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Abstract. In this paper, we introduce a new hybrid extragradient-type algorithm for ap-
proximating an element in the set of common solutions of equilibrium problems and common
fixed points of family of Bregman demigeneralized mappings which is also a common zero
of the sum of maximal monotone and Bregman inverse strongly monotone operators in the
setting of reflexie Banach space. Strong convergence of the proposed algorithm to a solutions
of the said problems is established which improves and generalizes many recently announced
results in the literature.
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1. Introduction

Let E be a reflexive real Banach space and E∗ be its dual space. An operator A : E →
2E

∗
is called α−inverse strongly monotone if there exists a positive real number α such

that for any x, y ∈ E, u ∈ Ax, v ∈ Ay we have

⟨u− v, x− y⟩ ⩾ α∥u− v∥2. (1)

For α = 0 in (1) then the operator A is known to be monotone. Let G(A) := {(x, u) ∈
E ×E∗ : u ∈ E∗} be the graph of a monotone operator A, then A is maximal monotone
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if we can not find any other monotone operator say Â such that G(A) ⊂ G(Â). Mono-
tone operator theory which was originally studied independently by Kačurovskĩi [14],
Minty [18] and Zarantonello [32] plays a vital role in such areas as semigroup theory,
optimization and variational inequality problems among others.

The problem of finding the zeros of the sum of two monotone operators say A and B
is to find x ∈ E such that

0 ∈ (A+B)x. (2)

We denote by (A+B)−1(0) the solution set of (2). This inclusion problem, which includes
other important problems such as minimization problems, equilibrium problems, varia-
tional inequality problems, fixed point problems as special cases, has recently received
the attention of many authors due to its several applications. Indeed, many nonlinear
problems arising in such areas as signal processing, machine learning, and image recovery
can be mathematically modeled as problem (2) (see for example [13]) and the references
therein. Notable efforts have been recorded, by several authors, to approximation meth-
ods of solution for a sum of two monotone mappings, see [21].

One of the well known method for solving problem (2) is the forward-backward splitting
method due to Passty [21] in the setting of Hilbert space which is presented as for x1 ∈ E,

xn+1 = (I + γB)−1(xn − γAxn) (n ⩾ 1), (3)

where γ > 0. Other method includes Douglas-Rachford splitting algorithm [16] presented
as x1 ∈ E and

xn+1 = 2JγA(2JγB − I)xn + (I − 2JγB)xn (n ⩾ 1), (4)

where A and B are two maximal monotone operators.
We remark here that algorithms (3) and (4) mentioned above do not guarantee strong

convergence to the solution of problem (2).
Let h : C × C → R be a bifunction with C a nonempty closed convex subset of a real

Banach space E. Then the equilibrium problem (EP) for a bifunction h is to find a point

z ∈ C for which h(z, y) ⩾ 0, ∀y ∈ C is satisfied. (5)

Problem (5) was originally studied by Bluem and Otli [4] in the setting of Hilbert space. It
includes, as a special cases, many other important problems such as variational inequal-
ity problem, minimization problem, fixed point problem to mention but a few. Various
techniques have been used to study the problems, one of such techniques is the so-called
extragradient method which was introduced in [23] by Quoc et al. in the frame work of
Hilbert spaces. They studied the following iterative scheme:{

zn ∈ Argminz∈C{h(xn, z) + 1
2λn

∥z − xn∥2},
xn+1 ∈ Argminz∈C{h(zn, z) + 1

2λn
∥z − xn∥2}.

(6)

Under some certain assumptions, the sequence {xn} generated by (6) was shown to
converge weakly to a solution of problem (5).

Let dom(f) denote the domain of a proper, convex and lower semicontinuous function
f : E → (−∞,+∞]. Then dom(f) := {x ∈ E : f(x) < +∞}. Now, for any u ∈ int(domf)
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and y ∈ E, we denote by f
′
(u, y) the right-hand derivative of f at u in the direction of

y, which is defined as

f
′
(u, y) = lim

t→0

f(u+ ty)− f(u)

t
. (7)

The function f is known to be Gâteaux differentiable at u if, for each y, the limit in (7)
exists. In this regard, the gradient of f at u is a function ∇f(u) : E → (−∞,+∞] given
by ⟨∇f(u), y⟩ = f

′
(u, y) for all y ∈ E. The function f is said to be Gâteaux differentiable

on int(domf) if it is Gâteaux differentiable at every point u ∈ int(domf). In addition,
f is said to be Fréchet differentiable at u provided the limit in (7) is attained uniformly
for any y ∈ E with ∥y∥ = 1 and it is uniformly Fréchet differentiable on a subset Ω of
E if the limit in (7) is attained uniformly for u ∈ E and ∥y∥ = 1. Let u ∈ int(domf),
the subdifferential of f at u, ∂f(u), is a convex set defined as

∂f(u) = {u∗ ∈ E∗ : f(u) + ⟨u∗, y − u⟩ ⩽ f(y), ∀ y ∈ E},

and the Fenchel conjugate of f is the function f∗ : E∗ → (−∞,+∞] defined by

f∗(u∗) = sup{⟨u∗, u⟩ − f(u) : u ∈ E}, ∀ u∗ ∈ E∗ (8)

Observe that f∗ defined by (8) above is proper, convex and lower semicontinuous as f
is. In addition, (u, u∗) ∈ ∂f if and only if f(u) + f∗(u∗) = ⟨u∗, u⟩, see [15].

Definition 1.1 [3] The function f : E → (−∞,+∞] is known to be:

(1) Essentially smooth if ∂f is locally bounded and single-valued on its domain;
(2) Essentially strictly convex if (∂f)−1 is locally bounded on its domain and f is strictly

convex on every subset of domf ;
(3) Legendre when it is both essentially smooth and essentially strictly convex.

For a Legendre function f , we have the following properties:

(i) f is Legendre if and only if f∗ is Legendre (see [5, Corollary 5.5]);
(ii) (∂f)−1 = ∂f∗ (see [5, p.83]);
(iii) ∇f is a bijection and it satisfies

∇f = (∇f∗)−1, ran∇f = dom∇f∗ = int(domf∗) and

∇f∗ = dom∇f = int(domf).

Let f : E → (−∞,+∞] be convex and Gâteaux differentiable function. The function
Df : domf × int(domf) → [0,+∞) defined as

Df (x, y) = f(x)− f(y)− ⟨∇f(y), x− y⟩, ∀x ∈ domf, y ∈ int(domf) (9)

is called the Bregman distance with respect to f [10].
Observe that Df here is not a distance function in the usual sense. In general, Df

neither satisfies symmetric nor triangular inequality. However, for all x ∈ domf and
y, z ∈ int(domf), Df satisfies the so-called three point identity

Df (x, y) +Df (y, z)−Df (x, z) = ⟨x− y,∇f(z)−∇f(y)⟩.
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Let T : C → C be a map with C a nonempty subset of a Banach space E. A point x̂ ∈ C
is called a fixed point of T if T x̂ = x̂. The set of fixed point of T is denoted by Fix(T ).
If C contains a sequence {xn} which converges weakly to x̂ and lim

n→∞
∥xn − Txn∥ = 0,

then x̂ is called an asymptotic fixed point of the map T [24]. The set of asymptotic fixed

point of T is denoted by F̂ (T ).

Definition 1.2 [2] Let C be a nonempty closed convex subset of E. A mapping T : C →
int(domf) is called

(i) Bregman firmly nonexpansive if

⟨∇f(Tx)−∇f(Ty), Tx− Ty⟩ ⩽ ⟨∇f(x)−∇f(y), Tx− Ty⟩, ∀x, y ∈ C.

(ii) Bregman strongly nonexpansive with respect to a nonempty F̂ (T ) if Df (p, Tx) ⩽
Df (p, x) for all p ∈ F̂ (T ).

(iii) Bregman quasi-nonexpansive if Df (p, Tx) ⩽ Df (p, x) for all x ∈ C and for all p ∈
Fix(T ).

Let B : E → 2E
∗
be a maximal monotone operator and λ > 0. An operator ResfλB :

E → 2E defined by ResfλB := (∇f + λB)−1 ◦∇f is called the resolvent operator of B. It

is known that ResfλB is a Bregman firmly nonexpansive operator, it is also single-valued

and Fix(ResfλB) = B−1(0) [27]. Also, if f : E → R is a Legendre function which is

bounded and uniformly Fréchet differentiable on bounded subsets of E, then ResfλB is

Bregman strongly nonexpansive and F̂ (ResfλB) = F (ResfλB) [26].
A multivalued operator A : E → 2E

∗
is called Bregman inverse strongly monotone [20]

if for any x, y ∈ int(domf), we have

⟨u− v,∇f∗(∇f(x)− u)−∇f∗(∇f(y)− v)⟩ ⩾ 0, ∀u ∈ Ax, v ∈ Ay.

Define Af : E → 2E by Af := ∇f∗ ◦(∇f−A). Then Af here is called the antiresolvent
operator of A. It was shown in [8] that A is Bregman inverse strongly monotone if and
only if Af is single-valued Bregman firmly nonexpansive and F (Af ) = A−1(0).

In [20], the problem of finding zero of sum of maximal monotone and Bregman inverse
strongly monotone operators involving fixed point of Bregman nonspreading mapping
have been studied. Tuyen, Promkam and Sunthrayuth [30] also studied the following
iterative algorithm for approximating common zero of the sum of maximal monotone
and Bregman inverse strongly monotone operators in the setting of reflexive Banach
space: 

x1, u ∈ C,

yn = ∇f∗(β0∇f(xn) +
∑N

i=1 βi∇f(ResfλBi
◦Af

i )xn),

xn+1 = ∇f∗(αn∇f(u) + (1− αn)∇f(yn)), n ⩾ 1.

(10)

They proved strong convergence theorem of the sequence {xn} generated by Algorithm
(10).

In [1], on the other hand, a class of map called Bregman demigenerelized mapping was
studied.

Definition 1.3 [1] Let E be a reflexive Banach space, C be a nonempty closed con-
vex subset of E and η ∈ (−∞, 1). Then a map T : C → E with F (T ) ̸= ∅ is called
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(η, 0)−Bregman demigeneralized map if for any x ∈ C and q ∈ F (T )

⟨x− q,∇f(x)−∇f(Tx)⟩ ⩾ (1− η)Df (x, Tx). (11)

Ali et al. [1], using Bregman distance, proposed and studied an iterative scheme for
finding a common element in the set of common fixed points for finite families of Breg-
man demigenerelized mappings and the set of solutions of generalized mixed equilibrium
problems. They proved strong convergence theorem of the sequence generated by the
following algorithm:

u0, x1 ∈ X chosen arbitrarily,

yn = ∇f∗(λn∇f(xn) + (1− λn)∇f(Tixn)),

zn = Resfφm,ϕm,Φm
◦ · · · ◦Resfφ2,ϕ2,Φ2

◦Resfφ1,ϕ1,Φ1
(yn),

wn = ∇f∗(αn∇f(xn) + βn∇f(zn) + γn∇f(yn)),

xn+1 = P f
C(∇f∗(σn∇f(u0) + (1− σn)∇f(wn))), n ⩾ 1.

In this paper, motivated by the above mentioned researches, we propose and study a
new hybrid extragradient-type iterative algorithm for finding a common solution in the
set of common fixed point of finite families of Bregman demigeneralized mappings and a
set of solution of equilibrium problems which is a common zero of the sum of maximal
monotone and Bregman inverse strongly monotone operators in the setting of reflexive
Banach spaces. Our results complement and extends some results announced recently
by some authors in the literature.

2. Preliminaries

We shall, throughout this paper, use ” ⇀ ” and ” → ” for weak and strong convergence
respectively. The following concepts and Lemmas are also very essential in the proof of
our main results.

Lemma 2.1 [29] Let C be a nonempty convex subset of a reflexive Banach space E and
f : C → R be a convex and subdifferentiable function. Then f attains its minimum at
x ∈ C if and only if 0 ∈ ∂f(x)+NC(x), where NC(x) is a normal cone of C at x; that is,

NC(x) := {x∗ ∈ E∗ : ⟨x− z, x∗⟩ ⩾ 0, ∀ z ∈ C}.

Lemma 2.2 [11] Let E be a reflexive Banach space. Suppose f : E → R and g : E → R
are two convex functions such that domf ∩ domg ̸= ∅ and f is continuous. Then, for all
x ∈ E, ∂(f + g) = ∂f(x) + ∂g(x).

Lemma 2.3 [1] Let E be a reflexive Banach space and C be a nonempty, closed and
convex subset of E. Let f : E → R be a strongly coercive and Legendre function which
is bounded, uniformly Fréchet differentiable and totally convex on bounded subset of
E. Suppose η is a real number satisfying η ∈ (−∞, 1) and T is an (η, 0)−Bregman
demigeneralized mapping of C onto E. Then F (T ) is closed and convex.

Lemma 2.4 [1] Let C be a nonempty closed convex subset of a reflexive Banach space
E and f : E → R be a Fréchet differentiable convex function. For η ∈ (−∞, 0], let
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T : C → E be (η, 0)−Bregman demigeneralized map with F (T ) ̸= ∅. Let α be real
number in [0, 1) and let S = ∇f∗(α∇f + (1 − α)∇f(T )). Then S : C → E is quasi-
Bregman nonexpansive map.

Lemma 2.5 [30] Let A : E → E∗ be bregman inverse strongly monotone map and

B : E → 2E
∗
be maximal monotone operator. Let Tλx := ResfλB ◦ Af (x) for x ∈ E and

λ > 0. Then F (Tλ) = (A+B)−1(0).

Lemma 2.6 [30] Let f : E → R be a strongly coercive Legendre function which is
bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of E.
Let A : E → E∗ be a Bregman inverse strongly monotone mapping and B : E → 2E

∗
be

a maximal monotone operator. Then the following hold:

Df (z,ResfλB ◦Af (x)) +Df (ResfλB ◦Af (x), x) ⩽ Df (z, x)

for all z ∈ (A+B)−1(0), x ∈ E and λ > 0.

Lemma 2.7 [26] Let f : E → R be a Legendre function and C be a nonempty closed
convex subset of E. If T : C → E is Bregman quasi-nonexpansive operator, then F (T )
is closed and convex.

Lemma 2.8 [31] Suppose f is convex and bounded on bounded subset of E. Then f∗ is
Fréchet differentiable and ∇f∗ is uniformly norm-to-norm continuous on bounded subset
of E∗.

Let f : E → (−∞,+∞] be a Gâteaux differentiable function. The modulus of total
convexity of f at x ∈ domf is the function vf (x, .) : [0,+∞] → [0,+∞] such that
vf (x, t) := inf{Df (x, y) : y ∈ int(domf), ∥y − x∥ = t}.

The function f is called totally convex at x if vf (x, t) > 0 whenever t > 0. It is convex
if it is totally convex at any point x ∈ int(domf). This notion was first studied by
Butnariu and Iusem [7]. Let B be a nonempty bounded subset of E. The modulus of
total convexity of f on the set B is the function vf : int(domf) × [0,+∞) → [0,+∞)
defined by vf (B, t) := inf{vf (x, t) : x ∈ B ∩ domf}.

The function f is called totally convex on bounded subset if vf (B, t) > 0 for any
nonempty and bounded subset B of E and for any t > 0.

Lemma 2.9 [25] If f : E → R is uniformly Fréchet differentiable and bounded on
bounded subsets of E, then ∇f is uniformly continuous on bounded subsets of E from
the strong topology of E to the strong topology of E∗.

Lemma 2.10 [28] Let f : E → R be Gâteaux differentiable and totally convex function.
If x0 ∈ E and the sequence {Df (xn, x0)} is bounded, then the sequence {xn} is also
bounded.

A function f : E → R is called sequentially consistent [9] if for any two sequences {xn}
and {yn} in E so that one is bounded and lim

n→∞
Df (yn, xn) = 0 implies lim

n→∞
∥yn−xn∥ = 0.

Lemma 2.11 [7] If domf contains at least two points, then the function f is totally
convex on bounded sets if and only if the function f is sequentially consistent.

Recall that the Bregman projection [6] with respect to f , P f
C : int(domf) → C, of

x ∈ int(domf) onto nonempty closed convex set C ⊂ domf is defined as a unique vector

P f
C(x) ∈ C satisfying Df (P

f
C(x), x) = inf{Df (y, x) : y ∈ C}.

The following properties concerning the Bregman projection were studied in [9].
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Lemma 2.12 [9] Let C be a nonempty closed convex subset of a reflexive Banach space
E, f : E → R be a Gâteaux differentiable and totally convex function and x ∈ E. Then

(i) z = P f
C(x) if and only if ⟨∇f(x)−∇f(z), y − z⟩ ⩽ 0, ∀y ∈ C;

(ii) Df (y, P
f
C(x)) +Df (P

f
C(x), x) ⩽ Df (y, x), ∀x ∈ E, y ∈ C.

Lemma 2.13 [9] Let E be a reflexive Banach space, f : E → R be a strongly coercive
Bregman function and Vf : E×E∗ → [0,+∞] be defined by Vf (x, x

∗) = f(x)−⟨x, x∗⟩+
f∗(x∗) for all x ∈ E and x∗ ∈ E∗. Then the following hold true

Df (x,∇f∗(x∗)) = Vf (x, x
∗), ∀x ∈ E, x∗ ∈ E∗ (12)

and

Vf (x, x
∗) + ⟨∇f∗(x∗)− x, y∗⟩ ⩽ Vf (x, x

∗ + y∗), ∀x ∈ E, ∀x∗, y∗ ∈ E∗. (13)

Lemma 2.14 [22] Let E be a reflexive Banach space, f : E → (−∞,+∞] be a proper
lower semicontinuous function, then f∗ : E∗ → (−∞,+∞] is a proper weak∗ lower
semicontinuous and convex function. Thus, for all z ∈ E, we have

Df

(
z,∇f∗( N∑

i=1

ti∇f(xi)
))

⩽
N∑
i=1

tiDf (z, xi),

where {ti} ⊂ (0, 1) with
∑N

i=1 ti = 1.

Let E be Banach space, and B and S be a closed unit ball and a unit sphere of E,
respectively. Let rB = {z ∈ E : ∥z∥ ⩽ r} for all r > 0. Then the function f : E → R
is said to be uniformly convex on bounded subset (see [31]) if ρr(t) > 0 for all r, t > 0,
where ρr : [0,∞) → [0,∞] is defined by

ρr(t) := inf
x,y∈rB,∥x−y∥=t,α∈(0,1)

αf(x) + (1− α)f(y)− f(αx+ (1− α)y)

α(1− α)
, ∀t ⩾ 0.

The function ρr here is called the gauge function of uniform convexity of f which is
known to be nondecreasing. However, if f is uniformly convex then the following result
is well known.

Lemma 2.15 [19] Let E be a Banach space, r > 0 be a constant and f : E → R be a
uniformly convex function on bounded subsets of E. Then

f
( n∑
k=0

αkxk
)
⩽

n∑
k=0

αkf(xk)− αiαjρr(∥xi − xj∥), ∀i, j ∈ {0, 1, 2, · · · , n},

where xk ∈ rB, αk ∈ (0, 1) and k = 0, 1, 2, · · · , n with
∑n

k=0 = 1 and ρr a gauge function
of uniform convexity of f .

The function f is also said to be uniformly smooth on bounded subsets [31] if
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lim
t→0−

ρr(t)
t = 0 for all r > 0, where ρr : [0,∞) → [0,∞] here is defined by

ρr(t) = sup
x∈rB,y∈S,α∈(0,1)

αf(x+ (1− α)ty) + (1− α)f(x− αty)− f(x)

α(1− α)
,∀t ⩾ 0.

A function f is called strongly coercive if lim
∥x∥→∞

f(x)
∥x∥ = +∞.

Definition 2.16 [12] Let C be a nonempty closed convex subset of a Banach space E.
A bifunction h : C × C → R is called

• Monotone if h(x, y) + h(y, x) ⩽ 0 for all x, y ∈ C,

• Pseudomonotone if h(x, y) ⩾ 0 implies h(y, x) ⩽ 0.

Observe that every monotone bifunction is pseudomonotone but not the converse. We
require, in this paper, the bifunction h satisfies the following properties:

C1. h is Pseudomonotone,
C2. h is Bregman-Lipschitz type continuous, i.e. h(x, y) + h(y, z) ⩾ h(x, z) −

c1Df (y, x)− c2Df (z, y),∀z ∈ C, x, y ∈ intdom(f) and for some c1, c2 > 0, where
f : E → (−∞,+∞] is a Legendre function,

C3. h is weakly continuous on C × C, i.e. if {xn} and {yn} are two sequences in C
converging weakly to x and y ∈ C respectively, then h(xn, yn) → h(x, y),

C4. h(x, .) : C → R is convex, lower semicontinuous and subdifferentiable,
C5. lim sup

t→0−
h(tx+ (1− t)y, w) ⩽ h(y, w) for each x, y, w ∈ C.

Lemma 2.17 [12] Let h be a bifunction satisfying (C1), (C3) − (C5). Then EP (h,C)
is closed and convex.

Lemma 2.18 [17] Let {rn} be a sequence of real numbers such that there exists a
subsequence {rnj

} of {rn} satisfying rnj
< rnj+1 ∀j ⩾ 0. Let {mk} ⊂ N be defined

by mk = max{i ⩽ k : ri < ri+1}. Then {mk} is a nondecreasing sequence satisfying
lim

k →∞
mk = ∞ and for all k ⩾ n0, the following two estimates hold:

rmk
⩽ rmk+1 and rk ⩽ rmk+1.

Lemma 2.19 [26] Let {rn} be a sequence of nonnegative real numbers satisfying

rn+1 ⩽ (1− µn)rn + µnγn, n ⩾ 0 (14)

with {µn} ⊂ [0, 1] such that
∑∞

n=0 µn = ∞ and lim sup
n →∞

γn ⩽ 0. Then lim
n→∞

rn = 0.

3. Main results

We construct, in this section, an extragradient-type algorithm for approximation of a
common element in the set of common fixed point of Bregman demigeneralized mappings,
set of Bregman inverse strongly monotone and maximal monotone operators in the setting
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of reflexive Banach space as follows.

v, x1 ∈ E chosen arbitrarily,

zin = argmin
y∈C

{λnhi(xn, y) +Df (y, xn), i = 1, 2, 3, · · · , N},

yin = argmin
y∈C

{λnhi(z
i
n, y) +Df (y, xn), i = 1, 2, 3, · · · , N},

in = argmax{Df (y
i
n, xn), i = 1, 2, 3, · · · , N}, yn = yinn ,

wn = ∇f∗(βn∇f(yn) + (1− βn)∇f(Ujyn)), j = 1, 2, · · · ,m,

un = ∇f∗(αn∇f(yn) + γn∇f(xn) + ηn∇f(wn)

+
∑N

s=1 δn,s∇f(ResfλBs
◦Af

s (wn))),

xn+1 = ∇f∗(µn∇f(v) + (1− µn)∇f(un)), n ⩾ 1,

(15)

where {αn}, {γn}, {ηn}, {δn,s}, {βn} and {µn} are sequences satisfying the following
conditions:
A1 : {µn} ⊂ (0, 1) such that lim

n →∞
µn = 0 and

∑∞
n=0 µn = ∞,

A2 : 0 < γ ⩽ αn, γn, ηn, δn,s ⩽ β < 1 and αn + γn + ηn +
∑N

s=1 δn,s = 1, ∀n ∈ N,
A3 : 0 < γ ⩽ λn ⩽ β < min{ 1

c1
1
c2
}, with c1 = max

1⩽i⩽N
c1,i, c2 = max

1⩽i⩽N
c2,i such that

c1,i and c2,i are Bregman Lipschitz coefficients of hi for all i = 1, 2, · · · , N ,
A4 : 0 < a ⩽ βn ⩽ min{1− k1, 1− k2, · · · , 1− km} ∀n.

Lemma 3.1 Let C be a nonempty closed convex subset of a reflexive Banach space E,
and let f : E → R be a strongly coercive Legendre function. For i = 1, 2, 3, · · · , N , let
hi : C × C → R be bifunction satisfying assumptions (C1)− (C5). For {λn} ⊂ (0,+∞),
let {xn} be a sequence generated by Algorithm (15). Then for any q ∈ Ω = {x∗ ∈
∩N
s=1(As +Bs)

−1(0) ∩ (∩m
j=1F (Uj)) ∩ (∩N

i=1EP (hi, C))}

Df (q, yn) ⩽ Df (q, xn)− (1− c1,iλn)Df (z
i
n, xn)− (1− c2,iλn)Df (yn, z

i
n). (16)

Proof. Let q ∈ Ω. Then it follows from Algorithm (15), Lemma 2.1, Lemma 2.2 that
for each i = 1, 2, 3, · · · , N , yin = argmin

y∈C
{λnhi(z

i
n, y) +Df (y, xn)} if and only if

0 ∈ λn∂2hi(z
i
n, y

i
n) +∇1Df (y

i
n, xn) +NC(y

i
n).

Therefore, there exist z ∈ ∂2hi(z
i
n, y

i
n) and z ∈ NC(y

i
n) such that

0 = λnz +∇f(yin)−∇f(xn) + z. (17)

Since z ∈ ∂2hi(z
i
n, y

i
n) for each i ∈ {1, 2, · · · , N}, we obtain hi(z

i
n, y) − hi(z

i
n, y

i
n) ⩾

⟨y − yin, z⟩ for all y ∈ C. Replacing y by q in the above inequality, we have

hi(z
i
n, q)− hi(z

i
n, y

i
n) ⩾ ⟨q − yin, z⟩, ∀i = 1, 2, 3, · · · , N. (18)

Using (17) and definition of NC(y
i
n), we also have ⟨y−yin, −λnz−∇f(yin)+∇f(xn)⟩ ⩽ 0

so that

⟨y − yin,∇f(yin)−∇f(xn)⟩ ⩾ λn⟨yin − y, z⟩, ∀y ∈ C. (19)
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Replacing y by q in (19), we have

⟨q − yin,∇f(yin)−∇f(xn)⟩ ⩾ λn⟨yin − q, z⟩, ∀i = 1, 2, 3, · · · , N. (20)

Using (18), (20) and pseudomonotonicity of h
′s
i , we obtain ∀i = 1, 2, · · · , N that

⟨q − yin,∇f(yin)−∇f(xn)⟩ ⩾ λn

(
hi(z

i
n, y

i
n)− hi(z

i
n, q)

)
⩾ λnhi(z

i
n, y

i
n). (21)

On the other hand, using (C2) with x = xn, y = zin and z = yin, we get

hi(z
i
n, y

i
n) ⩾ hi(xn, y

i
n)− hi(xn, z

i
n)− c1Df (z

i
n, xn)− c2Df (y

i
n, z

i
n). (22)

Inequality (21) together with (22) give

⟨q − yin,∇f(yin)−∇f(xn)⟩ ⩾ λn

(
hi(xn, y

i
n)− hi(xn, z

i
n)− c1Df (z

i
n, xn)− c2Df (y

i
n, z

i
n)
)
.

(23)

In a similar manner, since zin = argmin
y∈C

{λnhi(xn, y) + Df (y, xn), i = 1, 2, 3, · · · , N}, it

follows as in (21) that

⟨zin − y,∇f(zin)−∇f(xn)⟩ ⩽ λn

(
hi(xn, y)− hi(xn, z

i
n)
)
,∀y ∈ C

so that for y = yin, we have

⟨zin − yin,∇f(zin)−∇f(xn)⟩ ⩽ λn

(
hi(xn, y

i
n)− hi(xn, z

i
n)
)
. (24)

Using (23) and (24), we obtain

⟨q − yin,∇f(yin)−∇f(xn)⟩ ⩾ ⟨zin − yin,∇f(zin)−∇f(xn)⟩ − λnc1Df (z
i
n, xn)

− λnc2Df (y
i
n, z

i
n)
)
.

Using the three point identity, this implies that

0 ⩾ ⟨yin − zin,∇f(xn)−∇f(zin)⟩+ ⟨q − yin,∇f(xn)−∇f(yin)⟩

− λnc1Df (z
i
n, xn)− λnc2Df (y

i
n, z

i
n)
)

⩾ Df (q, y
i
n)−Df (q, xn) + (1− λnc1)Df (z

i
n, xn) + (1− λnc2)Df (y

i
n, z

i
n)

from which we obtain

Df (q, y
i
n) ⩽ Df (q, xn)− (1− λnc1)Df (z

i
n, xn)− (1− λnc2)Df (y

i
n, z

i
n)

for each i ∈ {1, 2, · · · , N}. Thus,

Df (q, yn) ⩽ Df (q, xn)− (1− λnc1)Df (z
i
n, xn)− (1− λnc2)Df (y

i
n, z

i
n) (25)

for each i ∈ {1, 2, · · · , N}. ■
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Theorem 3.2 Let C be a nonempty closed convex subset of a reflexive Banach space
E, and let f : E → R be a strongly coercive Legendre function which is bounded,
uniformly Fréchet differentiable and totally convex on bounded subsets of E. For N ∈ N,
s ∈ {1, 2, · · · , N}, let As : E → 2E

∗
and Bs : E → 2E

∗
be finite families of Bregman

inverse strongly monotone and maximal monotone operators respectively. Suppose Uj :
C → C, j = 1, 2, · · · ,m, is finite family of (kj , 0)−Bregman demigeneralized mappings
such that (I−Uj) is demiclosed at origin and kj ∈ (−∞, 0) for each j = 1, 2, 3, · · · ,m. For
i = 1, 2, 3, · · · , N , let hi : C×C → R be a bifunction satisfying assumptions (C1)−(C5),

such that Ω := (∩N
s=1F (ResfλBs

◦ Af
s )) ∩ (∩m

j=1F (Uj)) ∩ (∩N
i=1EP (hi, C)) ̸= ∅. Then the

sequence {xn} generated by Algorithm (15) converges strongly to some q ∈ Ω.

Proof. Set T λ
s := ResfλBs

◦ Af
s , then for each s ∈ {1, 2, · · · , N}, it follows from Lemma

2.6 that T λ
s is Bregman quasi nonexpansive operator. Thus, from Lemma 2.3, Lemma

2.7 and Lemma 2.17, we obtain that Ω is closed and convex. Let q ∈ Ω. Then, from
Algorithm (15), Lemma 2.4 and Lemma 3.1, we have

Df (q, wn) = Df (q,∇f∗(βn∇f(yn) + (1− βn)∇f(Ujyn)))

= Df (q, Syn)

⩽ Df (q, yn)

⩽ Df (q, xn). (26)

Using (26), Lemma 2.14 and Lemma 2.6, we get

Df (q, un) = Df (q,∇f∗(αn∇f(yn) + γn∇f(xn) + ηn∇f(wn)

+

N∑
s=1

δn,s∇f(ResfλBs
◦Af

s (wn))))

⩽ αnDf (q, yn) + γnDf (q, xn) + ηnDf (q, wn) +

N∑
s=1

δn,sDf (q, T
λ
s wn)

⩽ Df (q, xn).

Now, it follows from Algorithm (15) and Lemma 2.14 that

Df (q, xn+1) = Df (q,∇f∗(µn∇f(v) + (1− µn)∇f(un)))

⩽ µnDf (q, v) + (1− µn)Df (q, un)

⩽ µnDf (q, v) + (1− µn)Df (q, xn)

⩽ Max{Df (q, v), Df (q, xn)}
...

⩽ Max{Df (q, v), Df (q, x1)}.

Thus, the sequence {Df (q, xn+1)} is bounded. Hence, by Lemma 2.10, the sequence {xn}
is also bounded. Consequently, {wn}, {un}, {yn}, {T λ

s wn} and {Ujyn} for j = 1, 2, · · · ,m
are all bounded. Also, since f is bounded on bounded subset of E we have that ∇f
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is bounded on bounded subset of E∗ which implies {∇f(xn)}, {∇f(wn)}, {∇f(un)},
{∇f(yn)}, {∇T λ

s wn} and {∇f(Ujyn)} are all bounded, too.
In what follow, we shall show that xn → q as n → ∞. Now, let ρ∗r : E∗ → R

be a gauge function of uniform convexity of the conjugate function f∗ with r :=
sup
n
{∥yn∥, ∥∇f(xn)∥}. We then have by Lemma 2.13 and Lemma 2.15 that

Df (q, un) = Df (q,∇f∗(αn∇f(yn) + γn∇f(xn) + ηn∇f(wn) +

N∑
s=1

δn,s∇f(ResfλBs
◦Af

s (wn))))

= Vf (q, αn∇f(yn) + γn∇f(xn) + ηn∇f(wn) +

N∑
s=1

δn,s∇f(ResfλBs
◦Af

s (wn)))

= f(q)− ⟨q, αn∇f(yn) + γn∇f(xn) + ηn∇f(wn) +

N∑
s=1

δn,s∇f(ResfλBs
◦Af

s (wn))⟩

+ f∗(αn∇f(yn) + γn∇f(xn) + ηn∇f(wn) +

N∑
s=1

δn,s∇f(ResfλBs
◦Af

s (wn)))

⩽ αn(f(q)− ⟨q,∇f(yn)⟩+ f∗(∇f(yn))) + γn(f(q)− ⟨q,∇f(xn)⟩+ f∗(∇f(xn)))

+ ηn(f(q)− ⟨q,∇f(wn)⟩+ f∗(∇f(wn))) +

N∑
s=1

δn,s(f(q)− ⟨q,∇f(ResfλBs
◦Af

s (wn))⟩

+ f∗(∇f(ResfλBs
◦Af

s (wn))))− αnηnρ
∗
r(∥∇f(yn)−∇f(wn)∥)

= αnDf (q, yn) + γnDf (q, xn) + ηnDf (q, wn) +

N∑
s=1

δn,sDf (q, T
λ
s wn)

− αnηnρ
∗
r(∥∇f(yn)−∇f(wn)∥)

⩽ Df (q, xn)− αnηnρ
∗
r(∥∇f(yn)−∇f(wn)∥);

that is,

Df (q, un) ⩽ Df (q, xn)− αnηnρ
∗
r(∥∇f(yn)−∇f(wn)∥). (27)

Similarly,

Df (q, un) ⩽ Df (q, xn)− αnγnρ
∗
r(∥∇f(yn)−∇f(xn)∥) (28)

and

Df (q, un) ⩽ Df (q, xn)−
N∑
s=1

αnδn,sρ
∗
r(∥∇f(yn)−∇f(T λ

s wn)∥)

⩽ Df (q, xn)− αnδnρ
∗
r(∥∇f(yn)−∇f(T λ

s wn)∥) (29)

where δn := min
1⩽s⩽N

δn,s.
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Using (27), (28) and (29), we respectively obtain

Df (q, xn+1) ⩽ µnDf (q, v) + (1− µn)Df (q, un) (30)

⩽ Df (q, xn)− αnηnρ
∗
r(∥∇f(yn)−∇f(wn)∥)− µn[Df (q, xn)

−Df (q, v)− αnηnρ
∗
r(∥∇f(yn)−∇f(wn)∥)]

and

Df (q, xn+1) ⩽ Df (q, xn)− αnγnρ
∗
r(∥∇f(yn)−∇f(xn)∥)− µn[Df (q, xn) (31)

−Df (q, v)− αnγnρ
∗
r(∥∇f(yn)−∇f(xn)∥)]

and

Df (q,xn+1) ⩽ Df (q, xn)− αnδnρ
∗
r(∥∇f(yn)−∇f(T λ

s wn)∥) (32)

− µn[Df (q, xn)−Df (q, v)− αnδnρ
∗
r(∥∇f(yn)−∇f(T λ

s wn))∥)].

Also, (30), (31) and (32) imply

αnηnρ
∗
r(∥∇f(yn)−∇f(wn)∥) ⩽ Df (q, xn)−Df (q, xn+1)− µn[Df (q, xn) (33)

−Df (q, v)− αnηnρ
∗
r(∥∇f(yn)−∇f(wn)∥)]

and

αnγnρ
∗
r(∥∇f(yn)−∇f(xn)∥) ⩽ Df (q, xn)−Df (q, xn+1)− µn[Df (q, xn) (34)

−Df (q, v)− αnγnρ
∗
r(∥∇f(yn)−∇f(xn)∥)]

and

αnδnρ
∗
r(∥∇f(yn)−∇f(T λ

s wn)∥) ⩽ Df (q, xn)−Df (q, xn+1) (35)

− µn[Df (q, xn)−Df (q, v)− αnδnρ
∗
r(∥∇f(yn)−∇f(T λ

s wn)∥)],

respectively. Set tn = ∇f∗(µn∇f(v) + (1 − µn)∇f(un)). Then, using Lemma 2.13, we
have

Df (q, xn+1) = Df (q, ∇f∗(µn∇f(v) + (1− µn)∇f(un)))

= Vf (q, µn∇f(v) + (1− µn)∇f(un))

⩽ Vf (q, µn∇f(v) + (1− µn)∇f(un)− µn(∇f(v)−∇f(q)))

+ µn⟨tn − q, ∇f(v)−∇f(q)⟩

= Vf (q, µn∇f(q) + (1− µn)∇f(un)) + µn⟨tn − q, ∇f(v)−∇f(q)⟩

= µnVf (q, ∇f(q)) + (1− µn)Vf (q, ∇f(un)) + µn⟨tn − q, ∇f(v)−∇f(q)⟩

= µnDf (q, q) + (1− µn)Df (q, un) + µn⟨tn − q, ∇f(v)−∇f(q)⟩

⩽ (1− µn)Df (q, xn) + µn⟨tn − q, ∇f(v)−∇f(q)⟩. (36)
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Now, as {Df (q, xn+1)} is bounded from Lemma 3.1, we proceed by the following two
cases.

Case 1: Suppose {Df (q, xn)} is monotone decreasing sequence, then lim
n→∞

Df (q, xn)

exists. Therefore, using this and the conditions on αn, γn, ηn, δn, it follows from (33),
(34) and (35) that

lim
n→∞

ρ∗r(∥∇f(yn)−∇f(wn)∥) = 0, (37)

lim
n→∞

ρ∗r(∥∇f(yn)−∇f(xn)∥) = 0, (38)

lim
n→∞

ρ∗r(∥∇f(yn)−∇f(T λ
s wn)∥) = 0. (39)

Hence, by the property of ρ∗r , we obtain from (37), (38) and (39) that

lim
n→∞

∥∇f(yn)−∇f(wn)∥ = 0, lim
n→∞

∥∇f(yn)−∇f(xn)∥ = 0 and (40)

lim
n→∞

∥∇f(yn)−∇f(T λ
s wn)∥ = lim

n→∞
∥∇f(yn)−∇f(ResfλBs

◦Af
s (wn))∥ = 0.

As ∇f∗ is norm-to-norm uniformly continuous on bounded subset of E∗, we have from
(40) that 

(i) lim
n→∞

∥yn − wn∥ = 0,

(ii) lim
n→∞

∥yn − xn∥ = 0,

(iii) lim
n→∞

∥yn − T λ
s wn∥ = lim

n→∞
∥yn −ResfλBs

◦Af
s (wn)∥ = 0.

(41)

Also,

∥wn −ResfλBs
◦Af

s (wn)∥ ⩽ ∥wn − yn∥+ ∥yn −ResfλBs
◦Af

s (wn)∥

from which it follows that

lim
n→∞

∥wn − T λ
s wn∥ = 0, ∀s ∈ {1, 2, · · · , N}. (42)

Now, let k = Max
1⩽j⩽m

kj . Then, by inequality (11), we obtain

⟨yn − q, ∇f(yn)−∇f(wn)⟩ = ⟨yn − q, ∇f(yn)− βn∇f(yn)− (1− βn)∇f(Ujyn)⟩

= ⟨yn − q, (1− βn)∇f(yn)− (1− βn)∇f(Ujyn)⟩

= (1− βn)⟨yn − q, ∇f(yn)−∇f(Ujyn)⟩

⩾ (1− βn)(1− k)Df (yn, Ujyn)

so that

(1− βn)(1− k)Df (yn, Ujyn) ⩽ ⟨yn − q, ∇f(yn)−∇f(wn)⟩

⩽ ∥yn − q∥∥∇f(yn)−∇f(wn)∥
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and hence,

lim
n→∞

Df (yn, Ujyn) = 0, ∀j ∈ {1, 2, · · · ,m}. (43)

Since f is totally convex, we have that f is sequentially consistent. Therefore, it follows
from (43) that

lim
n→∞

∥yn − Ujyn∥ = 0, ∀j ∈ {1, 2, · · · ,m}. (44)

Since {yn} ⊆ E is bounded and E is a reflexive Banach space, then there exists a
subsequence {ynl

} of {yn} such that ynl
⇀ p as l → ∞. This together with (44) and

the fact that (I −Uj) is demiclosed at zero give p ∈ ∩m
j=1F (Uj). From (41)(i), we obtain

wnl
⇀ p as l → ∞ which also together with (42) give p ∈ F (T λ

s wn)) for each s ∈
{1, 2, · · · , N} and hence,

p ∈ (∩m
j=1F (Uj)) ∩ (∩N

s=1F (T λ
s wn)).

Next, we show that p ∈ ∩N
i=1EP (hi, p). From Lemma 3.1 and the three point identity,

we have

(1− c1,iλn)Df (z
i
n, xn) ⩽ Df (q, xn)−Df (q, yn)

⩽ Df (q, xn)−Df (q, yn) +Df (xn, yn)

= ⟨q − xn,∇f(yn)−∇f(xn)⟩

⩽ ∥q − xn∥∥∇f(yn)−∇f(xn)∥

from which we obtain using (A3) and (40) that lim
n→∞

Df (z
i
n, xn) = 0 and hence,

lim
n→∞

∥zin − xn∥ = 0. (45)

On the other hand, since zin = argmin
y∈C

{λnhi(xn, y)+Df (y, xn)} for each i = 1, 2, 3, · · · , N ,

we have from Lemma 2.1, Lemma 2.2 and assumption C4 that

0 ∈ λn∂2hi(xn, zin) +∇1Df (z
i
n, xn) +NC(z

i
n).

Therefore, for each i ∈ {1, 2, · · · , N}, there exist σi
n ∈ ∂2hi(xn, z

i
n) and σi

n ∈ NC(z
i
n)

such that

λnσ
i
n +∇f(zin)−∇f(xn) + σi

n = 0. (46)

Also, σi
n ∈ NC(z

i
n) implies ⟨w − zin, σi

n⟩ ⩽ 0 ∀w ∈ C. Combining this with (46), we
obtain ⟨w − zin,−λnσ

i
n −∇f(zin) +∇f(xn)⟩ ⩽ 0 from which we get

λn⟨w − zin, σi
n⟩ ⩾ ⟨zin − w, ∇f(zin)−∇f(xn)⟩. (47)
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Also, since σi
n ∈ ∂2hi(xn, zin), we have

hi(xn, w)− hi(xn, zin) ⩾ ⟨w − zin, σi
n⟩. (48)

From (47) and (48), it follows that

λn(hi(xn, w)− hi(xn, zin)) ⩾ ⟨zin − w, ∇f(zin)−∇f(xn)⟩, ∀w ∈ C.

From the above inequality, we obtain

(hi(xnl
, w)− hi(xnl

, zinl
)) ⩾ 1

λnl

⟨zinl
− w, ∇f(zinl

)−∇f(xnl
)⟩, ∀w ∈ C. (49)

From (45) and the fact that xnl
⇀ p as l → ∞, we get that zinl

⇀ p as l → ∞. Allowing
l → ∞ in (49), we get by (C3) and (A3) that hi(p, w) ⩾ 0, ∀w ∈ C and so

p ∈ ∩N
i=1EP (hi, C).

Hence, p ∈ Ω.
Claim 1: lim sup

n→∞
⟨tn − q, ∇f(v) − ∇f(q)⟩ ⩽ 0. Let {xnk

} be a subsequence of {xn}
such that

lim sup
n→∞

⟨xn − q, ∇f(v)−∇f(q)⟩ = lim
k→∞

⟨xnk
− q, ∇f(v)−∇f(q)⟩.

Since {xnk
} is a bounded sequence we have that there exist {xnkj

}, a subsequence of

{xnk
}, such that xnkj

⇀ v̂ ∈ Ω as j → ∞. Assume w.l.o.g. xnk
→ v̂ as k → ∞. Then it

follows from Lemma 2.12(i) that

lim sup
n→∞

⟨xn − q, ∇f(v)−∇f(q)⟩ = lim
k→∞

⟨xnk
− q, ∇f(v)−∇f(q)⟩

= ⟨v̂ − q, ∇f(v)−∇f(q)⟩ ⩽ 0. (50)

On the other hand, from Algorithm (15), we have

∥∇f(un)−∇f(yn)∥ ⩽ αn∥∇f(yn)−∇f(yn)∥+ γn∥∇f(xn)−∇f(yn)∥

+ ηn∥∇f(wn)−∇f(yn)∥+
N∑
s=1

δn,s∥∇f(ResfBs
◦Af

s (wn))−∇f(yn)∥

which by (40) implies that lim
n→∞

∥∇f(un) − ∇f(yn)∥ = 0. Since ∇f∗ is norm to norm

uniformly continuous on bounded subset of E∗, we get that

lim
n→∞

∥un − yn∥ = 0. (51)

By definition of tn, we have

Df (un, tn) ⩽ µnDf (un, v) + (1− µn)Df (un, un)
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from which it follows by (A1) that lim
n→∞

Df (un, tn) = 0. Since f is totally convex on

bounded subset of E, it implies f is sequentially consistent and hence

lim
n→∞

∥un − tn∥ = 0. (52)

Also, ∥tn − yn∥ ⩽ ∥tn − un∥+ ∥un − yn∥. Thus, by (51) and (52), we obtain

lim
n→∞

∥tn − yn∥ = 0. (53)

Similarly, ∥tn − xn∥ ⩽ ∥tn − yn∥+ ∥yn − xn∥, which implies by (45) and (53) that

lim
n→∞

∥tn − xn∥ = 0. (54)

From (50) and (54), we obtain

lim sup
n→∞

⟨tn − q, ∇f(v)−∇f(q)⟩ = lim sup
n→∞

⟨xn − q, ∇f(v)−∇f(q)⟩ ⩽ 0, (55)

proving claim 1. Thus, using (36) and (55) we conclude from Lemma 2.19 that xn → q
as n → ∞, completing the proof of Case 1.

Case 2: Suppose {Df (q, xn)} is not monotone decreasing sequence, then there exists
a subsequence {Df (q, xnj

)} of {Df (q, xn)} such that Df (q, xnj
) ⩽ Df (q, xnj+1

) ∀ j ⩾ 1.
Also, for a large N satisfying k ⩾ N , define α : N → N by

α(k) = max{j ⩽ k : Df (q, xj) ⩽ Df (q, xj+1)}.

Then, by Lemma 2.18, {α(k)} is nondecreasing sequence satisfying α(k) → ∞ as k → ∞
and

Df (q, xα(k)) ⩽ Df (q, xα(k)+1) and Df (q, xk) ⩽ Df (q, xα(k)+1), ∀k ∈ N.

This together with (33), (34), (35) give as in Case 1 that

αα(k)ηα(k)ρ
∗
r(∥∇f(yα(k))−∇f(wα(k))∥) ⩽ −uα(k)[Df (q, xα(k))−Df (q, v) (56)

− αα(k)ηα(k)ρ
∗
r(∥∇f(yα(k))−∇f(wα(k))∥)]

and

αα(k)γα(k)ρ
∗
r(∥∇f(yα(k))−∇f(xα(k))∥) ⩽ −uα(k)[Df (q, xα(k))−Df (q, v) (57)

− αα(k)γα(k)ρ
∗
r(∥∇f(yα(k))−∇f(xα(k))∥)]

and

αα(k)δα(k)ρ
∗
r(∥∇f(yα(k))−∇f(T λ

s wα(k))∥) ⩽ −uα(k)[Df (q, xα(k)) (58)

−Df (q, v)− αα(k)δα(k)ρ
∗
r(∥∇f(yα(k))−∇f(T λ

s wα(k))∥)],

respectively.
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Utilizing the property of ρ∗r , conditions (A1), (A2) and the fact that ∇f∗ is norm-to-
norm uniformly continuous on bounded subset of E∗ we obtain in a similar way as in
Case 1 that

lim
k→∞

∥yα(k) − wα(k)∥ = 0, lim
k→∞

∥yα(k) − xα(k)∥ = 0, and lim
k→∞

∥yα(k) − T λ
s wα(k)∥ = 0.

We also get by the same argument as in Case 1 that

lim sup
k→∞

⟨tα(k)− q, ∇f(v)−∇f(q)⟩ ⩽ 0. (59)

Thus, from (36), we get

Df (q, xα(k)+1) ⩽ (1− µα(k))Df (q, xα(k)) + µα(k)⟨tα(k) − q, ∇f(v)−∇f(q)⟩. (60)

Since Df (xα(k), q) ⩽ Df (xα(k)+1, q), we obtain from (60) that

Df (q, xα(k)) ⩽ ⟨tα(k) − q, ∇f(v)−∇f(q)⟩.

This together with (59) give

lim
k→∞

Df (q, xα(k)) = 0. (61)

Furthermore, since Df (q, xk) ⩽ Df (q, xα(k)+1) for all k ∈ N, it follows from (61) that
lim
k→∞

Df (q, xk) = 0, which complete the proof of Case 2.

It is therefore concluded from the two cases, Case 1 and Case 2, that xn → q as n → ∞.
This completes the proof. ■

As a consequences to our results we have from the following under-listed setting that:

(i) Setting in our scheme (15) for each i, hi(z, y) = 0 ∀z ∈ E, Uj = I for each j,
γn + ηn = δn,0 and αn = 0 we deduced the following result which is clearly the result
of Tuyen, Promkan and Sunthrayuth [30].

Corollary 3.3 Let E, f : E → R, As : E → 2E
∗
and Bs : E → 2E

∗
be as in Theorem

(3.2). Suppose Ω :=
(
(∩N

s=1(As +Bs)
−1(0)

)
̸= ∅. Then the sequence {xn} generated by

v, x1 ∈ E chosen arbitrarily,

un = ∇f∗(δn,0∇f(xn) +
∑N

s=1 δn,s∇f(ResfλBs
◦Af

s (xn))),

xn+1 = ∇f∗(µn∇f(v) + (1− µn)∇f(un)), n ⩾ 1,

(62)

where {δn,s} and {µn} are sequences satisfying the following conditions:
D1 : {µn} ⊂ (0, 1) such that lim

n →∞
µn = 0 and

∑∞
n=0 µn = ∞,

D2 : 0 < γ ⩽ δn,s ⩽ β < 1 and δn,0 +
∑N

s=1 δn,s = 1, ∀n ∈ N,
converges strongly to some q ∈ Ω.

(ii) Setting N = m = 1 in theorem (3.2) we equally obtain the following result.

Corollary 3.4 Assume Theorem (3.2) with N = m = 1 such that Ω := (F (ResfλB ◦
Af ))∩(F (U))∩(∩N

i=1EP (hi, C)) ̸= ∅. Then the sequence {xn} generated by the following
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algorithm converges strongly to q ∈ Ω.

v, x1 ∈ E chosen arbitrarily,

zin = argmin
y∈C

{λnhi(xn, y) +Df (y, xn), i = 1, 2, 3, · · · , N},

yin = argmin
y∈C

{λnhi(z
i
n, y) +Df (y, xn), i = 1, 2, 3, · · · , N},

in = argmax{Df (y
i
n, xn), i = 1, 2, 3, · · · , N}, yn = yinn ,

wn = ∇f∗(βn∇f(yn) + (1− βn)∇f(Uyn)),

un = ∇f∗(αn∇f(yn) + γn∇f(xn) + ηn∇f(wn) + δn∇f(ResfλB ◦Af (wn))),

xn+1 = ∇f∗(µn∇f(v) + (1− µn)∇f(un)), n ⩾ 1,

(63)

where 0 < a ⩽ βn ⩽ k, {αn}, {γn}, {ηn}, {δn}, {βn} and {µn} are sequences as in
Theorem (3.2).

Remark 1 Theorem 3.2 improve some recent results in the literature. In particular,
Theorem 3.1 of [30] is a corollary of Theorem 3.2 as indicated above. Also Theorem 3.2
complement Theorem 3.1 of [1].

4. Example

Numerical example validating Theorem 3.2 of this paper is presented in this section.

Example 4.1 Let E = R with ∥.∥ = |.|, C = [0 1] and f : R → R be defined by
f(x) = 1

3x
2, ∀x ∈ R. Then C is a closed convex subset of a reflexive Banach space

R and that f satisfies all the requirement of Theorem 3.2. Following (8), we have that
f∗(x∗) := sup

x∈R
{x∗x−f(x)} ∀x∗ ∈ R, thus f∗(w) = 2

3w
2 and ∇f∗(w) = 4

3w. For s ∈ {1, 2},

let As, Bs : R → R be defined respectively by As(x) = 2x and Bs(x) =
1
2x ∀x ∈ R. Then,

for each s = 1, 2, As is maximal monotone and Bs is Bregman inverse strongly monotone
with respective resolvent associated with f obtained as follows:

z = ResfλA1
(x) ⇔ z = (∇f + λA1)

−1 ◦ ∇f(x)

⇔ (∇f + λA1)z = ∇f(x)

⇔ 2λz = ∇f(x)−∇f(z)

⇔ z =
2x

6λ+ 2

for each x ∈ R; that is, ResfλA1
(x) = 2x

6λ+2 , which is the resolvent of A1. Also,

ẑ = Bf
1 (x) ⇔ ẑ = (∇f∗ ◦ (∇f −B1))x

⇔ ẑ = ∇f∗((∇f −B1)(x))

⇔ ẑ = ∇f∗(∇f(x)−B1(x))

⇔ ẑ = ∇f∗(
1

6
x)

⇔ ẑ =
2

9
x;
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that is, Bf
1 (x) =

2
9x, which is the resolvent of B1. Thus,

ResfλA1
◦Bf

1 (x) = ResfλA1
(
2

9
x) =

4x

54λ+ 18
.

Similarly,

ResfλA2
◦Bf

2 (x) = ResfλA2
(
2

9
x) =

4x

54λ+ 18
.

Next, for i = 1, 2, define hi : C × C → R by hi(x, y) = 2y2 + 12xy − 14x2. It is then
easy to verify that 0 ∈ ∩2

i=1EP (hi, C) and that each hi’s satisfy assumptions (C1), (C3)
and (C5). In addition, hi’s satisfy assumptions (C2) and (C4) with c1 = c2 = 6 and
∂2hi(x, y) = 4y + 12x respectively. Indeed, for z ∈ C, x, y ∈ int(domf) and Df (x, y) =
(x− y)2, we have

hi(x, y) + hi(y, z) = 2y2 + 12xy − 14x2 + 2z2 + 12yz − 14y2

= 2z2 + 12xz − 14x2 + 12xy + 12yz − 12xz − 12y2

= hi(x, y)− 6Df (y, x)− 6Df (z, y) + 6Df (z, x)

⩾ hi(x, y)− 6Df (y, x)− 6Df (z, y).

Let Uj : C → C be define by Uj(x) = x
2 for all x ∈ C and j = 1, 2. Obviously,

0 ∈ ∩2
j=1F (Uj) and Uj is Bregman demigeneralized maps for each j ∈ {1, 2}. Now,

Ω := (∩2
s=1F (ResfλAs

◦Bf
s )) ∩ (∩2

j=1F (Uj)) ∩ (∩2
i=1EP (hi, C)) = {0} ̸= ∅.

Thus, our Algorithm (15) takes the form



zin = 1−6λn

1+2λn
xn, i = 1, 2

yin = xn−6λn

1+2λn
zin, i = 1, 2

yn = yin, i = 1, 2

wn = (49 + 2
9n)yn

un = 8
45

(
xn + yn + (1 + 8

27(3λ+1))wn

)
xn+1 =

4
9(5n+2)v +

40n+12
9(5n+2)un, n ∈ N

(64)

for µn = 1
2(5n+2) , αn = γn = ηn = δn,1 = δn,2 =

1
5 and βn = 1

2n . Consider λn = 1
n and let

{xn} be a sequence defined by Algorithm (64), then xn → 0 ∈ Ω = {0} as n → ∞ under
the following cases.

Case I: Set x1 = −7.4, v = −7.0 and λ = 100.
Case II: Set x1 = 0.85, v = 0.25 and λ = 0.01.

R2014a MATLAB version is utilized to obtain the graphs of the sequence {xn} against
number of iterations for different given initial values as indicated above.
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Figure 1. Case I and Case II graphs of a sequence {xn} generated by Algorithm (64) versus number of iterations.
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