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Abstract. The main purpose of this paper is to introduce and investigate a new class of
open sets called δe-open sets. For this aim, first we define and study the notion of e-regular
open set via e-closure operator. Then, we introduce the notion of δe-open set via e-regular
open set. Several fundamental properties of the notion of δe-open set have been revealed.
Also, we show that the family of δe-open sets is a topology strictly weaker than τ δ and
stronger than τ . In addition, we investigate relationships between the notion of δe-open set
and other existing notions in topology such as open sets, regular open sets and δ-open sets.
Furthermore, we give not only various properties and characterizations but also examples
and counterexamples. Finally, some properties related to separation axioms are revealed.
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1. Introduction

Undoubtedly, one of the basic concepts of general topology is different forms of the
notion of open set. The discussion about different types of open sets is still a rich area to
study in general topology. Some weak and strong forms of this concept such as regular
open [15], δ-open set [16], θ-open set [16], e-open set [8], e∗-open set [7] and δω-open set
[3, 14] have been studied by many authors in the past years. Also, while the families
of all δ-open and all θ-open subsets of a space X form a topology on X coarser than
the old one, the family of all e-open subsets of a space X does not form a topology on
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X. In addition, many forms of continuity such as weakly e∗-continuity [10], contra e∗θ-
continuity [6], almost contra e∗θ-continuity [5], weakly e∗-irresoluteness [12] and strongly
e∗-irresoluteness [12] have been introduced through these new open set types defined.
Apart from the above mentioned notions, many types of open set and continuity of
functions have been studied in [1, 4, 11, 13] as well.

In this study, we introduce the concept of δe-open set, which lies between the concept
of δ-open set and the concept of open set, by using the concept of e-open set and examine
many fundamental properties of this newly defined concept. Moreover, we put forth that
the family of all δe-open subsets of a topological space X forms a topology on X finer
than τ. In addition, we define a new type of continuity via δe-open sets and investigate
some of their characterizations. Furthermore, separation properties and some of their
characterizations have been revealed.

In section 2, we provide the background information used throughout the paper. In
section 3, we introduce the notion of e-regular open set and obtain some of its funda-
mental properties. Then, we define and investigate the notion of δe-open set via e-regular
open set and examine its relationships with some of existing notions in the literature.
In section 4, we introduce two new types of functions called the δe-open function and
δe-closed function and obtain some characterizations of them. Also, we define a new
type of continuity called δe-continuity. Moreover, we obtain its many characterizations
and look into several fundamental properties. In section 5, we give the notions of δe-
Hausdorff space, δe-regular space, and δe-normal space. In addition, we study not only
their characterization, but also the relationships between them.

2. Preliminaries

Throughout this paper, (X, τ) and (Y, σ) (or simply X and Y ) always mean topological
spaces on which no separation axioms are assumed unless explicitly stated. For a subset
A of a topological space X, the closure of A and the interior of A are denoted by cl(A)
and int(A), respectively. The family of all closed (resp. open) sets of X is denoted by
C(X)(resp. O(X)). In addition, the family of all open sets of X containing a point x
of X is denoted by O(X,x). Recall that a subset A of a space X is called regular open
[15] (resp. regular closed [15]) if A = int(cl(A)) (resp. A = cl(int(A))). The family
of all regular open subsets of X is denoted by RO(X). The family of all regular open
sets of X containing a point x of X is denoted by RO(X,x). A subset A of a space
X is called δ-open [16] if for each x ∈ A there exists a regular open set V such that
x ∈ V ⊆ A. A set A is said to be δ-closed if its complement is δ-open. The intersection of
all regular closed sets of X containing A is called the δ-closure [16] of A and is denoted
by δ-cl(A). Dually, the union of all regular open sets of X contained in A is called the
δ-interior [16] of A and is denoted by δ-int(A). The θ-closure (resp. θ-interior) of a set
A in a space X is defined by θ-cl(A) := {x|(∀U ∈ O(X,x))(cl(U) ∩ A ̸= ∅)} (resp.
θ-int(A) := {x|(∃U ∈ O(X,x))(cl(U) ⊆ A)}) [16]. A subset A is called θ-closed (resp.
θ-open) if θ-cl(A) = A (resp. θ-int(A) = A) [16]. The family of all δ-open subsets of X
is denoted by δO(X). The family of all δ-open sets of X containing a point x of X is
denoted by δO(X,x).

The ω-closure of a subset A of a topological space X is defined by clω(A) := {x|(∀U ∈
O(X,x))(|U∩A| > ℵ0)} [9]. A is called ω-closed if clω(A) = A [9]. A is called ω-open if its
complement is ω-closed [9]. The ω-interior of set A in topological space X is defined by
intω(A) :=

∪
{U |(U ⊆ A)(U is ω-open)}. The θω-closure of a set A in topological space

X is defined by θω-cl(A) := {x|(∀U ∈ O(X,x))(clω(U)∩A ̸= ∅)} [2]. A is called θω-closed
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if θω-cl(A) = A [2]. A is called θω-open if its complement is θω-closed [2]. The θω-interior
of a set A in a space X is defined by θω-int(A) :=

∪
{U |(U ⊆ A)(U is θω-open)}.

The δω-closure of a set A in topological space X is defined by δω-cl(A) := {x|(∀U ∈
O(X,x))(int(clω(U)) ∩ A ̸= ∅)} [3]. A is called δω-closed if δω-cl(A) = A [3]. A is called
δω-open if its complement is δω-closed [3]. The δω-interior of a set A in a space X is
defined by δω-int(A) :=

∪
{U |(U ⊆ A)(U is δω-open)}.

We recall from [8] the followings:
A subset A of a space X is called e-open if A ⊆ cl(δ-int(A)) ∪ int(δ-cl(A)). The com-
plement of an e-open set is called e-closed. The intersection of all e-closed sets of X
containing A is called the e-closure of A and is denoted by e-cl(A). Dually, the union
of all e-open sets of X contained in A is called the e-interior of A and is denoted by
e-int(A).

Lemma 2.1 [8] Let A and B be two subsets of a space X. Then the following statements
hold:
a) e-int(X \A) = X \ e-cl(A),
b) e-cl(X \A) = X \ e-int(A),
c) e-cl(A) ⊆ cl(A),
d) int(A) ⊆ e-int(A),
e) e-cl(A ∩B) ⊆ e-cl(A) ∩ e-cl(B),
f) e-int(A) ∪ e-int(B) ⊆ e-int(A ∪B).

3. δe-open sets

Definition 3.1 A subset A of a space X is called e-regular open if A = int(e-cl(A)).
The complement of an e-regular open set is called e-regular closed. The family of all
e-regular open (resp. e-regular closed) subsets of X will be denoted by eRO(X) (resp.
eRC(X)).

Theorem 3.2 Let X be a topological space. Then RO(X) ⊆ eRO(X) ⊆ O(X).

Proof. Let A ∈ RO(X).
A ∈ RO(X) ⇒ A = int(cl(A)) ⊇ int(e-cl(A))

A ∈ RO(X) ⇒ A = int(A) ⊆ int(e-cl(A))

}
⇒ A = int(e-cl(A))

⇒ A ∈ eRO(X).
Now, let A ∈ eRO(X).

A ∈ eRO(X) ⇒ A = int(e-cl(A)) ⇒ int(A) = int(e-cl(A)) = A ⇒ A ∈ τ. ■

Remark 1 The converses of the above inclusions need not be true as shown by the
following examples.

Example 3.3 Let X = {a, b, c, d} and τ = {∅, X, {a, b}, {a, b, c}}. Then simple calcula-
tions show that RO(X) = {∅, X} and eRO(X) = τ. It is clear that the set {a, b, c} is
e-regular open but it is not regular open.

Example 3.4 Let R be the set of all real numbers with usual topology. Then the set
(0, 1) ∪ (1, 2) is open but it is not e-regular open.

Theorem 3.5 Let X be a topological space and A,B ⊆ X. Then the following state-
ments hold:

a) If A and B are two e-regular open sets, then A ∩B is e-regular open.
b) A is e-regular closed if and only if A = cl(e-int(A)).
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Proof. a) Let A,B ∈ eRO(X).
A ∈ eRO(X) ⇒ A = int(e-cl(A))
B ∈ eRO(X) ⇒ B = int(e-cl(B))

}
⇒ A ∩B = int(e-cl(A)) ∩ int(e-cl(B))

⇒ A ∩B = int(e-cl(A) ∩ e-cl(B)) ⊇ int(e-cl(A ∩B)) . . . (1)

A ∩B ⊆ e-cl(A ∩B) ⇒ int(A ∩B) ⊆ int(e-cl(A ∩B))
A,B ∈ eRO(X) ⊆ O(X) ⇒ A ∩B ∈ O(X) ⇒ int(A ∩B) = A ∩B

}
⇒

⇒ A ∩B ⊆ int(e-cl(A ∩B)) . . . (2)
(1), (2) ⇒ A ∩B = int(e-cl(A ∩B)) ⇒ A ∩B ∈ eRO(X).
b) It is clear from Definition 3.1 and Lemma 2.1. ■

Remark 2 The union of two e-regular open sets need not be e-regular open as shown by
the following example.

Example 3.6 Let R be the set of all real numbers with usual topology. Then the sets
(0, 1) and (1, 2) are e-regular open but (0, 1) ∪ (1, 2) is not e-regular open.

Definition 3.7 Let X be a topological space and A ⊆ X. The δe-interior of A is the
union of all e-regular open sets ofX contained in A and is denoted by δe-int(A). Formally,
δe-int(A) :=

∪
{U |(U ⊆ A)(U ∈ eRO(X))}. If A = δe-int(A), then A is called a δe-open

set. The complement of a δe-open set is called δe-closed. The family of all δe-open (resp.
δe-closed) subsets of X will be denoted by δeO(X) (resp. δeC(X)).

Theorem 3.8 Let X be a topological space and A,B ⊆ X. Then
a) δe-int(A) = {x|(∃U ∈ eRO(X,x))(U ⊆ A)}.
b) δ-int(A) ⊆ δe-int(A) ⊆ A.
c) eRO(X) ⊆ δeO(X).
d) δO(X) ⊆ δeO(X).
e) δe-int(A) ∈ O(X).
f) If A is open, then A ⊆ int(e-cl(A)).
g) int(e-cl(int(e-cl(A)))) = int(e-cl(A)).
h) δe-int(A) = {x|(∃U ∈ O(X,x))(int(e-cl(U)) ⊆ A)}.
i) If A ⊆ B, then δe-int(A) ⊆ δe-int(B).
j) δe-int(A ∩B) = δe-int(A) ∩ δe-int(B).
k) δe-int(A) ∪ δe-int(B) ⊆ δe-int(A ∪B).
l) δe-int(δe-int(A)) = δe-int(A).
m) δe-int(A) ∈ δeO(X).
n) δe-int(A) = {x|(∃U ∈ δeO(X,x))(U ⊆ A)}.
o) δe-int(A) = max{U |(U ⊆ A)(U ∈ δeO(X))}, where the maximum is w.r.t. ⊆ .

Proof. Proofs are standard. Hence, they are omitted. ■

Theorem 3.9 Let X be a space and A,B ⊆ X. Then the followings hold:
a) ∅, X ∈ δeO(X).
b) If A,B ∈ δeO(X), then A ∩B ∈ δeO(X).
c) If A ⊆ δeO(X), then

∪
A ∈ δeO(X).

Proof. a) δe-int(∅) =
∪
{U |(U ⊆ ∅)(U ∈ eRO(X))} =

∪
{∅} = ∅ ⇒ ∅ ∈ δeO(X).

δe-int(X) =
∪
{U |(U ⊆ X)(U ∈ eRO(X))} =

∪
eRO(X) = X ⇒ X ∈ δeO(X).

b) Let A,B ∈ δeO(X).
A ∈ δeO(X) ⇒ A = δe-int(A)
B ∈ δeO(X) ⇒ B = δe-int(B)

}
⇒ A ∩B = δe-int(A) ∩ δe-int(B)

⇒ A ∩B = δe-int(A) ∩ δe-int(B) = δe-int(A ∩B) ⇒ A ∩B ∈ δeO(X).
c) Let A ⊆ δeO(X).
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A ⊆ δeO(X) ⇒ (∀A ∈ A)(δe-int(A) = A ⊆
∪

A)

⇒ (∀A ∈ A)(A = δe-int(A) ⊆ δe-int (
∪

A)) ⇒
∪

A ⊆ δe-int (
∪

A)
A ⊆ δeO(X) ⇒

∪
A ⊆ X ⇒ δe-int (

∪
A) ⊆

∪
A

}
⇒

⇒
∪

A = δe-int (
∪

A)
⇒

∪
A ∈ δeO(X). ■

Corollary 3.10 The family of all δe-open sets in a space X is a topology on X.

Remark 3 By Definitions 3.1 and 3.7 and Theorem 3.8, we have the following diagram
for a subset of a topological space.

θ-open → δ-open → δe-open → open → e-open
↑ ↑

regular open → e-regular open

The implications above are not reversible as shown in the following examples.

Example 3.11 Let X = {a, b, c, d} and τ = {∅, X, {a}, {b}, {a, b}, {a, b, c}}. Simple
calculations show that δeO(X) = {∅, X, {a}, {b}, {a, b}}. Then it is clear that the set
{a, b, c} is open but it is not δe-open.

Example 3.12 Let X = {a, b, c, d} and τ = {∅, X, {a, b}, {a, b, c}}. Simple calculations
show that δO(X) = {∅, X} and eRO(X) = δeO(X) = τ. Then it is clear that the set
{a, b, c} is e-regular open and so δe-open but it is not δ-open.

Example 3.13 Let R be the set of all real numbers with usual topology. Then the set
(0, 1) ∪ (1, 2) is δe-open but not e-regular open.

Definition 3.14 Let A be a subset of a space X. The δe-closure of A is the intersection
of all e-regular closed sets of X containing A and is denoted by δe-cl(A). Formally,
δe-cl(A) :=

∩
{F |(A ⊆ F )(F ∈ eRC(X))}.

Theorem 3.15 Let A be a subset of a space X. Then the following statements hold:
a) δe-cl(A) = {x|(∀U ∈ eRO(X,x))(U ∩A ̸= ∅)},
b) δe-cl(A) = {x|(∀U ∈ O(X,x))(int(e-cl(U)) ∩A ̸= ∅)},
c) δe-cl(A) = {x|(∀U ∈ δeO(X,x))(U ∩A ̸= ∅)}.

Proof. a) Let A ⊆ X.

x /∈ δe-cl(A) ⇔ x /∈
∩
{F |(A ⊆ F )(F ∈ eRC(X))}

⇔ (∃F ∈ eRC(X))(A ⊆ F )(x /∈ F )
⇔ (\F ∈ eRO(X,x))(A ∩ (\F ) ̸= ∅)
⇔ x /∈ {x|(∀U ∈ eRO(X,x))(U ∩A ̸= ∅)}.

b) Let x /∈ δe-cl(A).
x /∈ δe-cl(A) ⇒ (∃U ∈ eRO(X,x))(U ∩A = ∅)
⇒ (U ∈ eRO(X,x))(int(e-cl(U)) ∩A = ∅)

eRO(X) ⊆ O(X)

}
⇒

⇒ (U ∈ O(X,x))(int(e-cl(U)) ∩A = ∅)
⇒ x /∈ {x|(∀U ∈ O(X,x))(int(e-cl(U)) ∩A ̸= ∅)}.
Now, let x /∈ B := {x|(∀U ∈ O(X,x))(int(e-cl(U)) ∩A ̸= ∅)}.

x /∈ B ⇒ (∃U ∈ O(X,x))(int(e-cl(U)) ∩A = ∅)
W := int(e-cl(U))

}
⇒
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⇒ (W ∈ eRO(X,x))(W ∩A = ∅)
⇒ x /∈ {x|(∀U ∈ eRO(X,x))(U ∩A ̸= ∅)} (a)

= δe-cl(A).
c) Let x /∈ δe-cl(A).

x /∈ δe-cl(A) ⇒ (∃U ∈ eRO(X,x))(U ∩A = ∅)
eRO(X) ⊆ δeO(X)

}
⇒

⇒ (U ∈ δeO(X,x))(U ∩A = ∅)
⇒ x /∈ {x|(∀U ∈ δeO(X,x))(U ∩A ̸= ∅)}.
Now, let x /∈ {x|(∀U ∈ δeO(X,x))(U ∩A ̸= ∅)}.

x /∈ {x|(∀U ∈ δeO(X,x))(U ∩A ̸= ∅)} ⇒ (∃U ∈ δeO(X,x))(U ∩A = ∅)
⇒ (x ∈ U = δe-int(U))(U ∩A = ∅)
⇒ (∃V ∈ eRO(X,x))(V ∩A ⊆ U ∩A = ∅)
⇒ x /∈ δe-cl(A). ■

Corollary 3.16 The notions of closed set, δe-closed set and δ-closed set coincide in a
regular topological space.

Theorem 3.17 Let A and B be two subsets of a space X. Then
a) If A ∈ eRO(X), then δe-cl(A) = A.
b) δe-cl(X \A) = X \ δe-int(A).
c) δe-int(X \A) = X \ δe-cl(A).
d) If A ⊆ B, then δe-cl(A) ⊆ δe-cl(B).
e) δe-cl(A) ∈ δeC(X).
f) A ∈ δeC(X) if and only if A = δe-cl(A).
g) δe-cl(A ∩B) ⊆ δe-cl(A) ∩ δe-cl(B).
h) δe-cl(A ∪B) = δe-cl(A) ∪ δe-cl(B).
i) δe-cl(δe-cl(A)) = δe-cl(A).

Proof. Proofs of the above results are standard, hence they are omitted. ■

Theorem 3.18 Let A and B be two subsets of a space X. Then the following properties
hold:

a) If A ∈ δeO(X), then A ∩ δe-cl(B) ⊆ δe-cl(A ∩B).
b) If A ∈ δeC(X), then δe-int(A ∪B) ⊆ A ∪ δe-int(B).

Proof. a) Let A ∈ δeO(X) and x ∈ A ∩ δe-cl(B).
x ∈ A ∩ δe-cl(B) ⇒ (x ∈ A)(∀U ∈ δeO(X,x))(U ∩B ̸= ∅)

A ∈ δeO(X)

}
Theorem 3.9⇒

⇒ (∀U ∈ δeO(X,x))(U ∩A ∈ δeO(X,x))((U ∩A) ∩B ̸= ∅)
⇒ (∀U ∈ δeO(X,x))(U ∩ (A ∩B) ̸= ∅)
⇒ x ∈ δe-cl(A ∩B).
b) This is obvious from (a) and Theorem 3.17(b). ■

Theorem 3.19 Let A be a subset of a space X. Then the followings hold:
a) If A ∈ O(X), then δe-cl(A) = cl(A).
b) If A ∈ C(X), then δe-int(A) = int(A).

Proof. a) For any subset A of a space X, we have always cl(A) ⊆ δe-cl(A) . . . (1)
Now, we will prove that δe-cl(A) ⊆ cl(A). Let A ∈ O(X) and x /∈ cl(A).

x /∈ cl(A) ⇒ (∃U ∈ O(X,x))(U ∩A = ∅) ⇒ (∃U ∈ O(X,x))(cl(U ∩A) = ∅)
A ∈ O(X)

}
⇒

⇒ (∃U ∈ O(X,x))(A ∩ cl(U) ⊆ cl(U ∩A) = ∅)
⇒ (∃U ∈ O(X,x))(A ∩ int(e-cl(U)) = ∅)
⇒ x /∈ δe-cl(A)
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Then, we have δe-cl(A) ⊆ cl(A) . . . (2)
(1), (2) ⇒ δe-cl(A) = cl(A).
b) It is obvious from (a) and Theorem 3.17(b). ■

Corollary 3.20 Let A be a subset of a space X. Then the following statements hold:
a) cl(δe-int(A)) = δe-cl(δe-int(A)).
b) int(δe-cl(A)) = δe-int(δe-cl(A)).
c) cl(δ-int(A)) = δe-cl(δ-int(A)).
d) int(δ-cl(A)) = δe-int(δ-cl(A)).
e) cl(θ-int(A)) = δe-cl(θ-int(A)).
f) int(θ-cl(A)) = δe-int(θ-cl(A)).
g) cl(θω-int(A)) = δe-cl(θω-int(A)).
h) int(θω-cl(A)) = δe-int(θω-cl(A)).
i) cl(δω-int(A)) = δe-cl(δω-int(A)).
j) int(δω-cl(A)) = δe-int(δω-cl(A)).

Proof. It is clear from Theorem 3.19. ■

4. Some fundamental properties

Definition 4.1 Let X and Y be two topological spaces. A function f : X → Y is said
to be δe-open (resp. δe-closed) on X if f [U ] is δe-open (resp. δe-closed) in Y for every
open (resp. closed) set U in X.

Theorem 4.2 Let X and Y be two topological spaces. If the function f : X → Y is
bijective, then the notions of δe-open and δe-closed functions are equivalent.

Proof. Let f be a δe-open bijection and A ∈ C(X).
A ∈ C(X) ⇒ \A ∈ O(X)
f is a δe-open bijection

}
⇒ \f [A] = f [\A] ∈ δeO(Y ) ⇒ f [A] ∈ δeC(Y ).

Now, let f be a δe-closed bijection and A ∈ O(X).
A ∈ O(X) ⇒ \A ∈ C(X)
f is a δe-closed bijection

}
⇒ \f [A] = f [\A] ∈ δeC(Y ) ⇒ f [A] ∈ δeO(Y ). ■

Theorem 4.3 Let X and Y be two topological spaces and f : X → Y be a function.
Then the following statements are equivalent:

a) f is δe-open;
b) f [int(A)] ⊆ δe-int(f [A]) for every A ⊆ X;
c) f [B] is δe-open for every basic open set B in X;
d) For each x ∈ X and for every open set U in X containing x, there exists an open

set V in Y containing f(x) such that int(e-cl(V )) ⊆ f [U ].

Proof. (a) ⇒ (b) : Let A ⊆ X and y ∈ f [int(A)].
y ∈ f [int(A)] ⇒ (∃x ∈ int(A))(y = f(x))

⇒ (∃U ∈ O(X,x))(U ⊆ A)(y = f(x))
f is δe-open

}
⇒ (f [U ] ∈ δeO(Y, y))(f [U ] ⊆ f [A])

⇒ y ∈ δe-int(f [A]).
(b) ⇒ (c) : Let B be a base for topology on X and B ∈ B.

B ∈ B ⇒ B = int(B)
Hypothesis

}
⇒ f [B] = f [int(B)] ⊆ δe-int(f [B]) ⊆ f [B]

⇒ δe-int(f [B]) = f [B]
⇒ f [B] ∈ δeO(Y ).
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(c) ⇒ (d) : Let x ∈ X and U ∈ O(X,x).
U ∈ O(X,x)

B is a base for topology on X

}
⇒ (∃A ⊆ B)(x ∈ U =

∪
A)

⇒ (∃A ∈ A ⊆ B)(x ∈ A ⊆
∪

A = U)
Hypothesis

}
⇒ (f [A] ∈ δeO(Y, f(x)))(f [A] ⊆ f [U ])

⇒ (f [A] ∈ δeO(Y, f(x)))(f [A] ⊆ f [U ])
V := f [A]

}
⇒ (V ∈ δeO(Y, f(x)))(V ⊆ f [U ]).

(d) ⇒ (a) : Let A ∈ O(X) and y ∈ f [A].
y ∈ f [A] ⇒ (∃x ∈ A)(y = f(x))

A ∈ O(X)

}
⇒ (∃V ∈ δeO(Y, y))(V ⊆ f [A])

⇒ y ∈ δe-int(f [A])
This means that f [A] ⊆ δe-int(f [A]).On the other hand, we have always δe-int(f [A]) ⊆

f [A]. Therefore, f [A] = δe-int(f [A]). Thus, f [A] ∈ δeO(Y ). ■

Theorem 4.4 Let X and Y be two topological spaces and f : X → Y be a function.
Then the following statements are equivalent:

a) f is δe-closed;
b) δe-cl(f [A]) ⊆ f [cl(A)] for each A ⊆ X.

Proof. (a) ⇒ (b) : Let A ⊆ X.
A ⊆ X ⇒ cl(A) ∈ C(X)

Hypothesis

}
⇒ f [cl(A)] ∈ δeC(Y )

⇒ δe-cl(f [cl(A)]) = f [cl(A)]
A ⊆ X ⇒ δe-cl(f [A]) ⊆ δe-cl(f [cl(A)])

}
⇒ δe-cl(f [A]) ⊆ f [cl(A)].

(b) ⇒ (a) : Let A ∈ C(X).
A ∈ C(X) ⇒ A = cl(A)

Hypothesis

}
⇒ δe-cl(f [A]) ⊆ f [cl(A)] = f [A] ⊆ δe-cl(f [A])

⇒ f [A] = δe-cl(f [A])
⇒ f [A] ∈ δeC(X). ■

Definition 4.5 Let X and Y be two topological spaces. A function f : X → Y is said
to be δe-continuous if f

−1[O] is δe-open in X for every open set O in Y.

Theorem 4.6 Let (X, τ) and (Y, σ) be two topological spaces. A function f : X → Y .
Then the following statements are equivalent:

a) f is δe-continuous;
b) f−1[F ] is δe-closed in X for each closed subset F of Y ;
c) f−1[B] is δe-open in X for each (subbasic) basic open set B in Y ;
d) For every x ∈ X and every open set V of Y containing f(x), there exists a δe-open

set U containing x such that f [U ] ⊆ V ;
e) f [δe-cl(A)] ⊆ cl(f [A]) for each subset A of X;
f) δe-cl(f

−1[B]) ⊆ f−1[cl(B)] for each subset B of Y.

Proof. (a) ⇒ (b) : Let F ∈ C(Y ).
F ∈ C(Y ) ⇒ \F ∈ O(Y )

Hypothesis

}
⇒ \f−1[F ] = f−1[\F ] ∈ δeO(X)

⇒ f−1(F ) ∈ δeC(X).
(b) ⇒ (c) : Let B be a base for σ and B ∈ B.

B ∈ B
B is a base for σ ⇒ B ⊆ O(Y )

}
⇒ B ∈ O(Y ) ⇒ \B ∈ C(Y )

⇒ \f−1(B) = f−1[\B] ∈ δeO(X)
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⇒ f−1[B] ∈ δeC(X).
(c) ⇒ (d) : Let x ∈ X and V ∈ O(Y, f(x)). Let B be a base for σ.
V ∈ O(Y, f(x))

B is a base for σ

}
⇒ (∃A ⊆ B ⊆ O(Y ))(

∪
A = V )

⇒ (∃A ∈ A ⊆ B)(f(x) ∈ A ⊆
∪

A = V )
Hypothesis

}
⇒

⇒ (x ∈ f−1[A] ∈ δeO(X))(f−1[A] ⊆ f−1[V ])
U := f−1[A]

}
⇒ (U ∈ δeO(X,x))(U ⊆ f−1[V ])

⇒ (U ∈ δeO(X,x))(f [U ] ⊆ V ).
(d) ⇒ (e) : Let A ⊆ X and f(x) /∈ cl(f [A]).

f(x) /∈ cl(f [A]) ⇒ (∃V ∈ O(Y, f(x)))(V ∩ f [A] = ∅)
Hypothesis

}
⇒

⇒ (∃U ∈ δeO(X,x))(f [U ∩A] ⊆ f [U ] ∩ f [A] ⊆ V ∩ f [A] = ∅)
⇒ (∃U ∈ δeO(X,x))(U ∩A = ∅)
⇒ x /∈ δe-cl(A)
⇒ f(x) /∈ f [δe-cl(A)].
(e) ⇒ (f) : Let B ⊆ Y .

B ⊆ Y ⇒ f−1[B] ⊆ X
Hypothesis

}
⇒ f [δe-cl(f

−1[B])] ⊆ cl(f [f−1[B]]) ⊆ cl(B)

⇒ δe-cl(f
−1[B]) ⊆ f−1[B].

(f) ⇒ (a) : Let A ∈ O(Y ).
A ∈ O(Y ) ⇒ \A ∈ C(Y )

Hypothesis

}
⇒ δe-cl(f

−1[\A]) ⊆ f−1[cl(\A)] = f−1[\A]

⇒ \δe-int(f−1[A]) = δe-cl(\f−1[A]) = δe-cl(f
−1[\A]) ⊆ \f−1[A]

⇒ f−1[A] ⊆ δe-int(f
−1[A])

A ⊆ Y ⇒ δe-int(f
−1[A]) ⊆ f−1[A]

}
⇒ δe-int(f

−1[A]) = f−1[A]

⇒ f−1[A] ∈ δeO(X). ■

Theorem 4.7 Let X be a topological space and Y =
∏
{Yα|α ∈ I} be a product space.

A function f : X → Y is δe-continuous on X if and only if pα ◦ f is δe-continuous on X
for every α ∈ I.

Proof. (⇒) : Let α ∈ I and U ∈ O(Yα).

U ∈ O(Yα)
α ∈ I ⇒ pα is continuous

}
⇒ p−1

α [U ] ∈ O(Y )
f is δe-continuous

}
⇒

⇒ f−1[p−1
α [U ]] = (pα ◦ f)−1[U ] ∈ δeO(X).

(⇐) : Let pα ◦ f be δe-continuous for all α ∈ I and U ∈ O(Y ).

U ∈ O(Y ) ⇒ (∀α ∈ I)(∃Uα ∈ Yα)
(
U = Uα ×

∏
α ̸=β Yβ

)
⇒ f−1[U ] = f−1

[
Uα ×

∏
α̸=β Yβ

]
= f−1[p−1

α [Uα]] = (pα ◦ f)−1[Uα]

pα ◦ f is δe-continuous

}
⇒

⇒ f−1[U ] ∈ δeO(X). ■

Corollary 4.8 Let X be a topological space and Y =
∏
{Yα|α ∈ I} be a product space,

and fα : X → Yα be a function for each α ∈ I. Let f : X → Y be the function defined
by f(x) = ⟨fα(x)⟩. Then f is δe-continuous on X if and only if fα is δe-continuous on X
for each α ∈ I.

Proof. (⇒) : Let α ∈ I.
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α ∈ I ⇒ pα is continuous
f is δe-continuous

}
⇒ fα = pα ◦ f is δe-continuous.

(⇐) : Let U ∈ O(Y ).

U ∈ O(Y ) ⇒ pα[U ] ∈ O(Yα)
α ∈ I ⇒ fα is δe-continuous

}
⇒ (p−1

α ◦ fα)−1[U ] = f−1
α [pα[U ]] ∈ δeO(X)

α ∈ I ⇒ pα is surjective

}
⇒

⇒ f−1
α [pα[U ]] = (p−1

α ◦ fα)−1[U ] = f−1[U ] ∈ δeO(X). ■

5. Separation properties and their characterizations

Definition 5.1 A topological space X is said to be
a) δe-Hausdorff if given any pair of distinct points x, y in X there exist disjoint δe-open

sets U and V such that x ∈ U and y ∈ V ;
b) δe-regular if for each closed set F and each point x /∈ F , there exist disjoint δe-open

sets U and V such that x ∈ U and F ⊆ V ;
c) δe-normal if for every pair of disjoint closed sets E and F of X, there exist disjoint

δe-open sets U and V such that E ⊆ U and F ⊆ V .

Theorem 5.2 Let X be a topological space. Then the following statements are equiva-
lent:

a) X is δe-Hausdorff;
b) For any distinct points x and y in X, there exists a δe-open set U containing x such

that y /∈ δe-cl(U);
c)

∩
{δe-cl(U)|U ∈ δeO(X,x)} = {x} for each x ∈ X.

Proof. (a) ⇒ (b) : Let x, y ∈ X and x ̸= y.
(x, y ∈ X)(x ̸= y)

Hypothesis

}
⇒ (∃U ∈ δeO(X,x))(∃V ∈ δeO(X, y))(U ∩ V = ∅)

Theorem 3.15(c)⇒ y /∈ δe-cl(U).
(b) ⇒ (c) : Let x ∈ X ve y /∈ {x}.

y /∈ {x} ⇒ x ̸= y
Hypothesis

}
⇒ (∃U ∈ δeO(X,x))(y /∈ δe-cl(U))

⇒ y /∈
∩
{δe-cl(U)|U ∈ δeO(X,x)}

This means that ∩
{δe-cl(U)|U ∈ δeO(X,x)} ⊆ {x} . . . (1)

y /∈
∩
{δe-cl(U)|U ∈ δeO(X,x)} ⇒ (∃U ∈ δeO(X,x))(y /∈ δe-cl(U))

⇒ y ̸= x
⇒ y /∈ {x}

This means that

{x} ⊆
∩

{δe-cl(U)|U ∈ δeO(X,x)} . . . (2)

(1), (2) ⇒
∩
{δe-cl(U)|U ∈ δeO(X,x)} = {x}.

(c) ⇒ (a) : Let x, y ∈ X and x ̸= y.
(x, y ∈ X)(x ̸= y) ⇒ y /∈ {x}

Hypothesis

}
⇒ y /∈

∩
{δe-cl(U)|U ∈ δeO(X,x)}

⇒ (∃U ∈ δeO(X,x))(y /∈ δe-cl(U))
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⇒ (∃U ∈ δeO(X,x))(y ∈ \δe-cl(U) = δe-int(\U) ∈ δeO(X))
V := δe-int(\U)

}
⇒

⇒ (U ∈ δeO(X,x))(V ∈ δeO(X, y))(U ∩ V = ∅). ■

Theorem 5.3 Let X be a topological space. Then the following statements are equiva-
lent:

a) X is δe-regular;
b) For each x ∈ X and an open set U containing x, there exists a δe-open set V such

that x ∈ V ⊆ δe-cl(V ) ⊆ U ;
c) For each x ∈ X and closed set F with x /∈ F, there exists a δe-open set V containing

x sucht that F ∩ δe-cl(V ) = ∅.

Proof. (a) ⇒ (b) : Let x ∈ X and U ∈ O(X,x).
U ∈ O(X,x) ⇒ x /∈ \U ∈ C(X)

Hypothesis

}
⇒

⇒ (∃W ∈ δeO(X, \U))(∃V ∈ δeO(X,x))(W ∩ V = ∅)
⇒ (∃W ∈ δeO(X, \U))(∃V ∈ δeO(X,x))(V ⊆ \W )
⇒ (∃V ∈ δeO(X,x))(δe-cl(V ) ⊆ δe-cl(\W ) = \W ⊆ U).
(b) ⇒ (c) : Let F ∈ C(X) and x /∈ F .

x /∈ F ∈ C(X) ⇒ x ∈ \F ∈ O(X) ⇒ \F ∈ O(X,x)
Hypothesis

}
⇒

⇒ (∃V ∈ δeO(X,x))(δe-cl(V ) ⊆ \F )
⇒ (∃V ∈ δeO(X,x))(F ∩ δe-cl(V ) = ∅).
(c) ⇒ (a) : Let F ∈ C(X) and x /∈ F .

x /∈ F ∈ C(X)
Hypothesis

}
⇒ (∃V ∈ δeO(X,x))(δe-cl(V ) ∩ F = ∅)

⇒ (∃V ∈ δeO(X,x))(F ⊆ \δe-cl(V ))
W := \δe-cl(V )

}
⇒

⇒ (∃V ∈ δeO(X,x))(∃W ∈ δeO(X,F ))(V ∩W = ∅). ■

Theorem 5.4 Let X be a topological space. Then the following statements are equiva-
lent:

a) X is δe-normal;
b) For each closed set F and an open set U ⊇ F, there exists a δe-open set V containing

F such that δe-cl(V ) ⊆ U ;
c) For each pair of distinct closed sets E and F, there exists a δe-open set V containing

E such that δe-cl(V ) ∩ F = ∅.

Proof. (a) ⇒ (b) : Let F ∈ C(X) and U ∈ O(X,F ).
(U ∈ O(X,F ))(F ∈ C(X)) ⇒ (F, \U ∈ C(X))(F ∩ (\U) = ∅)

Hypothesis

}
⇒

⇒ (∃V ∈ δeO(X,F ))(∃W ∈ δeO(X, \U))(W ∩ V = ∅)
⇒ (V ∈ δeO(X,F ))(W ∈ δeO(X, \U))(V ⊆ \W )
⇒ (V ∈ δeO(X,F ))(F ⊆ δe-cl(V ) ⊆ δe-cl(\W ) = \W ⊆ U)
⇒ (V ∈ δeO(X,F ))(F ⊆ V ⊆ δe-cl(V ) ⊆ U).
(b) ⇒ (c) : Let E,F ∈ C(X) and E ∩ F = ∅.

(E,F ∈ C(X))(E ∩ F = ∅) ⇒ (E ∈ C(X))(\F ∈ O(X,E))
Hypothesis

}
⇒

⇒ (∃V ∈ δeO(X,E))(E ⊆ δe-cl(V ) ⊆ \F )
⇒ (∃V ∈ δeO(X,E))(δe-cl(V ) ∩ F = ∅).
(c) ⇒ (a) : Let E,F ∈ C(X) and E ∩ F = ∅.
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(E,F ∈ C(X))(E ∩ F = ∅)
Hypothesis

}
⇒ (∃V ∈ δeO(X,E))(δe-cl(V ) ∩ F = ∅)

⇒ (∃U ∈ δeO(X,E))(F ⊆ \δe-cl(V ) = δe-int(\V ))
W := δe-int(\V )

}
⇒

⇒ (∃V ∈ δeO(X,E))(∃W ∈ δeO(X,F ))(V ∩W = ∅). ■

Theorem 5.5 Let X be a T1 space. Then the following statements hold:
a) If X is δe-regular, then X is δe-Hausdorff.
b) If X is δe-normal, then X is δe-regular.

Proof. a) Let x, y ∈ X and x ̸= y.

(x, y ∈ X)(x ̸= y)
X is a T1 space

}
⇒y /∈ {x} ∈ C(X)

X is δe-regular

}
⇒

⇒ (∃U ∈ δeO(X, {x}) = δeO(X,x))(∃V ∈ δeO(X, y))(U ∩ V = ∅).
b) Let x /∈ F ∈ C(X).

x /∈ F ∈ C(X)
X is a T1 space

}
⇒ (F, {x} ∈ C(X))(F ∩ {x} = ∅)

X is δe-normal

}
⇒

⇒ (∃U ∈ δeO(X,F ))(∃V ∈ δeO(X, {x}) = δeO(X,x))(U ∩ V = ∅). ■

6. Conclusion

In this paper, we introduced a new type of open set called e-regular open. With the
help of this new notion, we gave the notion of δe-open set and investigated some of its
fundamental properties. Also, we proved that the family of all δe-open sets in a space
(X, τ) is a topology strictly weaker than τ δ and stronger than τ . We gave not only some
relationships but also several examples. Moreover, we defined and studied some types
of functions called δe-open, δe-closed and δe-continuity. Furthermore, we studied some
separation properties defined in the scope of this present paper and investigated some of
their characterizations. Finally, we believe that these results will play an important role
for researchers who study in the area of general topology in future.
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[12] M. Özkoç, K. S. Atasever, On some forms of e∗-irresoluteness, J. Linear. Topol. Algebra. 8 (1) (2019), 25-39.
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