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aDepartment of Mathematics, Graduate School of Natural and Applied Sciences, Muǧla Sıtkı Koçman
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Abstract. The main purpose of this paper is to study the class of e-θ-open sets and explore
some of their new properties. Also, we introduce and study some weak separation axioms
by utilizing e-θ-open sets. In addition, we define the notion of e-θ-kernel and slightly e-θ-R0

spaces. Furthermore, we apply them to discuss some fundamental properties of the graph
functions. We obtain not only some characterizations but also many new results.
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1. Introduction

One of the most important objects of topology is undoubtedly the notion of open sets.
Numerous researchers in the field of topology is devoted to the study of various classes
of open subsets of topological spaces. Recently, many new forms of this notion have
been introduced and studied by many mathematicians. For instance, in 1966, Velicko
introduced the notion of θ-open [13] set which is the stronger form of open sets in
topology. After him, several new forms of θ-open [13] classes such as pre-θ-open [6],
semi-θ-open [5], b-θ-open [10, 11], β-θ-open [2, 7], and e-θ-open [9] were defined and
studied in the literature.

In this study, we continue to study the properties of the notion of e-θ-open set. We
define a new class of subsets, called e-θ-D-set, via e-θ-open sets. Also, we introduce some
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new separation axioms by means of e-θ-D-sets and e-θ-open sets and investigate some of
their fundamental properties.

2. Preliminaries

Throughout this paper, X and Y refer always to topological spaces on which no sep-
aration axioms are assumed unless otherwise mentioned. For a subset A of X, cl(A)
and int(A) denote the closure of A and the interior of A in X, respectively. The family
of all open subsets containing x of X is denoted by O(X,x). A subset A is said to be
regular open [12] (resp. regular closed [12]) if A = int(cl(A)) (resp. A = cl(int(A))).
The δ-interior [13] of a subset A of X is the union of all regular open sets of X con-
tained in A and is denoted by δ-int(A). The subset A of a space X is called δ-open [13] if
A = δ-int(A), i.e., a set is δ-open if it is the union of some regular open sets. The comple-
ment of a δ-open set is called δ-closed. Alternatively, a subset A of a space X is called δ-
closed [13] if A = δ-cl(A), where δ-cl(A) = {x ∈ X|(∀U ∈ O(X,x))(int(cl(U))∩A ̸= ∅)}.
The family of all δ-open (resp. δ-closed) sets in X is denoted by δO(X) (resp. δC(X)).

A subset A of X is said to be e-open [4] (resp. b-open [1]) if A ⊆ cl(δ-int(A)) ∪
int(δ-cl(A)) (resp. A ⊆ cl(int(A)) ∪ int(cl(A))). The complement of an e-open (resp.
b-open) set is called e-closed [4] (resp. b-closed [1]). A subset A of a space X is said
to be e-regular [9] (resp. b-regular [10]) if it is both e-open (resp. b-open) and e-closed
(resp. b-closed). The e-interior [4] of a subset A of X is the union of all e-open sets of X
contained in A and is denoted by e-int(A). The e-closure [4] of a subset A of X is the
intersection of all e-closed sets of X containing A and is denoted by e-cl(A). The family
of all e-open (resp. e-closed, e-regular, b-open, b-closed, b-regular) subsets containing x
of X is denoted by eO(X,x) (resp. eC(X,x), eR(X,x), BO(X,x), BC(X,x), BR(X,x)).

A point x of X is called an e-θ-cluster [9] (resp. b-θ-cluster [10]) point of A ⊆ X if
e-cl(U) ∩ A = ∅ (resp. b-cl(U) ∩ A = ∅) for every U ∈ eO(X,x) (resp. U ∈ BO(X,x)).
The set of all e-θ-cluster (resp. b-θ-cluster) points of A is called the e-θ-closure (resp.
b-θ-closure) of A and is denoted by e-clθ(A) (resp. b-clθ(A)). A subset A is said to be
e-θ-closed [9] (resp. b-θ-closed [10]) if and only if A = e-clθ(A) (resp. A = b-clθ(A)).
The complement of an e-θ-closed (resp. b-θ-closed) set is said to be e-θ-open [9] (resp.
b-θ-open [10]). The family of all e-θ-closed (resp. e-θ-open, b-θ-closed, b-θ-open) subsets of
X is denoted by eθC(X) (resp. eθO(X), BθC(X), BθO(X)). The family of all e-θ-closed
(resp. e-θ-open, b-θ-closed, b-θ-open) subsets containing x of X is denoted by eθC(X,x)
(resp. eθO(X,x), BθC(X,x), BθO(X,x)). Also, the family of all e-θ-open sets containing
the subset F of X will be denoted by eθO(X,F ).

Theorem 2.1 [9] Let A be a subset of a topological space X. Then,
(a) A ∈ eO(X) if and only if e-cl(A) ∈ eR(X),
(b) A ∈ eC(X) if and only if e-int(A) ∈ eR(X).

Corollary 2.2 [9] Let A and Aα(α ∈ Λ) be any subsets of a space X. Then the following
properties hold:
(a) A is e-θ-open in X if and only if for each x ∈ A there exists U ∈ eR(X,x) such that
x ∈ U ⊆ A,
(b) If Aα is e-θ-open in X for each α ∈ A, then ∪α∈ΛAα is e-θ-open in X.

Theorem 2.3 [9] For a subset A of a topological space X, the following properties hold:
(a) If A ∈ eO(X), then e-cl(A) = e-clθ(A),
(b) A ∈ eR(X) if and only if A is e-θ-open and e-θ-closed.



D. Akalin and M. Özkoç / J. Linear. Topological. Algebra. 11(04) (2022) 279-292. 281

Definition 2.4 [9] A topological space X is said to be e-regular if for each F ∈ eC(X)
and each x /∈ F, there exists disjoint e-open sets U and V such that x ∈ U and F ⊆ V.

Theorem 2.5 [9] For a topological space X, the following properties are equivalent:
(a) X is e-regular;
(b) For each U ∈ eO(X) and each x ∈ U, there exists V ∈ eO(X) such that x ∈ V ⊆
e-cl(V ) ⊆ U ;
(c) For each U ∈ eO(X) and each x ∈ U, there exists V ∈ eR(X) such that x ∈ V ⊆ U.

Definition 2.6 [3] A function f : X → Y is said to be e-irresolute if f−1[V ] ∈ eO(X)
for every V ∈ eO(Y ).

Theorem 2.7 [8] Let f : X → Y be a function. Then the following properties are
aquivalent:
(a) f is weakly e-irresolute;
(b) f [e-cl(A)] ⊆ e-clθ(f [A]) for every subset A of X.

Remark 1 [9] It can be easily shown that e-regular ⇒ e-θ-open ⇒ e-open.

Theorem 2.8 [9] For any subset A of a space X, we have

e-clθ(A) =
∩
{V |A ⊆ V and V is e-θ-closed}

=
∩
{V |A ⊆ V and V ∈ eR(X)}.

Remark 2 It is easy to prove that:
(a) the intersection of an arbitrary collection of e-θ-closed sets is e-θ-closed.
(b) X and ∅ are e-θ-closed sets.

Remark 3 The following example shows that the union of any two e-θ-closed sets of X
need not be e-θ-closed in X.

Example 2.9 [9] Let X = {a, b, c} and τ = {∅, X, {a}, {b}, {a, b}}. The subsets {a} and
{b} are e-θ-closed in (X, τ) but {a, b} is not e-θ-closed.

Lemma 2.10 [9] For a subset A of a space X, the following properties hold:
(a) If A ∈ eO(X), then e-cl(A) is e-regular and e-cl(A) = e-clθ(A),
(b) A is e-regular if and only if A is e-θ-closed and e-θ-open,
(c) A is e-regular if and only if A = e-int(e-cl(A)),
(d) A is e-regular if and only if A = e-cl(e-int(A)).

Lemma 2.11 [9] For any subset A of a topological space X, e-clθ(A) is e-θ-closed.

3. On e-θ-open sets

Definition 3.1 A subset A of a topological space X is said to be θ-complement e-open
(briefly, θ-c-e-open) provided there exists a subset U of X for which X \ A = e-clθ(U).
We call a set θ-complement e-closed if its complement is θ-c-e-open.

Remark 4 It should be mentioned that by Lemma 2.11, X \ A = e-clθ(U) is e-θ-closed
and A is e-θ-open. Therefore, the equivalence of θ-c-e-open and e-θ-open is obvious from
Definition 3.1.

Theorem 3.2 Let X be a topological space and A ⊆ X. If A is e-open, then
e-int(e-clθ(A)) is e-θ-open.



282 D. Akalin and M. Özkoç / J. Linear. Topological. Algebra. 11(04) (2022) 279-292.

Proof. Let A ∈ eO(X).
A ∈ eO(X)⇒ e-cl(A) ∈ eC(X)⇒ X \ e-cl(A) ∈ eO(X)

Lemma 2.10

}
⇒

⇒ e-cl(X \ e-cl(A)) = e-clθ(X \ e-cl(A)) . . . (1)

X \ e-int(e-cl(A)) = e-cl(X \ e-cl(A))⇒ e-int(e-cl(A)) = \e-cl(\e-cl(A))
A ∈ eO(X)

}
⇒

⇒ e-int(e-clθ(A)) = e-int(e-cl(A)) = X \ e-cl(X \ e-cl(A)) . . . (2)
(1), (2) ⇒ e-int(e-clθ(A)) = \e-clθ(\e-cl(A))⇒ e-int(e-clθ(A)) ∈ eθO(X). ■

Theorem 3.3 Let X be a topological space. Then the notion of e-θ-open is equivalent
to the notion of e-regular if and only if e-clθ(A) is e-regular for every set A ⊆ X.

Proof. (⇒) : Let eθO(X) = eR(X) and A ⊆ X.
A ⊆ X ⇒ e-clθ(A) = e-clθ(e-clθ(A))⇒ e-clθ(A) ∈ eθC(X) . . . (1)
e-clθ(A) ∈ eθC(X)⇒ X \ e-clθ(A) ∈ eθO(X)

eθO(X) = eR(X)

}
⇒

⇒ X \ e-clθ(A) ∈ eR(X) ⊆ eθC(X)
⇒ e-clθ(A) ∈ eθO(X) . . . (2)
(1), (2)⇒ e-clθ(A) ∈ eR(X).

(⇐) : Let U ∈ eθO(X). Our aim is to show that U ∈ eR(X).

U ∈ eθO(X)
Remark 4⇒ (∃A ⊆ X)(X \ U = e-clθ(A))

Hypothesis

}
⇒ X \ U ∈ eR(X)

⇒ U ∈ eR(X). ■

Theorem 3.4 Let X be a topological space and B ⊆ X. If B is e-θ-open, then B is an
union of e-regular sets.

Proof. Let B ∈ eθO(X) and x ∈ B.

B ∈ eθO(X)
Remark 4⇒ (∃A ⊆ X)(B = X \ e-clθ(A))

x ∈ B

}
⇒ x /∈ e-clθ(A)

⇒ (∃Wx ∈ eO(X,x))(e-cl(Wx) ∩A = ∅)
⇒ (∃Wx ∈ eO(X,x))(e-cl(Wx) ⊆ \A)

⇒ (Wx ∈ eO(X,x))(e-int(e-cl(Wx)) = (e-intθ(e-cl(Wx)) ⊆ e-intθ(\A) = \e-clθ(A)
A := {e-int(e-cl(Wx))|(∀x ∈ B)(∃Wx ∈ eO(X,x))(e-int(e-cl(Wx)) ⊆ \e-clθ(A))}

}
⇒

⇒ (A ⊆ eR(X))(B =
∪
A). ■

Corollary 3.5 Let X be a topological space and B ⊆ X. If B is e-θ-closed, then B is
an the intersection of e-regular sets.

4. On e-θ-Di and e-θ-Ti topological spaces

In this chapter, we introduce some classes of sets via the notion of e-θ-open sets. Also,
the relationships between these notions and some other existing notions in the literature
are investigated.

Definition 4.1 A subset A of a topological space X is called an e-θ-D-set if there exist
two sets U, V ∈ eθO(X) such that U ̸= X and A = U \ V. The family of all e-θ-D-set of
X and all e-θ-D-set of X containing x ∈ X will be denoted by eθD(X) and eθD(X,x),
respectively.
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Remark 5 It is clear that every e-θ-open set U different from X is an e-θ-D-set. How-
ever, the converse of this implication need not be true as shown by the following example.

Example 4.2 Let X = {a, b, c, d} and τ = {∅, X, {a}, {c}, {a, c}, {c, d}, {a, c, d}}. Then,
eθO(X) = 2X \ {{b}, {b, c}, {b, d}} and eθD(X) = 2X \ {X}. It is obvious that the set
{b} is an e-θ-D-set but it is not e-θ-open.

Definition 4.3 A topological space X is called e-θ-D0 if for any distinct pair of points
x and y in X, there exists e-θ-D-set U of X containing x but not y or e-θ-D-set V of X
containing y but not x.

Definition 4.4 A topological space X is called e-θ-D1 if for any distinct pair of points
x and y in X, there exists e-θ-D-set U in X containing x but not y and e-θ-D-set V of
X containing y but not x.

Definition 4.5 A topological space X is called e-θ-D2 if for any distinct pair of points
x and y in X, there exist two e-θ-D-sets U and V of X containing x and y, respectively,
such that U ∩ V = ∅.

Definition 4.6 A topological space X is called e-θ-T0 if for any distinct pair of points x
and y in X, there exists an e-θ-open set U of X containing x but not y and an e-θ-open
set V of X containing y but not x.

Definition 4.7 A topological space X is called e-θ-T1 if for any distinct pair of points x
and y in X, there exists an e-θ-open set U of X containing x but not y and an e-θ-open
set V of X containing y but not x.

Definition 4.8 A topological space X is called e-θ-T2 if for any distinct pair of points x
and y in X, there exist two e-θ-open sets U and V of X containing x and y, respectively,
such that U ∩ V = ∅.

Remark 6 From Definitions 4.1 to 4.8, we obtain the following diagram:

e-θ-T2 ⇒ e-θ-T1 ⇒ e-θ-T0

⇓ ⇓ ⇓
e-θ-D2 ⇒ e-θ-D1 ⇒ e-θ-D0

Theorem 4.9 Let X be a topological space. If X is e-θ-T0, then it is e-θ-T2.

Proof. Let x, y ∈ X and x ̸= y.
x ̸= y

X is e-θ-T0

}
⇒ (∃W ∈ eθO(X,x))(∃T ∈ eθO(X, y))(y /∈W ∨ x /∈ T )

First case: Let W ∈ eθO(X,x) and y /∈W.
W ∈ eθO(X,x)⇒ (∃S ∈ eO(X,x))(S ⊆ e-cl(S) ⊆W )

y /∈W

}
Lemma 2.10⇒

⇒ y /∈ e-cl(S) ∈ eR(X) ⊆ eθC(X)⇒ y ∈ X \ e-cl(S) ∈ eθO(X)
(U := W )(V := X \ e-cl(S))

}
⇒

⇒ (U ∈ eθO(X,x))(V ∈ eθO(X, y))(U ∩ V = ∅). ■

Theorem 4.10 Let X be a topological space. If X is e-θ-D0, then it is e-θ-T0.

Proof. It suffices to prove that every e-θ-D0 space is e-θ-T0.
Let x, y ∈ X and x ̸= y.
(x, y ∈ X)(x ̸= y)

X is e-θ-D0

}
⇒ (∃A ∈ eθD(X,x))(y /∈ A) ∨ (∃B ∈ eθD(X, y))(x /∈ B)
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⇒ (∃N,M ∈ eθO(X))(M ̸= X)(A = M \N)(x ∈ A)(y /∈M ∨ y = M ∩N)
First case: Let y /∈M.
U := M
y /∈M

}
⇒ (U ∈ eθO(X,x))(y /∈ U)

Second case: Let y ∈M ∩N.
(y ∈M ∩N ⊆ N)(V := N)

(A = M \N)(x ∈ A)⇒ x /∈ N

}
⇒ (V ∈ eθO(X, y))(x /∈ V ). ■

Corollary 4.11 For any topological space X, the notions which are given in Remark 6
are equivalent.

Definition 4.12 LetX be a topological space, N ⊆ X and x ∈ X. The set N is called an
e-θ-neighbourhood of x in X if there exists an e-θ-open set U of X such that x ∈ U ⊆ N.
The family of all e-θ-neighbourhood of a point x is denoted by Neθ(x).

Definition 4.13 Let X be a topological space and x ∈ X. The point x which has only X
as the e-θ-neighbourhood is called a point common to all e-θ-closed sets (briefly, e-θ-cc).

Theorem 4.14 Let X be a topological space. If X is e-θ-D1, then X has no e-θ-cc-point.

Proof. Let x, y ∈ X and x ̸= y.
(x, y ∈ X)(x ̸= y)

X is e-θ-D1

}
⇒ (∃A ∈ eθD(X,x))(∃B ∈ eθD(X, y))(x /∈ B)(y /∈ A)

⇒ (∃U, V ∈ eθO(X))(U ̸= X)(x ∈ A = U\V )
⇒ (U ∈ eθO(X))(x ∈ U ⊆ U ̸= X)
⇒ X ̸= U ∈ Neθ(x)
⇒ Neθ(x) ̸= {X}. ■

Definition 4.15 A subset A of a topological space X is called a generalized e-θ-closed
set (briefly, geθ-closed) if e-clθ(A) ⊆ U whenever A ⊆ U and U is e-θ-open in X. The
family of all generalized e-θ-closed set in X will be denoted by geθC(X).

Lemma 4.16 [9] Let A be any subset of a space X. Then, x ∈ e-clθ(A) if and only if
U ∩A ̸= ∅ for each U ∈ eR(X,x).

Theorem 4.17 For a topological space X, the following statements hold:
(a) For each pair of points x and y in X, x ∈ e-clθ({y}) implies y ∈ e-clθ({x});
(b) For each point x in X, the singleton {x} is geθ-closed in X.

Proof. (a) Let x, y ∈ X and y /∈ e-clθ({x}).
y /∈ e-clθ({x})⇒ (∃V ∈ eO(X, y))(e-cl(V ) ∩ {x} = ∅)

Lemma 2.10

}
⇒

⇒ (e-cl(V ) ∈ eR(X, y))(e-cl(V ) ∩ {x} = ∅)
U := e-cl(V )

}
⇒

⇒ (U ∈ eO(X, y))(e-cl(U) ∩ {x} = ∅)
⇒ x /∈ e-clθ({y}).

(b) Let x ∈ X, U ∈ eθO(X) and {x} ⊆ U.
(x ∈ X)({x} ⊆ U)(U ∈ eθO(X))⇒ U ∈ eθO(X,x)
Corollary 2.2⇒ (∃V ∈ eR(X,x))(V ⊆ U)⇒ (V ∈ eR(X,x))(V = e-cl(V ) ⊆ U)

eR(X) ⊆ eθO(X)

}
⇒

⇒ (V ∈ eO(X,x))(e-clθ({x}) ⊆ e-clθ(V ) = e-cl(V ) ⊆ U). ■

Definition 4.18 A space X is said to be e-θ-T1/2 if geθC(X) ⊆ eθC(X).
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Theorem 4.19 For a topological space X, the followings are equivalent:
(a) X is e-θ-T1/2;
(b) X is e-θ-T1.

Proof. (a)⇒ (b) : Let x, y ∈ X and x ̸= y.

x, y ∈ X
Theorem 4.17⇒ {x}, {y} ∈ geθC(X)

X is e-θ-T1/2 ⇒ geθC(X) ⊆ eθC(X)

}
⇒ {x}, {y} ∈ eθC(X)

x ̸= y

}
⇒

⇒ (X \ {y} ∈ eθO(X,x))(X \ {x} ∈ eθO(X, y))
(U := X \ {y})(V := X \ {x})

}
⇒

⇒ (U ∈ eθO(X,x))(V ∈ eθO(X, y))(y /∈ U)(x /∈ V ).

(b)⇒ (a) : Let A ∈ geθC(X). Suppose that A /∈ eθC(X). We will obtain a contradic-
tion.
A /∈ eθC(X)⇒ A ̸= e-clθ(A)⇒ (∃x ∈ X)(x ∈ e-clθ(A) \A)

X is e-θ-T1

}
⇒

⇒ (∀a ∈ A)(∃Va ∈ eθO(X, a))(x /∈ Va)
Corollary 2.2

}
⇒

⇒ (A ⊆
∪

a∈A Va)(x /∈
∪

a∈A Va ∈ eθO(X))
A ∈ geθC(X)

}
⇒ x /∈ e-clθ(A) ⊆

∪
a∈A Va

This contradicts with x ∈ e-clθ(A). ■

Definition 4.20 A topological space X is called e-T2 [3] if for any distinct pair of points
x and y in X, there exist e-open sets U and V in X containing x and y, respectively,
such that U ∩ V = ∅.

Theorem 4.21 For a topological space X, the followings are equivalent:
(a) X is e-θ-T2;
(b) X is e-T2.

Proof. (a)⇒ (b) : Obvious.
(b)⇒ (a) : Let x, y ∈ X and x ̸= y.

(x, y ∈ X)(x ̸= y)
X is e-T2

}
⇒ (∃W ∈ eO(X,x))(∃T ∈ eO(X, y))(W ∩ T = ∅)

⇒ (e-cl(W ) ∈ eR(X,x))(e-cl(T ) ∈ eR(X, y))(e-cl(W ) ∩ e-cl(T ) = ∅)
(U := e-cl(W ))(V := e-cl(T ))

}
⇒

⇒ (U ∈ eθO(X,x))(V ∈ eθO(X, y))(U ∩ V = ∅). ■

Definition 4.22 A function f : X → Y is said to be weak e-irresolute [8] (briefly,
w.e.i.) if for each x ∈ X and each V ∈ eO(Y, f(x)), there exists U ∈ eO(X,x) such that
f [U ] ⊆ e-cl(V ).

Remark 7 [8] A function f : X → Y is weak e-irresolute if and only if f−1[V ] is
e-θ-closed (resp. e-θ-open) in X for every e-θ-closed (resp. e-θ-open) set V in Y.

Theorem 4.23 If f : (X, τ) → (Y, σ) is a weak e-irresolute surjection and A is an
e-θ-D-set in Y, then the inverse image of A is an e-θ-D-set in X.

Proof. Let A ∈ eθD(Y ).
A ∈ eθD(Y )⇒ (∃U, V ∈ eθO(Y ))(U ̸= Y )(A = U \ V )

f is weak e-irresolute surjection

}
⇒

⇒ (f−1[U ], f−1[V ] ∈ eθO(X))(f−1[U ] ̸= f−1[Y ] = X)(f−1[A] = f−1[U ] \ f−1[V ])

⇒ f−1[A] ∈ eθD(X). ■
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Theorem 4.24 If Y is an e-θ-D1 space and f : X → Y is a weak e-irresolute bijection,
then X is e-θ-D1.

Proof. Let x, y ∈ X and x ̸= y.

(x, y ∈ X)(x ̸= y)
f is bijective

}
⇒ (f(x), f(y) ∈ Y )(f(x) ̸= f(y))

Y is e-θ-D1

}
⇒

⇒ (∃U ∈ eθD(Y, f(x)))(∃V ∈ eθD(Y, f(y)))(f(y) /∈ U)(f(x) /∈ V )
Theorem 4.23

}
⇒

⇒ (y /∈ f−1[U ] ∈ eθD(X,x))(x /∈ f−1[V ] ∈ eθD(X, y)). ■

Theorem 4.25 For a topological space X, the followings are equivalent:
(a) X is e-θ-D1;
(b) For each pair of distinct points x, y ∈ X, there exists a weak e-irresolute surjection
f : X → Y, where Y is an e-θ-D1 space such that f(x) ̸= f(y).

Proof. (a)⇒ (b) : Let x, y ∈ X and x ̸= y.
(x, y ∈ X)(x ̸= y)

(Y := X)(f := {(x, x)|x ∈ X})

}
Hypothesis⇒

⇒ (f is w.e.i. surjection)(Y is e-θ-D1)(f(x) ̸= f(y)).

(b)⇒ (a) : Let x, y ∈ X and x ̸= y.
(x, y ∈ X)(x ̸= y)

Hypothesis

}
⇒ (∃f ∈ Y X w.e.i. surjection)(Y is e-θ-D1)(f(x) ̸= f(y))

⇒ (f ∈ Y X w.e.i. sur.)(∃U ∈ eθD(Y, f(x)))(∃V ∈ eθD(Y, f(y)))(f(y) /∈ U)(f(x) /∈ V )
Theorem 4.23

}
⇒

⇒ (y /∈ f−1[U ] ∈ eθD(X,x))(x /∈ f−1[V ] ∈ eθD(X, y)). ■

5. Further properties

Definition 5.1 Let A be a subset of a topological space X. The e-θ-kernel (resp.
b-θ-kernel [11]) of A, denoted by e-kerθ(A) (resp. b-kerθ(A)), is defined to be the set∩
{U |(U ∈ eθO(X))(A ⊆ U)} (resp.

∩
{U |(U ∈ BθO(X))(A ⊆ U)}).

Remark 8 For a subset A of a topological space X, the sets of e-kerθ(A) and b-kerθ(A)
need not be equal to each other as shown by the following example.

Example 5.2 Let X = {a, b, c, d} and τ = {∅, X, {a}, {a, b}, {a, b, c}}. Then
eR(X) = eθO(X) = eO(X) = 2X and BR(X) = BθO(X) = {∅, X}, BO(X) =
{∅, X, {a}, {a, b}, {a, c}, {a, d}, {a, b, c}, {a, b, d}, {a, c, d}}. For the subset A = {a, b},
e-kerθ(A) = A ̸= X = b-kerθ(A).

Definition 5.3 A space X is called slightly e-θ-R0 space (resp. slightly b-θ-R0 space
[11]) if

∩
{e-clθ({x})|x ∈ X} = ∅ (resp.

∩
{b-clθ({x})|x ∈ X} = ∅).

Remark 9 A slightly e-θ-R0 space need not be a slightly b-θ-R0 space as shown by the
following example.

Example 5.4 Let X = {a, b, c, d} and τ = {∅, X, {a}, {a, b}, {a, b, c}}. Since∩
{e-clθ({x})|x ∈ X} =

∩
{e-clθ({a}), e-clθ({b}), e-clθ({c}), e-clθ({d})} = ∅, the space

X is a slightly e-θ-R0 space. On the other hand, since
∩
{b-clθ({x})|x ∈ X} =
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{b-clθ({a}), b-clθ({b}), b-clθ({c}), b-clθ({d})} =

∩
{X} = X ̸= ∅, the space X is not

a slightly b-θ-R0 space.

Theorem 5.5 Let A be a subset of a space X. Then, e-kerθ(A) = {x ∈ X|e-clθ({x}) ∩
A ̸= ∅}.

Proof. Let x /∈ e-kerθ(A).
x /∈ e-kerθ(A)⇒ x /∈

∩
{U |(U ∈ eθO(X))(A ⊆ U)}

⇒ (∃U ∈ eθO(X))(A ⊆ U)(x /∈ U)
⇒ (\U ∈ eθC(X))({x} ⊆ \U ⊆ \A)
⇒ (\U ∈ eθC(X))(e-clθ({x}) ⊆ e-clθ(\U) = \U ⊆ \A)
⇒ e-clθ({x}) ∩A = ∅
⇒ x /∈ {x ∈ X|e-clθ({x}) ∩A = ∅}

Then we have

{x ∈ X|e-clθ({x}) ∩A = ∅} ⊆ e-kerθ(A) . . . (1)

Now, let x /∈ {x ∈ X|e-clθ({x}) ∩A ̸= ∅}.
x /∈ {x ∈ X|e-clθ({x}) ∩A ̸= ∅} ⇒ e-clθ({x}) ∩A = ∅ ⇒ A ⊆ \e-clθ({x})

U := \e-clθ({x})

}
⇒

⇒ (U ∈ eθO(X))(A ⊆ U)(x /∈ U)
⇒ x /∈

∩
{U |(U ∈ eθO(X))(A ⊆ U)} = e-kerθ(A)

Then we have

e-kerθ(A) ⊆ {x ∈ X|e-clθ({x}) ∩A = ∅} . . . (2)

(1), (2)⇒ e-kerθ(A) = {x ∈ X|e-clθ({x}) ∩A = ∅}. ■

Theorem 5.6 Let X be a topological space. Then, X is slightly e-θ-R0 if and only if
e-kerθ({x}) ̸= X for any x ∈ X.

Proof. (⇒) : Suppose that there is a point y in X such that e-kerθ({y}) = X.
e-kerθ({y}) = {x ∈ X|e-clθ({x}) ∩ {y} ̸= ∅} = X ⇒ (∀x ∈ X)(y ∈ e-clθ({x}))
⇒ y ∈

∩
{e-clθ({x})|x ∈ X}

Hypothesis

}
Theorem 5.5⇒ y ∈

∩
{e-clθ({x})|x ∈ X} = ∅

This is a contradiction.

(⇐) : Suppose that X is not slightly e-θ-R0.
X is not slightly e-θ-R0 ⇒

∩
{e-clθ({x})|x ∈ X} ̸= ∅

⇒ (∃y ∈ X)(y ∈
∩
{e-clθ({x})|x ∈ X})

⇒ (∃y ∈ X)(∀x ∈ X)(y ∈ e-clθ({x}))
Theorem 2.8⇒ (∀x ∈ X)(y ∈

∩
{V |({x} ⊆ V )(V ∈ eR(X))})

⇒ (∀x ∈ X)(∀V ∈ eR(X, y))({x} ⊆ V )
⇒ (∀V ∈ eR(X, y))(V = X)
⇒ e-clθ({x}) = X

This is a contradiction. ■

Theorem 5.7 Let X and Y be two topological spaces. If X is slightly e-θ-R0, then the
product X × Y is slightly e-θ-R0.

Proof. Let X be slightly e-θ-R0.∩
{e-clθ({(x, y)})|(x, y) ∈ X × Y } ⊆

∩
{e-clθ({x})× e-clθ({y})|(x, y) ∈ X × Y }

=
∩
{e-clθ({x})|x ∈ X} ×

∩
{e-clθ({y})|y ∈ Y } = ∅. ■
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Definition 5.8 A function f : X → Y is R-continuous [11] (resp. θ-R-e-continuous,
R-e-continuous) if for each x ∈ X and each e-open subset V of Y containing f(x), there
exists an open subset U of X containing x such that cl(f [U ]) ⊆ V (resp. e-clθ(f [U ]) ⊆
V, e-cl(f [U ]) ⊆ V ).

Remark 10 We have the following diagram from Definition 5.8.

θ-R-e-continuous −→ R-e-continuous←− R-continuous

A function f which is R-e-continuous need not be R-continuous as shown by the
following example.

Example 5.9 Let X = {a, b, c, d} and τ = {∅, X, {a}, {c}, {a, c}, {c, d}, {a, c, d}}. Define
the function f : (X, τ)→ (X, τ) by f(x) = c. The function f is R-e-continuous but it is
not R-continuous.

Question 5.10 Is there any R-e-continuous function which is not θ-R-e-continuous?

Definition 5.11 A function f : X → Y is said to be e-open [4] if f [U ] is e-open in Y
for every open set U of X.

Theorem 5.12 Let f : X → Y be a function. If f is R-e-continuous and e-open, then
f is θ-R-e-continuous.

Proof. Let x ∈ X and V ∈ eO(Y, f(x)).

(x ∈ X)(V ∈ eO(Y, f(x)))
f is R-e-continuous

}
⇒ (∃U ∈ O(X,x))(e-cl(f [U ]) ⊆ V )

f is e-open

}
⇒

Lemma 2.10(a)⇒ (∃U ∈ O(X,x))(e-clθ(f [U ]) = e-cl(f [U ]) ⊆ V ). ■

Definition 5.13 The graph G(f) of a function f : X → Y is said to be strongly e-θ-
closed if for each point (x, y) ∈ (X × Y ) \ G(f), there exist subsets U ∈ eO(X,x) and
V ∈ eθO(Y, y) such that (e-cl(U)× V ) ∩G(f) = ∅.

Lemma 5.14 The graph G(f) of f : X → Y is strongly e-θ-closed in X × Y if and only
if for each point (x, y) ∈ (X × Y ) \G(f), there exists U ∈ eO(X,x) and V ∈ eθO(Y, y)
such that f [e-cl(U)] ∩ V = ∅.

Proof. Let (x, y) /∈ G(f).
(x, y) /∈ G(f)

G(f) is strongly e-θ-closed

}
⇒

⇒ (∃U ∈ eO(X,x))(∃V ∈ eθO(Y, y))((e-cl(U)× V ) ∩G(f) = ∅)
⇒ (∃U ∈ eO(X,x))(∃V ∈ eθO(Y, y))(∀x ∈ X)((x, f(x)) /∈ e-cl(U)× V )
⇒ (∃U ∈ eO(X,x))(∃V ∈ eθO(Y, y))(f [e-cl(U)] ∩ V = ∅). ■

Definition 5.15 A space X is called to be e-T1 [3] if for each pair of distinct points in
X, there exist e-open sets U and V containing x and y, respectively, such that y /∈ U
and x /∈ V.

Theorem 5.16 LetX and Y be two topological spaces. If f : X → Y is θ-R-e-continuous
weak e-irresolute and Y is e-T1, then G(f) is strongly e-θ-closed.

Proof. Let (x, y) /∈ G(f).
(x, y) /∈ G(f)⇒ (y, f(x) ∈ Y )(y ̸= f(x))

Y is e-T1

}
⇒
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⇒ (∃V ∈ eO(Y, f(x))(y /∈ V ))
f is θ-R-e-continuous

}
⇒ (∃U ∈ O(X,x))(y /∈ e-clθ(f [U ]))

f is weak e-irresolute

}
⇒

⇒ (U ∈ eO(X,x))(\e-clθ(f [U ]) ∈ eθO(X, y))(e-cl(U)× (\e-clθ(f [U ])) ∩G(f) = ∅). ■

Theorem 5.17 Let f : X → Y be a weak e-irresolute function. Then, f is θ-R-e-
continuous if and only if for each x ∈ X and each e-closed subset F of Y with f(x) /∈ F,
there exists an open subset U of X containing x and an e-θ-open subset V of Y with
F ⊆ V such that f [e-cl(U)] ∩ V = ∅.

Proof. (⇒) : Let x ∈ X, F ∈ eC(Y ) and f(x) /∈ F.
(x ∈ X)(F ∈ eC(Y ))(f(x) /∈ F )⇒ Y \ F ∈ eO(Y, f(x))

f is θ-R-e-continuous

}
⇒

⇒ (∃U ∈ O(X,x))(e-clθ(f [U ]) ⊆ Y \ F )
f is weak e-irresolute

}
⇒

⇒ (U ∈ O(X,x))(f [e-cl(U)] ⊆ e-clθ(f [U ]) ⊆ Y \ F )
V := Y \ e-clθ(f [U ])

}
⇒

⇒ (U ∈ O(X,x))(V ∈ eθO(Y ))(F ⊆ V ⊆ Y \ f [e-cl(U)])
⇒ (U ∈ O(X,x))(V ∈ eθO(Y, F ))(f [e-cl(U ]) ∩ V = ∅.

(⇐) : Let x ∈ X and V ∈ eO(Y, f(x)).
(x ∈ X)(V ∈ eO(Y, f(x)))⇒ f(x) /∈ Y \ V ∈ eC(Y )

Hypothesis

}
⇒

⇒ (∃U ∈ O(X,x))(∃W ∈ eθO(Y, Y \ V ))(f [e-cl(U)] ∩W = ∅)
⇒ (U ∈ O(X,x))(W ∈ eθO(Y, Y \ V ))(f [U ] ⊆ f [e-cl(U)] ⊆ Y \W ⊆ V )
⇒ (U ∈ O(X,x))(e-clθ(f [U ]) ⊆ e-clθ(Y \W ) = Y \W ⊆ V ). ■

Corollary 5.18 Let X and Y be two topological spaces and f : X → Y be a weak
e-irresolute function. Then, f is θ-R-e-continuous if and only if for each x ∈ X and each
e-open subset V of Y containing f(x), there exists an open subset U of X containing x
such that e-clθ(f [e-cl(U)]) ⊆ V.

Proof. (⇒) : Let x ∈ X and V ∈ eO(Y, f(x)).

(x ∈ X)(V ∈ eO(Y, f(x)))
Hypothesis

}
⇒ (∃U ∈ O(X,x))(e-clθ(f [U ]) ⊆ V )

f is weak e-irresolute

}
Theorem 2.7⇒

⇒(∃U ∈ O(X,x))(f [e-cl(U)] ⊆ e-clθ(f [U ]) ⊆ V )
⇒ (U ∈ O(X,x))(e-clθ(f [e-cl(U)]) ⊆ e-clθ(e-clθ(f [U ])) = e-clθ(f [U ]) ⊆ V ).

(⇐) : Let x ∈ X and V ∈ eO(Y, f(x)).
(x ∈ X)(V ∈ eO(Y, f(x)))

Hypothesis

}
⇒

⇒ (∃U ∈ O(X,x))(e-clθ(f [U ]) ⊆ e-clθ(f [e-cl(U)]) ⊆ V ). ■

Definition 5.19 A topological space X is said to be e-R1 (resp. b-R1 [11]) if for all
x, y ∈ X with e-cl({x}) ̸= e-cl({y}) (resp. b-cl({x}) ̸= b-cl({y})), there exist disjoint
e-open (resp. b-open) sets U and V such that e-cl({x}) ⊆ U (resp. b-cl({x}) ⊆ U) and
e-cl({y}) ⊆ V (resp. b-cl({y}) ⊆ V ).

Remark 11 An e-R1 space need not be a b-R1 space as shown by the following example.

Example 5.20 Let X = {a, b, c, d} and τ = {∅, X, {a}, {c}, {a, c}, {c, d}, {a, c, d}}.
Then, the space X is an e-R1 space but it is not b-R1.
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Theorem 5.21 Let X be a topological space. Then, X is e-R1 if and only if e-clθ({x}) =
e-cl({x}) for all x ∈ X.

Proof. (⇒) : Let x ∈ X.
x ∈ X ⇒ e-cl({x}) ⊆ e-clθ({x}) . . . (1)

Now, let y /∈ e-cl({x}).
y /∈ e-cl({x})⇒ e-cl({x}) ̸= e-cl({y})

X is e-R1

}
⇒

⇒ (∃U, V ∈ eO(X))(U ∩ V = ∅)(e-cl({x}) ⊆ U)(e-cl({y}) ⊆ V )

⇒ (U ∈ eO(X,x))(V ∈ eO(X, y))(e-cl({x}) ∩ e-cl({y}) ⊆ e-cl({x}) ∩ V
⊆ e-cl({x}) ∩ e-cl(V )
⊆ e-cl(U) ∩ e-cl(V ) = ∅)

⇒ (V ∈ eO(X, y))({x} ∩ e-cl(V ) ⊆ e-cl({x}) ∩ e-cl(V ) = ∅)
⇒ y /∈ e-clθ({x})
Then we have e-clθ({x}) ⊆ e-cl({x}) . . . (2)
(1), (2)⇒ e-cl({x}) = e-clθ({x}).

(⇐) : Let x, y ∈ X and e-cl({x}) ̸= e-cl({y}).
e-cl({x}) ̸= e-cl({y})⇒ (∃z ∈ X)(z ∈ e-cl({x}))(z /∈ e-cl({y}))

Hypothesis

}
⇒

⇒ (z ∈ e-cl({x}) = e-clθ({x}))(z /∈ e-cl({y}) = e-clθ({y}))
⇒ (∀W ∈ eR(X, z))(W ∩ {x} ̸= ∅)(∃U ∈ eR(X, z))(U ∩ {y} = ∅)
⇒ (U ∈ eR(X, z) ⊆ eO(X, z))({x} ⊆ U)({y} ⊆ \U)

V := \U

}
⇒

⇒ (U, V ∈ eO(X, z))(U ∩ V = ∅)(e-cl({x}) ⊆ U)(e-cl({y}) ⊆ V ). ■

Theorem 5.22 Let X be a topological space. Then, X is e-R1 if and only if for each
e-open set A and each x ∈ A, e-clθ({x}) ⊆ A.

Proof. (⇒) : Let A ∈ eO(X,x) and y /∈ A.
y /∈ A ∈ eO(X,x)

X is e-R1

}
⇒ x /∈ e-clθ({y}) = e-cl({y}) ⊆ X \A

⇒ (∃V ∈ eO(X,x))(e-cl(V ) ∩ {y} = ∅)
U := \e-cl(V )

}
⇒ (U ∈ eO(X, y))(e-cl(U) ∩ {x} = ∅)

⇒ y /∈ e-clθ({x}).

(⇐) : Let x, y ∈ X and y ∈ e-clθ({x}) \ e-cl({x}).
y ∈ e-clθ({x}) \ e-cl({x})⇒ (y ∈ e-clθ({x}))(y /∈ e-cl({x}))
⇒ (y ∈ e-clθ({x}))(∃A ∈ eO(X, y))(A ∩ {x} = ∅)

Hypothesis

}
⇒

⇒ (y ∈ e-clθ({x}))(e-clθ({y}) ∩ {x} = ∅)
⇒ (y ∈ e-clθ({x})(x /∈ e-clθ({y}))
Theorem 4.17⇒ (y ∈ e-clθ({x}))(y /∈ e-clθ({x})).
This is a contradiction. ■

Theorem 5.23 Let X and Y be two topological spaces. If f : X → Y is a
θ-R-e-continuous surjection, then Y is an e-R1 space.

Proof. Let V ∈ eO(Y, y).

V ∈ eO(Y, y)
f is surjective

}
⇒ (∃x ∈ X)(y = f(x))(V ∈ eO(Y, f(x)))

f is θ-R-e-continuous

}
⇒
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⇒ (∃U ∈ O(X,x))(e-clθ({y}) ⊆ e-clθ(f [U ]) ⊆ V ). ■

Now, we discuss some fundamental properties of θ-R-e-continuous functions related to
composition and restriction.

Theorem 5.24 Let f : X → Y and g : Y → Z be two functions. If f is continuous and
g is θ-R-e-continuous, then g ◦ f : X → Z is θ-R-e-continuous.

Proof. Let x ∈ X and W ∈ eO(Z, g(f(x))).

W ∈ eO(Z, g(f(x)))
g is θ-R-e-continuous

}
⇒ (∃V ∈ O(Y, f(x))(e-clθ(g[V ]) ⊆W )

f is continuous

}
⇒

⇒ (∃U ∈ O(X,x))(e-clθ(g(f [U ])) ⊆ e-clθ(g[V ]) ⊆W ). ■

Theorem 5.25 Let f : X → Y and g : Y → Z be two functions. If g ◦ f is
θ-R-e-continuous and f is an open surjection, then g is θ-R-e-continuous.

Proof. Let y ∈ Y and W ∈ eO(Z, g(y)).

(y ∈ Y )(W ∈ eO(Z, g(y)))
f is surjective

}
⇒ (∃x ∈ X)(y = f(x))(W ∈ eO(Z, g(f(x))))

g ◦ f is θ-R-e-continuous

}
⇒

⇒ (∃U ∈ O(X,x))(e-clθ(g(f [U ])) ⊆W )
f is open

}
⇒

⇒ (f [U ] ∈ O(Y, y))(e-clθ(g[f [U ]]) ⊆W )
V := f [U ]

}
⇒ (V ∈ O(Y, y))(e-clθ(g[V ]) ⊆W ). ■

Theorem 5.26 Let f : X → Y be a function and A ⊆ X. If f is θ-R-e-continuous, then
f |A : A→ Y is θ-R-e-continuous.

Proof. Let x ∈ A and V ∈ eO(Y, f(x)).

(x ∈ A)(V ∈ eO(Y, f(x)))
A ⊆ X

}
⇒ (x ∈ X)(V ∈ eO(Y, f(x)))

f is θ-R-e-continuous

}
⇒

⇒ (∃W ∈ O(X,x))(e-clθ(f [W ]) ⊆ V )
U := W ∩A

}
⇒

⇒ (W ∈ O(A, x))(e-clθ(f |A[U ]) = e-clθ(f [W ∩A]) ⊆ e-clθ(f [W ]) ⊆ V ). ■

6. Conclusion

One of the most studied objects of general topology is undoubtedly open set types.
Two of them are the notions of b-open and e-open sets which are independent of each
other. Similarities and differences between these notions in the literature are examined
by several authors. In this paper, we study further properties of the notion of e-θ-open
set which is stronger than the notion of e-open set. Since the notions of b-open and e-
open sets are the same notions in regular topological spaces, nearly all results obtained
in the scope of this present paper coincide with the results obtained in the article [11].
We believe that this study will help researchers to upgrade and support further studies
related to some types of open sets. Furthermore, this work may be even more useful to
enrich the class of continuous functions.
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