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Abstract. In this note, we investigate the Minkowski’s and Young type determinantal in-
equalities for accretive-dissipative matrices S = A + iB satisfying 0 < B < A. Our results
improve some recent ones in the literature.
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1. Introduction and preliminaries

For fixed n > 1, let M,(C) be the set of all complex n x n matrices. We denote by I,,
the identity of M, (C). For any S € M,,(C), S* stands for the conjugate transpose of S.
We say S is positive definite (positive semidefinite) if S = S* and z*Ax > 0 (z* Az > 0,
respectively) for all nonzero x € C". It is known that every S € M, (C) has a unique
Toeplitz decomposition of the form S = A + iB with A = A* and B = B*. In case A
and B are both positive definite, S is called accretive-dissipative.

For each A € M,,(C), let {s;(A)}}_; be the decreasing sequence of singular values of

|A| = (AA*)%. Given any A, B € M,,(C), Garg and Aujla [1] showed that
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for every 1 < r < 2, 1 < k < n and operator concave function f : [0,00) — [0,00).
If A and B are positive semidefinite, r = 1 and f(X) = X for any X € M,,(C), these
inequalities imply
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In particular, in the case k = n, we get
det(A + B) < det(I,, + A) det(I,, + B) (1)
and
det(I, + A+ B) < det(l,, + A) det(l, + B). (2)

Given any accretive-dissipative matrices S,T € M, (C), Kittaneh and Sakkijha [5]
computed

| det S|= + |det T|= < V2| det(S +T)|~ (3)
and for any 0 < o < 1,

| det S|*|det T|* ™ < 2%‘ det (@S + (1 — a)T)]|. (4)

Proposition 1.1 [@, Lemma 6] Let A, B € M, (C) be positive semidefinite. Then
|det(A +iB)| < det(A + B) < 2%|det(A +iB)|.

The following results are also proved in [G].

Proposition 1.2 [6, Theorem 2.11] Let S,T € M,,(C) be accretive-dissipative. Then

|det S|= + |det T|» < 2v/2|det(I, + S)||det(I, + T)|~

(5)
and

|det(al, + S)|+ + | det (1 — a)T, + T)|" < 2v2|det(T, + )|+ | det(T, + T)|=  (6)
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for every 0 < a < 1.

Proposition 1.3 [6, Theorem 2.12] Let S,T € M, (C) be accretive-dissipative. Then,
for every 0 < a < 1,

|det S|%| det T|'~* < 2% | det(I,, + aS)||det (I, + (1 — )T)| (7)
and
| det(L, + S)|*| det(L, + T)|'™" < 2% | det(I,, + aS)|| det (I, + (1 — )T)|.  (8)

Proposition 1.4 [2, property 2] Let A € M, (C) be accretive-dissipative. Then, there
exists a unique square root R of A that belongs to accretive-dissipative. If R = S 4T is
the Toeplitz decomposition of R, then 0 < T < R.

Throughout the paper, we consider specific accretive-dissipative matrices S = A +iB
with 0 < B < A. We denote by R\ the set of such matrices, that is,

RIT ={S€M,(C): S=A+iB with 0 < B < A}.

Our initial motivation for considering R} comes from Proposition [ which says every
accretive-dissipative matrix 7" € M, (C) has a unique square root S = T: = A+iB
with 0 < B < A. Note that the converse of this simply holds: if S = A 4 iB is accretive-
dissipative with 0 < B < A, then S? is accretive-dissipative. Consequently, R+ coincides
with the set of all matrices S € M, (C) such that both S and S? are accretive-dissipative.

The aim of this paper is to investigate some known determinantal inequalities for ele-
ments of R.;7T. We obtain specific Minkowski’s and Young type determinantal inequalities
in Sections 2 and 3 for such matrices. Moreover, we show by some easy examples that
Theorem P72 (Theorem B™2) substaintially improve the upper bounds of (B) and (B) (of
(@) and (B), respectively).

2. The Minkowski’s determinantal inequalities

In this section, we investigate the Minkowski’s determinantal inequality for elements
of R\ *. Let us first recall a known results.

Lemma 2.1 [3, Corollary 7.8.21] Let A, B € M,,(C) be positive definite. Then

ES
n

(det A)= + (det B)» < (det(A+ B))". (9)

Remark 1 Let A and B be two positive definite and Hermition matrices. Then, by [3,
Theorem 7.7.3], B < A implies (A—%) BA™i < (A—%) AA™5 and so, A3 BA™E <

I,,. Therefore, all eigenvalues of A"2BA™ > are positive and less than 1. We will use this
fact in the proof of Theorem Z22 below.

Theorem 2.2 Let S, T € R} with the Toeplitz decompositions S = A + iB and
T = C+1iD. Suppose that {f; 7y and {v; 7= are the sets of eigenvalues of A 2BA:
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1 1 .
and C~2DC™ 2, respectively. Then

|det S| + | det T|» < /1 + p? (det(A—i—C))%,

where p := 1I£lja<Xn{ﬂja ’Yj}-

Proof. We may compute

| det S|+ = |det(A + iB)|=

= |det (A2 (I, +iA"2 BA72)A3)

= |(det A) det (I, +iA"2 BA™z)(det A)z|n
= |det(I,, + iA"2BA™ =) det Al
= |det(I, + iA"2 BA™2)| (det A)~

= ([T 11 +8;1 )™ (det A)=
j=1

= (JT /1 +82)" (det A).
j=1

So, for Bmax := 1rgjagxn{ﬂj}’ we get

|det S|+ < /1 + B2, (det A). (10)
An analogous computation also gives

|det T|w < /1472, (det C)=, (11)
where Ymax := max {v;}. Now, (1) and (I) imply

1<j<n

w <1+ B2 (det A)w + /1 + 2, (det C)w
<1+ p? ((det A)7 + (det C)%)

< V14 p? (det(A+ C))% (by Lemma 271),

| det S| + | det T

where (p = lrgjaécn{ﬁj, 7v;}). This completes the proof. [ |

Proposition 2.3 Let S = A+ iB € M,,(C) be an accretive-dissipative. Then
| det S| > (14 824, )2 det A, (12)

where {3;}]_; is the set of eigenvalues of A"2BA™% and B, = 1I<nl£ {B;}. In particular,
<j<n

we have |det S| > det A.
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Proof. We can write
|det S| = |det(A +iB)|
= | det (A% (I, +iA 2 BA™2)A3))|
‘det( +3A” SBA™ )‘detA

:H\1+i,8j|detA

j=1

ﬁ\/l—f—ﬂfmn det A

=(1+ mm) det A,

completing the proof. [ ]

Note that we have always p < 1 in Theorem PZ2. Indeed, since B < A and D < C,
Remark O impleis 3; < 1 and v; < 1 for all 1 < j < n, and hence p < 1. Moreover,
Proposition 23 implies det (A+C') < det(S+7'), and thus Theorem P72 is an improvement
of (8). Furthermore, Theorem P2 implies immediately the following generalization of (B).

Corollary 2.4 Let S,T € R ". Under the condition of Theorem 22, we have

S\H

|det S| + |det T|+ < /T+p2 (det(I + A)) " (det(, + C))~,
where p := 1121]a<xn{6j, 75}

Proof. Theorem P2 yields

| det S|+ + [det T|+ < /1 +p? (det(A+C))~

< VIH R (det(T, + 4))

as desired. [ ]

3=
3=

(det(I, +C))" (by (D)),

Corollary 2.5 (See (B)) Let S,7 € R be an in Theorem E2. For given 0 < a <1,
suppose that {$3;}7_; and {v;}}_, are the sets of eigenvalues of (al,+A) "2 B(ad,+A) "2

and ((1 — o)l + C) 2D((l —a)l, +C)" 2, respectively. Then

3=
:MH

| det (al, + S)|* + | det (1 — a)I, + T)|* < /1 +p2 (det(I, + A)) " (det(I, + C)) ",
where p 1= lrgjagn{ﬂj, v}

Proof. Note that by replacing S and T with af,, + S and (1 — «)I,, + T respectively,
Theorem 22 implies

| det(ad, + S)|= + }det((l—a)lmtT)ﬁ <1+ p? (det(1, +A+C))%
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So, we get
%+|det((1—a)ln+T) "
< V1492 (det(I+A+C))n

< V1512 (det(L, + A))* (det(L, + )" (by (@)).

‘ det (aIn + S)

We now examine Theorem EZ2 by a small square matrix and compare it with (B).

Example 2.6 Let S= A+ iB and T = C' +iD be of the forms

73 132 42 121
S—|:37:|+Z|:23:| and T—[24}+z[12].

It is easy to verify that S,T € R}}". Then we have | det S| = 46.0977223, |det T'| = 15,
|det(S + T')| = 113.137085 and |det(A + C)| = 96. Also, {0.25,0.5} and {0.5} are the

sets of eigenvalues of A"3BA: and C'*%DC“%, respectively. So, (B) says that
|det S|z + |det T|2 < 15.0424124, (13)
while Theorem 22 with p = 0.5, for example, gives
|det S|z + |det T|2 < \/1+ (0.5)% x (96)2 = 10.9544512. (14)

Since |det S |% + | det T|% equals 10.6624769 exactly, we see that our approximation is
better than that obtained by (B).

3. The Young type determinantal inequalities for R+

In this section, we prove a Young type determinantal inequality for elements of R\,
which improves (#), (@) and (B).

Lemma 3.1 [3, Corollary 7.6.8] Let A, B € M,,(C) be positive definite and 0 < o < 1 .
Then,

(det A)*(det B)'~® < det (¢A + (1 — @) B).

Theorem 3.2 Let S, T € R}" with the Toeplitz decompositions S = A + iB and

T = C+iD. Let {B;}7_; and {v;}j_; be the sets of eigenvalues of A"3BA™: and

C‘éDC'_%, respectively. Then, for any 0 < a < 1,
|det S|*|det T|'* < (1 +p?) 2 det (@A + (1 — a)C),

where p := 1glja§n{5ja ’Yj}'
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Proof. We can write
|det S| = | det(A + iB)|
= | det (A3 (I, +iA 3 BATz)Az)]|
= |(det A) det (I, +iA~2 BA™2)(det A)?|

= |det (I, +iA"2 BA™%)|det A

= (J] 11 +1i8l ) det A

j=1
- (H,/l—k/@’? ) det A.
j=1

n

Similarly, we get [det T| = ( [] 1/1+ ’y? ) det C. Therefore, defining p = max {Bi, vt
, <j<n

7=1
we conclude that

| det S| det /"= = (T /1 + 82 )“(det A)*( T /1 +72 )" ~"(det €)1
j=1 i=1
< (ﬁ V1+p?)(det A)*(det C)'
j=1

< (1+p*)3det (@A + (1 —a)C) (by Lemma B),

completing the proof. [ ]

Corollary 3.3 Let S,T € R}t with the Toeplitz decompositions S = A + iB and
T'=C+iD. If {B;}]_; and {v;}]_; are the sets of eigenvalues of (In+A)":B(I,+ A)"2
and (I,, + C)~2D(I, + C) 2, respectively, then

| det(I, + S)|%|det(I, + T)|* = < (1 +p?) > det (In +ad+ (1 —a)0),

where p := lrg]agn{ﬂja ’Yj}-

Proof. Statement follows immediately from Theorem B by replacing S and T with
I, + S and I, + T, respectively. [ |

Observe that using Proposition 223 and the fact p < 1 (Remark @), we see that Theorem
B2 generalizes (). Moreover, by () and (), we have

det (a4 + (1 — a)C) < det(I, + ad)det (I, + (1 — a)C)
and

det (I, + @A + (1 — @)C) < det(l, + ad)det (I, + (1 — a)C)
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for 0 < a < 1, and hence, Theorem B2 and Corollary B=3 improve (@) and (B), respec-
tively.

Example 3.4 Consider the matrices S and T of Example 4 and let @ = 0.6. We may
compute |det(aAd + (1 — a)C)| = 26.88 and |det(aS + (1 — «)T)| = 31.4859969. Then
(@) gives |det S|*|det T|1~ < 62.9719938, while Theorem B for p = 0.5 implies

| det S|%|det T|* ™ < (1 4 (0.5)?) x 26.88 = 33.6.

Since |det S|*|det T|1™* = 29.4199115 exactly, Theorem B gives a much more better
upper bound comparing with that obtained by ().
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