

Theorem 2.18 Let N be a graded submodule of M provided (N :R M) ⊆ Jacgr(R),
where Jacgr(R) is the intersection of all graded maximal ideals of R. Then the following
statements are equivalent:

(i) N is a graded strongly prime submodule of M .
(ii) N is a graded prime submodule of M and N is a graded (h(R) − m)-strongly prime
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submodule of M for each graded maximal ideal m.

Proof. (i) ⇒ (ii) Let N be a graded strongly prime submodule of M . Then N is a
graded prime submodule of M . Since (N :R M) ⊆ Jacgr(R), (N :R M) ⊆ m for each
graded maximal ideal m and so (N :R M) ∩ (h(R) − m) = ∅. Thus, N is a graded
(h(R)−m)-strongly prime submodule of M by Proposition 2.3.

(ii) ⇒ (i) Suppose that N is a graded prime submodule of M and N is a graded
(h(R)−m)-strongly prime submodule of M for each graded maximal ideal m. Let ((N +
Rxg) :R M)yh ⊆ N and yh ̸∈ N for some xg, yh ∈ h(M). Let m be a graded maximal
ideal of R. Since N is a graded (h(R)−m)-strongly prime submodule of M , there exists
sm ∈ h(R) − m such that smxg ∈ N or smyg ∈ N . If smyh ∈ N , then since N is a
graded prime submodule of M and yh ̸∈ N , sm ∈ (N :R M) which is a contradiction.
Hence, smxg ∈ N . Consider the set Q = {sm | ∃m ∈ Maxgr(R); sm ̸∈ m and smxg ∈ N}.
Suppose that ⟨Q⟩ ̸= R. Take any graded maximal ideal m′ containing Q. Then the
definition of Q requires that there exists sm′ ∈ Q and sm′ ̸∈ m′, which is a contradiction.
Thus, ⟨Q⟩ = R and 1 = r1sm1

+ r2sm2
+ · · ·+ rnsmn

for some ri ∈ R and smi
̸∈ mi with

smi
xg ∈ N , where mi ∈ Maxgr(R) for each i = 1, 2, . . . , n. Therefore, xg = r1sm1

xg +
r2sm2

xg + · · ·+ rnsmn
xg ∈ N . Hence N is a graded strongly prime submodule of M . ■

By the previous theorem we have the following result:

Corollary 2.19 Let M be a graded module over a graded quasilocal ring (R,m). Then
the following statements are equivalent:

(i) N is a graded strongly prime submodule of M .
(ii) N is a graded prime submodule of M and N is a graded (h(R) − m)-strongly prime

submodule of M .

Now, we characterize graded S-strongly prime submodules of a graded multiplication
module.

Theorem 2.20 Let M be a graded multiplication R-module and N be a graded sub-
module of M provided that (N :R M) ∩ S = ∅. Then the following statements are
equivalent:

(i) N is a graded S-strongly prime submodule of M .
(ii) (N :R M) is a graded S-prime ideal of R.
(iii) N = IM for some graded S-prime ideal I of R with ann(M) ⊆ I.

Proof. (i) ⇒ (ii) It follows from Theorem 2.14.
(ii) ⇒ (iii) Consider I = (N :R M).
(iii) ⇒ (i) By [15, Proposition 2.8], N is a graded S-prime submodule of M . Thus,

there exists s ∈ S such that whenever rgmh ∈ N , then smh ∈ N or srg ∈ (N :R M)
for all mh ∈ h(M) and rg ∈ h(R). Now, we show that N is a graded S-strongly prime
submodule of M . Let ((N + Rxg) :R M)yh ⊆ N and syh ̸∈ N for some xg, yh ∈ h(M).
Since N is a graded S-prime submodule of M , s((N + Rxg) :R M) ⊆ (N :R M). As M
is a graded multiplication R-module, we have

s(N +Rxg) = s((N +Rxg) :R M)M ⊆ (N :R M)M = N.

Therefore, sxg ∈ N and N is a graded S-strongly prime submodule of M . ■

Lemma 2.21 Let Q be a graded S-primary ideal of R. Then Grad(Q) is a graded
S-prime ideal of R.
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Proof. First note that Grad(Q)∩S = ∅, because if s ∈ Grad(Q)∩S, then sn ∈ Q∩S for
some n ∈ N, a contradiction. Let agbh ∈ Grad(Q) where ag, bh ∈ h(R). Thus, (agbh)

k ∈ Q
for some k ∈ N. Since Q is a graded S-primary ideal of R, there exists s ∈ S such that
sakg ∈ Q or sbkh ∈ Grad(Q). We conclude sag ∈ Grad(Q) or sbh ∈ Grad(Q). Hence,
Grad(Q) is a graded S-prime ideal of R. ■

Lemma 2.22 Let M be a finitely generated multiplication R-module and N be a sub-
module of M . Then (Grad(N) :R M) = Grad((N :R M)).

Proof. The proof is similar to Theorem 4 of [11]. ■

Theorem 2.23 Let M be a graded finitely generated multiplication R-module. If N is
a graded S-strongly prime submodule of M , then Grad(N) is a graded S-strongly prime
submodule of M .

Proof. Since N is a graded S-strongly prime submodule of M , (N :R M) is a graded
S-prime ideal of R by Theorem 2.14. Thus, by Lemma 2.21, Grad((N :R M)) is a graded
S-prime ideal of R. By Lemma 2.22, we have (Grad(N) :R M) = Grad((N :R M)).
Thus, (Grad(N) :R M) is a graded S-prime submodule of M . Now, the result follows
from Theorem 2.20. ■

3. Behaviour of graded S-strongly prime submodules

In this section, we investigate the behaviour of graded S-strongly prime submodules
under graded module homomorphisms, localizations, quotient graded modules and Carte-
sian product.

Proposition 3.1 Let f : M → M ′ be a graded R-homomorphism. Then the following
statements hold:

(i) If N ′ is a graded S-strongly prime submodule of M ′ such that (f−1(N ′) :R M)∩S = ∅,
then f−1(N ′) is a graded S-strongly prime submodule of M .

(ii) If f is a graded epimorphism and N is a graded S-strongly prime submodule of M
containing Ker(f), then f(N) is a graded S-strongly prime submodule of M ′.

Proof. (i) Let ((f−1(N ′) + Rxg) :R M)yh ⊆ f−1(N ′) for some xg, yh ∈ h(M). Thus,
f(((f−1(N ′)+Rxg) :R M)yh) ⊆ f(f−1(N ′)) ⊆ N ′. Since f is a graded R-homomorphism,
((f−1(N ′) + Rxg) :R M)f(yh) ⊆ N ′. Now, we show that ((N ′ + Rf(xg)) :R M ′) ⊆
((f−1(N ′) + Rxg) :R M). Take r ∈ ((N ′ + Rf(xg)) :R M ′). Then rM ′ ⊆ N ′ + Rf(xg).
Since f(M) ⊆ M ′, we have f(rM) = rf(M) ⊆ rM ′ ⊆ N ′ + Rf(xg). This implies
that rM ⊆ f−1(N ′ + f(Rxg)). It is clear that f−1(N ′ + f(Rxg)) ⊆ f−1(N ′) + Rxg.
Thus, r ∈ ((N ′ + Rxg) :R M) and so ((N ′ + Rf(xg)) :R M ′)f(yh) ⊆ N ′. Since N ′ is a
graded S-strongly prime submodule of M ′, there exists s ∈ S such that sf(xg) ∈ N ′ or
sf(yh) ∈ N ′. Therefore, sxg ∈ f−1(N ′) or syh ∈ f−1(N ′) as needed.

(ii) First note that (f(N) :R M ′)∩S = ∅. Otherwise, there exists s ∈ (f(N) :R M ′)∩S.
Hence, sM ′ ⊆ f(N) and then f(sM) = sf(M) = sM ′ ⊆ f(N) and sM ⊆ N +Ker(f) =
N . That means s ∈ (N :R M), which is a contradiction. Let ((f(N) + Rx′g) :R M ′)y′h ⊆
f(N) where x′g, y

′
h ∈ h(M ′). Since f is a graded epimorphism, f(xg) = x′g and f(yh) = y′h

for some xg, yh ∈ h(M). Thus (f(N + Rxg) :R M ′)f(yh) ⊆ f(N). It is easy to see that
((N + Rxg) :R M) ⊆ (f(N + Rxg) :R M ′). Hence f(((N + Rxg) :R M)yh) ⊆ f(N)
and ((N + Rxg) :R M)yh ⊆ N + Ker(f) ⊆ N . Thus, there exists s ∈ S such that
sxg ∈ N or syh ∈ N since N is a graded S-strongly prime submodule of M . Therefore,
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sf(xg) ∈ f(N) or sf(yh) ∈ f(N), and so f(N) is a graded S-strongly prime submodule
of M ′. ■

Proposition 3.2 Let N and K be graded submodules of M with K ⊆ N . Then the
following assertions hold:

(i) If N ′ is a graded S-strongly prime submodule of M with (N ′ :R K) ∩ S = ∅, then
K ∩N ′ is a graded S-strongly prime submodule of K.

(ii) N is a graded S-strongly prime submodule of M if and only if N/K is a graded
S-strongly prime submodule of M/K.

Proof. (i) Consider the injection i : K → M defined by i(x) = x for all x ∈ K. Then
i−1(N ′) = K ∩ N ′. By (N ′ :R K) ∩ S = ∅, we give (i−1(N ′) :R K) ∩ S = ∅. Thus, the
rest follows from Proposition 3.1(i).

(ii) Let N be a graded S-strongly prime submodule of M . Then consider the canonical
homomorphism π : M → M/K defined by π(m) = m+K for all m ∈ M . Then note that
π is a graded epimorphism and Ker(π) = K ⊆ N . Thus by Proposition 3.1(ii), N/K is a
graded S-strongly prime submodule of M/K. Conversely, assume that N/K is a graded
S-strongly prime submodule ofM/K. Let ((N+Rxg) :R M)yh ⊆ N where xg, yh ∈ h(M).
We have ((N +Rxg)/K :R M/K) = (R(xg +K) +N/K :R M/K) = ((N +Rxg) :R M).
Thus, ((R(xg + K) + N/K) :R M/K)(yh + K) ⊆ N/K. Since N/K is a graded S-
strongly prime submodule of M/K, there exists s ∈ S such that s(xg + K) ∈ N/K or
s(yh +K) ∈ N/K. Thus, sxg ∈ N or syh ∈ N , and so N is a graded S-strongly prime
submodule of M . ■

Let S ⊆ h(R) be a multiplicatively closed subset of R. The saturation S∗ of S is
defined as S∗ = {x ∈ h(R) | x

1 is a homogeneous unit of S−1R}. Note that S∗ ⊆ h(R) is
a multiplicatively closed subset of R containing S.

Proposition 3.3

(i) Let S1 ⊆ S2 ⊆ h(R) be multiplicatively closed subsets of R. If N is a graded S1-
strongly prime submodule and (N :R M) ∩ S2 = ∅, then N is a graded S2-strongly
prime submodule.

(ii) A graded submodule N of M is a graded S-strongly prime submodule if and only if it
is a graded S∗-strongly prime submodule.

(iii) If N is a graded S-strongly prime submodule of M , then S−1N is a graded strongly
prime submodule of graded S−1R-module S−1M .

Proof. (i) It is clear.
(ii) Let N be a graded S-strongly prime submodule. Assume that (N :R M) ∩ S∗ ̸= ∅

and r ∈ (N :R M) ∩ S∗. Let r =
∑

g∈G rg where rg ∈ Rg for all g ∈ G. Hence, rg
1

is a homogeneous unit of S−1R, that is, rg
1

a
s = 1

1 for some a ∈ h(R) and s ∈ S. Thus,
us = urga ∈ S for some u ∈ S. Then us = urga ∈ (N :R M)∩S, which is a contradiction.
Thus, (N :R M) ∩ S∗ = ∅. Since S ⊆ S∗, by (i), N is a graded S∗-strongly prime
submodule of M . Conversely, assume that N is a graded S∗-strongly prime submodule.
Let ((N + Rxg) :R M)yh ⊆ N for some xg, yh ∈ h(M). Since N is a graded S∗-strongly

prime submodule, there exists s′ ∈ S∗ so that s′xg ∈ N or s′yh ∈ N . As
s′

1
is a unit of

S−1R, there exist u, s ∈ S and a ∈ h(R) such that su = us′a. Put us′ = s′′ ∈ S. Then
note that s′′xg ∈ N or s′′yh ∈ N . Therefore, N is a graded S-strongly prime submodule
of M .

(iii) Let N be a graded S-strongly prime submodule. Thus, we have (N :R M)∩S = ∅
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and there exists s ∈ S such that whenever ((N + Rxg) : M)yh ⊆ N , then sxg ∈ N or
syh ∈ N for all xg, yh ∈ h(M). Let(

(S−1N + S−1R(
xg
u
)) :S−1R S−1M

) yh
v

⊆ S−1N

where xg

u , yh

v ∈ S−1M . We show that ((N +Rxg) :R M)(syh) ⊆ N . If r ∈ ((N +Rxg) :R
M), then we can write r =

∑
k∈G rk where rk ∈ Rk for any k ∈ G. Hence, for any k ∈ G,

rkM ⊆ N + Rxg and ( rk1 )S
−1M ⊆ S−1N + S−1R(xg

1 ) = S−1N + S−1R(xg

u ) and so
( rk1 )(

yh

v ) ∈ S−1N . Hence, there exist n ∈ N and t1, t2 ∈ S such that t2(t1rkyh − vn) = 0.
Thus, (t2t1)rkyh ∈ N , and since N is a graded S-prime submodule, we get st1t2 ∈
(N :R M) or srkyh ∈ N . As (N :R M) ∩ S = ∅, we have srkyh ∈ N for every k ∈ G
and so sryh ∈ N . Hence, ((N + Rxg) :R M)(syh) ⊆ N . It follows that sxg ∈ N or
s2yh ∈ N since N is a graded S-strongly prime submodule. Therefore, xg

u = sxg

su ∈ S−1N

or yh

v = s2yh

s2v ∈ S−1N . Thus, S−1N is a graded strongly prime submodule of S−1M . ■

The following example shows that the converse of part (iii) of Proposition 3.3 is not
true in general.

Example 3.4 Consider R = Z and G = Z2. Then R is trivially G-graded by R0 = Z and
R1 = {0}. Consider the R-module U = Q[i]. Then U is G-graded by U0 = Q and U1 = iQ.
Thus M = U ×U is a G-graded R-module with M0 = U0 ×U0 and M1 = U1 ×U1. Take
the graded submodule N = Z× {0} and the multiplicatively closed subset S = Z− {0}
of Z. Then ((N+R(x, y)) :R M) = 0 for any (x, y) ∈ M . Let s be an arbitrary element of
S. Choose prime numbers p, q of Z. Then note that ((N +R(1p , 0)) :R M)(0, 1q ) ⊆ N . But

( sp , 0) ̸∈ N and (0, sq ) ̸∈ N , it follows that N is not a graded S-strongly prime submodule

of M . Since S−1Z = Q, S−1N is a graded strongly prime submodule of S−1M .

Proposition 3.5 Let M be a graded finitely generated R-module and N be a graded
submodule of M satisfying (N :R M) ∩ S = ∅. Then the following statements are equiv-
alent:

(i) N is a graded S-strongly prime submodule of M .
(ii) S−1N is a graded strongly prime submodule of S−1M and there is an s ∈ S satisfying

(N :M s′) ⊆ (N :M s) for all s′ ∈ S.

Proof. (i) ⇒ (ii) It follows from Proposition 3.3 and Lemma 2.16.
(ii) ⇒ (i) Let ((N + Rxg) :R M)yh ⊆ N for some xg, yh ∈ h(M). We have ((S−1N +

S−1R(xg

1 )) :S−1R S−1M)yh

1 ⊆ S−1N . Then xg

1 ∈ S−1N or yh

1 ∈ S−1N since S−1N is a
graded strongly prime submodule of S−1M . Thus, uxg ∈ N or tyh ∈ N for some u, t ∈ S.
By assumption, there exists s ∈ S so that (N :M u) ⊆ (N :M s) and (N :M t) ⊆ (N :M s).
Thus, sxg ∈ N or syh ∈ N and so N is a graded S-strongly prime submodule of M . ■

Lemma 3.6 Let R = R1 × R2 and S = (S1 × S2) ∩ h(R) where Si ⊆ h(Ri) is a
multiplicatively closed subset of Ri for each i = 1, 2. Suppose that P = P1 × P2 is a
graded ideal of R. If P is a graded S-prime ideal of R, then P1 is a graded S1-prime ideal
of R1 and P2 ∩ S2 ̸= ∅ or P2 is a graded S2-prime ideal of R2 and P1 ∩ S1 ̸= ∅.

Proof. Suppose P is a graded S-prime ideal of R. Since (1, 0)(0, 1) = (0, 0) ∈ P , there
exists s = (s1, s2) ∈ S so that s(1, 0) = (s1, 0) ∈ P or s(0, 1) = (0, s2) ∈ P and thus,
P1 ∩ S1 ̸= ∅ or P2 ∩ S2 ̸= ∅. We may assume that P1 ∩ S1 ̸= ∅. As P ∩ S = ∅, we have
P2 ∩ S2 = ∅. Let xgyh ∈ P2 for some xg, yh ∈ R2. Since (0, xg)(0, yh) ∈ P and P is a
graded S-prime ideal, we get either s(0, xg) = (0, s2xg) ∈ P or s(0, y) = (0, s2y) ∈ P and
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this yields s2xg ∈ P2 or s2yh ∈ P2. Therefore, P2 is a graded S2-prime ideal of R2. In the
other case, one can easily show that P1 is a graded S1-prime ideal of R1. ■

Theorem 3.7 Let M = M1 × M2 be a graded R = R1 × R2-module and S = (S1 ×
S2)∩ h(R) be a multiplicatively closed subset of R where Mi is a graded Ri-module and
Si ⊆ h(Ri) is a multiplicatively closed subset of Ri for each i = 1, 2. Suppose that N1

is a graded submodule of M1 and N2 is a graded submodule of M2 and N = N1 × N2.
If N is a graded S-strongly prime submodule of M , then N1 is a graded S1-strongly
prime submodule of M1 and (N2 :R2

M2) ∩ S2 ̸= ∅ or N2 is a graded S2-strongly prime
submodule of M2 and (N1 :R1

M1) ∩ S1 ̸= ∅.

Proof. Assume that N is a graded S-strongly prime submodule of M . First, note that
(N :R M) = (N1 :R1

M1) × (N2 :R2
M2) is a graded S-prime ideal of R by Theorem

2.14. Hence, by Lemma 3.6, (N1 :R M1) ∩ S1 ̸= ∅ or (N2 :R M2) ∩ S2 ̸= ∅. We may
assume that (N1 :R M1) ∩ S1 ̸= ∅. We will show that N2 is a graded S-strongly prime
submodule of M2. Let ((N2+R2(x2)g) :R2

M2)(y2)h ⊆ N2 for some (x2)g, (y2)h ∈ h(M2).
We have ((N1 ×N2 +R(0, (x2)g)) :R M1 ×M2)(0, (y2)h) ⊆ N1 ×N2 because if (r1, r2) ∈
((N1 ×N2 +R(0, (x2)g)) :R M1 ×M2), then (r1, r2)(M1 ×M2) ⊆ N1 ×N2 +R(0, (x2)g).
We get r2M2 ⊆ N2 + R(x2)g. Thus, (r1, r2)(0, (y2)h) = (0, r2(y2)h) ∈ N1 × N2 and so
((N1×N2+R(0, (x2)g)) :R M1×M2)(0, (y2)h) ⊆ N1×N2. Then there exists s = (s1, s2) ∈
S such that (s1, s2)(0, (x2)g) ∈ N1 × N2 or (s1, s2)(0, (y2)h) ∈ N1 × N2 since N1 × N2

is a graded S-strongly prime submodule of M , hence s2(x2)g ∈ N2 or s2(y2)h ∈ N2.
Therefore, N2 is a graded S-strongly prime submodule of M2. In the other case, it can
be similarly shown that N1 is a graded S1-strongly prime submodule of M1. ■

Corollary 3.8 Let M = M1 × M2 × · · · × Mn be a graded R = R1 × R2 × · · · × Rn-
module and S = S1×S2×· · ·×Sn ∩h(R) be a multiplicatively closed subset of R where
Mi is a graded Ri-module and Si ⊆ h(Ri) is a multiplicatively closed subset of Ri for
each i = 1, 2, . . . , n. Suppose that N = N1 × N2 × · · · × Nn is a graded submodule of
M . If N is a graded S-strongly prime submodule of M , then Ni is a graded Si-strongly
prime submodule of Mi for some i ∈ {1, 2, . . . , n} and (Nj :Rj

Mj) ∩ Sj ̸= ∅ for all
j ∈ {1, 2, . . . , n} − {i}.

Proof. We apply induction on n. For n = 1, the result is true. If n = 2, then it
follows from Theorem 3.7. Let it hold when k < n. Now, we will prove if k = n. Let
N = N1 × N2 × · · · × Nn. Put N ′ = N1 × N2 × · · · × Nn−1 and S′ = S1 × S2 × · · · ×
Sn−1 ∩ h(R1 × R2 × · · · × Rn−1). Then, by Theorem 3.7, for N = N ′ × Nn is a graded
S-strongly prime submodule of M that N ′ is a graded S′-strongly prime submodule of
M ′ and (Nn :Rn

Mn)∩Sn ̸= ∅ or Nn is a graded Sn-strongly prime submodule of Mn and
(N ′ :R′ M ′)∩S′ ̸= ∅ where M ′ = M1×M2× · · ·×Mn−1 and R′ = R1×R2× · · ·×Rn−1.
The rest follows from the induction hypothesis. ■

4. Conclusions

In this article, we introduced the concept of graded S-strongly prime submodules
of a graded module over a commutative graded ring. In fact, the concept of graded
S-strongly prime submodules is different from the concept of graded strongly prime
submodules and many results for graded strongly prime submodules do not apply to
graded S-strongly prime submodules. Several properties, examples and characterizations
of graded S-strongly prime submodules, especially in graded multiplication modules, have
been investigated. Moreover, we explored the behaviour of graded S-strongly prime sub-
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modules under graded module homomorphisms, localizations, quotient graded modules,
Cartesian product.
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