Journal of Linear and Topological Algebra Vol. 12, No. 01, 2023, 49-55 DOR: 20.1001.1.22520201.2023.12.01.4.2 DOI: 10.30495/JLTA.2023.1981795.1545

Controlled *pg*-frames in Hilbert spaces

T. L. Shateri^a

^aDepartment of Mathematics and Computer Sciences, Hakim Sabzevari University P. O. Box 397, Sabzevar, Iran.

Received 6 February 2023; Revised 28 March 2023; Accepted 30 March 2023.

Communicated by Mohammad Sadegh Asgari

Abstract. In this paper, for extending the concepts of p-frame and controlled frame for Hilbert spaces, we will introduce the concept of controlled pg-frames in Hilbert spaces. Then, we present characterizations of controlled pg-frames and some results of frames in the view of controlled pg-frames.

Keywords: Controlled frame, pg-frame, Hilbert space.

2010 AMS Subject Classification: 42C15, 06D22.

1. Introduction and preliminaries

Frames as a generalization of the bases in Hilbert spaces were first introduced by Duffin and Schaeffer [9] to study some problems in the nonharmonic Fourier series in 1952. Various generalizations of frames for Hilbert spaces have been proposed recently. For example, frames of subspaces, wavelet frames, g-frames, weighted and controlled frames were developed, see [3, 8, 10, 12, 14, 15]. Today, frame theory has an abundance of applications in pure mathematics, applied mathematics, engineering, medicine and even quantum communication ([5–7]). Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator on abstract Hilbert spaces ([4]).

In the present paper, by using some ideas from [1], we will introduce controlled pg-frames in a Hilbert space \mathcal{H} that allows every element $x \in \mathcal{H}$ to be represented by

Print ISSN: 2252-0201 Online ISSN: 2345-5934 © 2023 IAUCTB. http://jlta.ctb.iau.ir

E-mail address: t.shateri@hsu.ac.ir (T. L. Shateri).

an unconditionally convergent series $\sum_{j\in J} (C'C)^{\frac{1}{2}} \Lambda_j^* y_j$, where $\{\Lambda_j\}_{j\in J}$ is a *pg*-frame, $\{y_j\}_{j\in J} \in \left(\sum_{j\in J} \oplus \mathcal{H}_j\right)_{l_q}$ and $\frac{1}{p} + \frac{1}{q} = 1$.

Let $L(\mathcal{H}_1, \mathcal{H}_2)$ be the family of all bounded linear operators from \mathcal{H}_1 to \mathcal{H}_2 , where \mathcal{H}_1 and \mathcal{H}_2 are two Hilbert spaces. As a special case, $L(\mathcal{H})$ is a collection of all bounded linear operators on \mathcal{H} . The operator Λ_j is in $L(\mathcal{H}, \mathcal{H}_j)$ for any $j \in J$. $GL(\mathcal{H})$ respects the set of all bounded linear operators which have bounded inverse. If $S, T \in GL(\mathcal{H})$, then T^*, T^{-1} and ST are also in $GL(\mathcal{H})$. Let $GL^+(\mathcal{H})$ be the set of all positive operators in $GL(\mathcal{H})$. A bounded operator $T : \mathcal{H} \to \mathcal{H}$ is positive if $\langle Tf, f \rangle > 0$ for all $f \ge 0$. On complex Hilbert spaces, every bounded positive operator is self-adjoint, and any two bounded positive operators can commute with each other. In fact, if S, T are two positive operators On complex Hilbert space \mathcal{H} , then [13, Theorem 2.3.5] implies that S, T are self-adjoint and so we have $\langle STx, x \rangle = \langle Tx, Sx \rangle = \langle TSx, x \rangle$. Hence, ST = TS.

Throughout this paper, J is a subset of \mathbb{N} , \mathcal{H} is a separable Hilbert space and $\{\mathcal{H}_j\}_{j\in J}$ is a sequence of separable Hilbert spaces. We also need the following lemma in the next section.

Lemma 1.1 [11] If $T : \mathcal{X} \to \mathcal{Y}$ is a bounded operator from a Banach space \mathcal{X} into a Banach space \mathcal{Y} , then its adjoint $T^* : \mathcal{Y}^* \to \mathcal{X}^*$ is surjective if and only if T has a bounded inverse on R_T .

2. Main results

In this section, we introduce controlled pg-frames in Hilbert spaces. We discuss characterizations of controlled pg-frames and give some results of frames in the view of controlled pg-frames.

Definition 2.1 Let $\Lambda = {\Lambda_j}_{j \in J}$ be a sequence in $B(\mathcal{H}, \mathcal{H}_j)$ and $C, C' \in GL^+(\mathcal{H})$. We call ${\Lambda_j}_{j \in J}$ a (C, C')-controlled *pg*-frame for \mathcal{H} with respect to ${\mathcal{H}_j}_{j \in J}$ if there exist A, B > 0 such that

$$A\|x\| \leqslant \left(\sum_{j\in J} |\langle \Lambda_j Cx, \Lambda_j C'x \rangle|^p\right)^{\frac{1}{p}} \leqslant B\|x\|, \quad (x \in \mathcal{H}).$$

$$\tag{1}$$

A and B are called the (C, C')-controlled pg-frames bounds. If C' = I, then we call Λ a C-controlled pg-frame for \mathcal{H} with respect to $\{\mathcal{H}_i\}_{i \in J}$.

The following proposition shows that the image of a controlled pg-frame under a bounded operator is also a controlled pg-frame.

Proposition 2.2 Let $\Lambda = {\Lambda_j}_{j \in J}$ be a (C, C')-controlled *pg*-frame for \mathcal{H} with respect to ${\mathcal{H}_j}_{j \in J}$. Let *S* be a bounded invertible operator such that commutes with *C* and *C'*. If $\Gamma_j = \Lambda_j S$, then ${\Gamma_j}_{j \in J}$ is a (C, C')-controlled *pg*-frame for \mathcal{H} .

Proof. Let $\Lambda = {\Lambda_j}_{j \in J}$ be a (C, C')-controlled *pg*-frame for \mathcal{H} and S be a bounded invertible operator such that commutes with C and C'. Then, for each $x \in \mathcal{H}$, we have

$$A\|Sx\| \leqslant \left(\sum_{j\in J} |\langle \Lambda_j CSx, \Lambda_j C'Sx \rangle|^p\right)^{\frac{1}{p}} \leqslant B\|Sx\|.$$

Since S commutes with C and C', we have

$$A\|Sx\| \leqslant \left(\sum_{j\in J} |\langle \Gamma_j Cx, \Gamma_j C'x\rangle|^p\right)^{\frac{1}{p}} = \left(\sum_{j\in J} |\langle \Lambda_j SCx, \Lambda_j SC'x\rangle|^p\right)^{\frac{1}{p}} \leqslant B\|Sx\|.$$

Moreover, S is invertible, so

$$||x||^2 = \langle S^{-1}Sx, S^{-1}Sx \rangle \leq ||S^{-1}||^2 ||Sx||^2$$

and we get

$$A\|S^{-1}\|^{-1}\|x\| \leqslant A\|Sx\| \leqslant \left(\sum_{j\in J} |\langle \Gamma_j Cx, \Gamma_j C'x\rangle|^p\right)^{\frac{1}{p}} \leqslant B\|Sx\| \leqslant B\|S\|\|x\|.$$

Therefore, $\{\Gamma_j\}_{j\in J}$ is a (C, C')-controlled *pg*-frame for \mathcal{H} with *pg*-frame bounds $A\|S^{-1}\|^{-1}$ and $B\|S\|$.

If the operator S in Proposition 2.2 is an isometry, then we get the following corollary.

Corollary 2.3 Let $\Lambda = {\Lambda_j}_{j \in J}$ be a (C, C')-controlled *pg*-frame for \mathcal{H} with respect to ${\mathcal{H}_j}_{j \in J}$ and S be an isometry such that commutes with C and C'. Then ${\Lambda_j S}_{j \in J}$ is a (C, C')-controlled *pg*-frame for \mathcal{H} with the same *pg*-frame bounds.

Proposition 2.4 Let $\Lambda = {\Lambda_j}_{j \in J}$ be a (C, C')-controlled *pg*-frame for \mathcal{H} with respect to ${\mathcal{H}_j}_{j \in J}$ and *S* be an operator such that commutes with *C* and *C'*. Then ${\Gamma_j}_{j \in J} = {\Lambda_j S}_{j \in J}$ is a (C, C')-controlled *pg*-frame for \mathcal{H} if and only if *S* is bounded below.

Proof. Let $\{\Gamma_j\}_{j\in J} = \{\Lambda_j S\}_{j\in J}$ be a (C, C')-controlled *pg*-frame for \mathcal{H} with *pg*-frame bounds M, N; that is, for each $f \in \mathcal{H}$, we have

$$M\|x\| \leqslant \left(\sum_{j\in J} |\langle \Gamma_j Cx, \Gamma_j C'x\rangle|^p\right)^{\frac{1}{p}} = \left(\sum_{j\in J} |\langle \Lambda_j SCx, \Lambda_j SC'x\rangle|^p\right)^{\frac{1}{p}} \leqslant N\|x\|.$$

Assume that A, B are pg-frame bounds of $\Lambda = {\Lambda_{\omega}}_{\omega \in \Omega}$. Since

$$A\|Sx\| \leqslant \left(\sum_{j\in J} |\langle \Lambda_j CSx, \Lambda_j C'Sx\rangle|^p\right)^{\frac{1}{p}} \leqslant B\|Sx\|,$$

we have $M||x|| \leq B||Sx||$. Therefore, $||Sx|| \geq \frac{M}{B}||x||$ and hence, S is bounded below. Conversely, suppose that there exists $\delta > 0$ such that $||Sx|| \geq \delta ||x||$. Since

$$A\delta \|x\| \leqslant A \|Sx\| \leqslant \Big(\sum_{j \in J} |\langle \Lambda_j SCx, \Lambda_j SC'x \rangle|^p \Big)^{\frac{1}{p}} \leqslant B \|Sx\| \leqslant B \|S\| \|x\|,$$

 $\{\Gamma_j\}_{j\in J} = \{\Lambda_j S\}_{j\in J}$ is a *pg*-frame with bounds $A\delta$ and B||S||.

Definition 2.5 Let $\{\mathcal{H}_j\}_{j\in J}$ be a sequence of Hilbert spaces and p > 1. Consider

$$\Big(\sum_{j\in J}\oplus\mathcal{H}_j\Big)_{l_p}=\Big\{\{x_j\}_{j\in J}: x_j\in\mathcal{H}_j, \Big(\sum_{j\in J}|\langle x_j, x_j\rangle|^p\Big)^{\frac{1}{p}}<\infty\Big\}.$$

Then $\left(\sum_{j\in J} \oplus \mathcal{H}_j\right)_{l_p}$ is a Hilbert space with the inner product and the norm given by

$$\langle \{x_j\}, \{y_j\}\rangle = \sum_{j \in J} \langle x_j, y_j \rangle_{\mathcal{H}_j} \quad , \quad \|\{x_j\}_{j \in J}\|_p = \left(\sum_{j \in J} |\langle x_j, x_j \rangle|^p\right)^{\frac{1}{p}},$$

respectively.

Let $1 < p, q < \infty$ be conjugate exponents, i.e. $\frac{1}{p} + \frac{1}{q} = 1$. By [1, Lemma 3.6] and the Riesz representation theorem for Hilbert spaces, we have the following lemma.

Lemma 2.6 [2] Let $1 < p, q < \infty$ be conjugate exponents. Then

$$\left(\sum_{j\in J}\oplus\mathcal{H}_j\right)_{l_p}^*=\left(\sum_{j\in J}\oplus\mathcal{H}_j\right)_{l_q}.$$

Definition 2.7 Let $\Lambda = {\Lambda_j}_{j \in J}$ be a (C, C')-controlled *pg*-frame. We define the bounded linear operator $T_{CC'}$ by

$$T_{CC'}: \left(\sum_{j\in J} \oplus \mathcal{H}_j\right)_{l_q} \to \mathcal{H}, \qquad T_{CC'}\left(\{y_j\}_{j\in J}\right) = \sum_{j\in J} (C'C)^{\frac{1}{2}} \Lambda_j^* y_j,$$

and the operator

$$T^*_{CC'}: \ \mathcal{H} \to \left(\sum_{j \in J} \oplus \mathcal{H}_j\right)_{l_p}, \qquad T^*_{CC'}(x) = \{\Lambda_j(C'C)^{\frac{1}{2}}x\}_{j \in J}.$$

Based on the above linear operators, we introduce the following linear operator $S_{CC'}$: $\mathcal{H} \to \mathcal{H}$ by

$$S_{CC'}x = T_{CC'}T^*_{CC'}x = \sum_{j\in J} C'\Lambda^*_j\Lambda_j Cx, \quad (x\in\mathcal{H}).$$

The operators $T_{CC'}$, $T^*_{CC'}$ and $S_{CC'}$ are called the synthesis operator, analysis operator and frame operator of $\{\Lambda_{\omega}\}_{\omega\in\Omega}$.

Now, we characterize the pg-Bessel sequence and the pg-frame by the operator $T_{CC'}$.

Proposition 2.8 Let $C, C' \in GL(\mathcal{H})$. $\{\Lambda_j\}_{j \in J}$ is a (C, C')-controlled *pg*-Bessel sequence for \mathcal{H} with respect to $\{\mathcal{H}_j\}_{j \in J}$ if and only if the operator $T_{CC'}$ is well-defined and bounded operator.

Proof. Assume that $\{\Lambda_j\}_{j\in J}$ is a (C, C')-controlled *pg*-Bessel sequence with bound *B*. We show that for each the series $\{y_j\}_{j\in J}$ in $\left(\sum_{j\in J}\oplus\mathcal{H}_j\right)_{l_n}$, the series $\{\Lambda_j(C'C)^{\frac{1}{2}}x\}_{j\in J}$ is convergent unconditionally. For finite subsets J_1, J_2 of J that $J_2 \nsubseteq J_1$, we have

$$\begin{split} \| \sum_{j \in J_1 \smallsetminus J_2} y_j \Lambda_j (C'C)^{\frac{1}{2}} \| &= \sup_{\|x\|=1} \| \sum_{j \in J_1 \smallsetminus J_2} y_j \Lambda_j (C'C)^{\frac{1}{2}} x \| \\ &\leq \sup_{\|x\|=1} \sum_{j \in J_1 \smallsetminus J_2} \|y_j\| \|\Lambda_j (C'C)^{\frac{1}{2}} x \| \\ &\leq \Big(\sup_{\|x\|=1} \sum_{j \in J_1 \smallsetminus J_2} \|y_j\|^q \Big)^{\frac{1}{q}} \sup_{\|x\|=1} \Big(\sum_{j \in J_1 \smallsetminus J_2} \|\Lambda_j (C'C)^{\frac{1}{2}} x \|^p \Big)^{\frac{1}{p}} \\ &\leq B \Big(\sup_{\|x\|=1} \sum_{j \in J_1 \smallsetminus J_2} \|y_j\|^q \Big)^{\frac{1}{q}}. \end{split}$$

Hence, $\{\Lambda_j(C'C)^{\frac{1}{2}}x\}_{j\in J}$ is unconditionally convergent. By the same argument,

$$\|\sum_{j\in J} y_j \Lambda_j (C'C)^{\frac{1}{2}} \| \leqslant B \Big(\sup_{\|x\|=1} \sum_{j\in J_1 \setminus J_2} \|y_j\|^q \Big)^{\frac{1}{q}}.$$

Therefore,

$$||T_{CC'}\{y_j\}_{j\in J}|| \leq B\Big(\sup_{||x||=1}\sum_{j\in J_1\setminus J_2} ||y_j||^q\Big)^{\frac{1}{q}} = B||\{y_j\}_{j\in J}||_q.$$

This implies that $T_{CC'}$ is bounded and $||T_{CC'}|| \leq B$.

Conversely, assume that $T_{CC'}$ is well defined and bounded. For $x \in \mathcal{H}$, define

$$F_x: \left(\sum_{j \in J} \oplus \mathcal{H}_j\right)_{l_q} \to \mathbb{C}$$

$$F_x(\{y_j\}) = \langle T_{CC'}\{y_j\}, x \rangle = \sum_{j \in J} \langle (C'C)^{\frac{1}{2}} \Lambda_j^* y_j, x \rangle.$$

Then $||F_x\} \leq ||T_{CC'}^*||| \{y_j\} ||_q ||x||$. Therefore, $F_x \in \left(\sum_{j \in J} \oplus \mathcal{H}_j\right)_{l_q}^*$ and $(CC')^{\frac{1}{2}} \Lambda_j x \in \left(\sum_{j \in J} \oplus \mathcal{H}_j\right)_{l_p}$. By the Hahn-Banach theorem, there exists $\{y_j\} \in \left(\sum_{j \in J} \oplus \mathcal{H}_j\right)_{l_q}$ such that $||(CC')^{\frac{1}{2}} \Lambda_j x||_p = |F_x|$. Hence,

$$\left(\sum_{j\in J} |\langle \Lambda_j Cx, \Lambda_j C'x \rangle|^p \right)^{\frac{1}{p}} = \|(CC')^{\frac{1}{2}}\Lambda_j x\|_p = \|F_x\|$$
$$\leqslant \sup_{\|\{y_j\}\|_q \leq 1} |\langle T^*_{CC'}\{y_j\}, x \rangle|$$
$$\leqslant \|T_{CC'}\|\|x\|.$$

This completes the proof.

Lemma 2.9 Let $\{\Lambda_j\}_{j\in J}$ be a (C, C')-controlled *pg*-frame for \mathcal{H} with respect to $\{\mathcal{H}_j\}_{j\in J}$

and $C, C' \in GL^+(\mathcal{H})$ such that each of their commutes with $\Lambda_j^* \Lambda_j$. Then, the operator $T^*_{CC'}$ has closed range.

Proof. If $\{\Lambda_j\}_{j\in J}$ is a (C, C')-controlled *pg*-frame, then there exist A, B > 0 such that

$$A\|x\| \leqslant \left(\sum_{j\in J} |\langle \Lambda_j Cx, \Lambda_j C'x \rangle|^p\right)^{\frac{1}{p}} \leqslant B\|x\| , \quad (x \in \mathcal{H}).$$

Moreover,

$$\begin{aligned} \|T_{CC'}^*(x)\|_p &= \left(\sum_{j\in J} |\langle \Lambda_j(C'C)^{\frac{1}{2}}x, \Lambda_j(C'C)^{\frac{1}{2}}x\rangle|^p\right)^{\frac{1}{p}} \\ &= \left(\sum_{j\in J} |\langle (C'C)^{\frac{1}{2}}\Lambda_j^*\Lambda_j(C'C)^{\frac{1}{2}}x, x\rangle|^p\right)^{\frac{1}{p}} \\ &= \left(\sum_{j\in J} |\langle \Lambda_jCx, \Lambda_jC'x\rangle|^p\right)^{\frac{1}{p}}. \end{aligned}$$

Hence, $A||x|| \leq ||T^*_{CC'}(x)||_p \leq B||x||$ for $x \in \mathcal{H}$. If $T^*_{CC'}(x) = 0$, then ||x|| = 0 and so x = 0. This implies that $T^*_{CC'}$ is one-to-one and $\mathcal{H} \simeq R_{T^*_{CC'}}$. Therefore, $T^*_{CC'}$ has closed range.

In the following, we show that the frame operator is bounded.

Proposition 2.10 Let $C, C' \in GL^+(\mathcal{H})$ and each of their commutes with $\Lambda_j^* \Lambda_j$. If $\{\Lambda_j\}_{j \in J}$ is a (C, C')-controlled *pg*-frame for \mathcal{H} , then $S_{CC'}$ is bounded.

Proof. Let $\{\Lambda_j\}_{j\in J}$ be a (C, C')-controlled *pg*-frame for \mathcal{H} . We have

$$\begin{split} |\langle S_{CC'}x,x\rangle^p| &= |\langle \sum_{j\in J} C'\Lambda_j^*\Lambda_j Cx,x\rangle^p| \\ &\leqslant |\sum_{j\in J} \langle \Lambda_j Cx,\Lambda_j C'x\rangle|^p \\ &= |\langle C'S_{CC'}Cx,x\rangle|^p \\ &= |\langle S_{CC'}C'Cx,x\rangle|^p \\ &= |\langle \sum_{j\in J} \Lambda_j^*\Lambda_j C'Cx,x\rangle|^p \\ &= |\langle \sum_{j\in J} \Lambda_j Cx,\Lambda_j C'x\rangle|^p \\ &\leqslant B||x||. \end{split}$$

Therefore, $S_{CC'}$ is bounded.

Theorem 2.11 Let $C, C' \in GL^+(\mathcal{H})$ and each of their commutes with $\Lambda_j^* \Lambda_j$. Then $\{\Lambda_j\}_{j \in J}$ is a (C, C')-controlled *pg*-frame for \mathcal{H} with respect to $\{\mathcal{H}_j\}_{j \in J}$ if and only if the operator $T_{CC'}$ is a surjective bounded operator.

Proof. If $\{\Lambda_j\}_{j\in J}$ is a (C, C')-controlled *pg*-frame, by Proposition 2.8, $T_{CC'}$ is a well-defined and bounded. The proof of Lemma 2.9 shows that $T^*_{CC'}$ is injective, so by Lemma 1.1, $T_{CC'}$ is onto.

Conversely, suppose that $T_{CC'}$ is bounded and onto. Then, by Proposition 2.8, $\{\Lambda_j\}_{j\in J}$ is a *pg*-Bessel sequence. Since $T_{CC'}$ is onto, Lemma 1.1 implies that $T^*_{CC'}$ has a bounded inverse. Hence, there exists A > 0 such that $||T^*_{CC'}x|| \ge A||x||$ for all $x \in H$. In other words, $\{\Lambda_j\}_{j\in J}$ satisfies the lower *pg*-frame condition.

Finally, we get the following characterization for elements of a Hilbert space.

Corollary 2.12 Let $C, C' \in GL^+(\mathcal{H})$ and each of their commutes with $\Lambda_j^* \Lambda_j$. If $\{\Lambda_j\}_{j \in J}$ is a (C, C')-controlled *pg*-frame for \mathcal{H} with respect to $\{\mathcal{H}_j\}_{j \in J}$, then for each $x \in \mathcal{H}$, there exists a $\{y_j\}_{j \in J} \in \left(\sum_{j \in J} \oplus \mathcal{H}_j\right)_{l_q}$ such that $x = \sum_{j \in J} (C'C)^{\frac{1}{2}} \Lambda_j^* y_j$.

3. Conclusion

In this paper, we have proposed the concept of controlled pg-frames in Hilbert spaces, which is an extension of p-frames and controlled frames. We have shown the image of a controlled pg-frame under a bounded operator is also a controlled pg-frame. Then, we have characterized the pg-Bessel sequence and the pg-frame by the synthesis operator, and we have proved the frame operator is bounded. Finally, We have given a characterization of elements of a Hilbert space as a series.

References

- M. R. Abdollahpour, M. H. Faroughi, A. Rahimi, pg-frames in Banach spaces, Methods of Func. Anal. Topol. 13 (3) (2007), 201-210.
- [2] C. D. Aliprantis, K. C. Border, Infinite Dimensional Analysis, A Hitchhikers Guide, Springer-Verlag, New York-Berlin, 1999.
- [3] M. S. Asgari, G. Kavian, Expansion of Bessel and g-Bessel sequences to dual frames and dual g-frames, J. Linear. Topological. Algebra. 2 (1) (2013), 51-57.
- [4] P. Balazs, J. P. Antoine, A. Grybos, Wighted and controlled frames, Int. J. Wavelets, Multiresolut. Inf. Process. 8 (1) (2010), 109-132.
- [5] B. G. Bodmann, V. I. Paulsenm, Frame paths and error bounds for sigma-delta quantization, Appl. Comput. Harmon. Anal. 22 (2007), 176-197.
- [6] P. G. Casazza, Custom building finite frames wavelets, frames and operator theory, Contemp. Math. 345 (2004), 61-86.
 [7] D. G. Casazza, Custom building finite frames wavelets, frames and operator theory, Contemp. Math. 345 (2004), 61-86.
- [7] P. G. Casazza, Modern tools for WeylHeisenberg (Gabor) frame theory, Adv. Imaging. Electron. Phys. 115 (2001), 1-127.
- [8] P. G. Casazza, G. Kutyniok, Frames of subspaces, wavelets, frames and operator theory, Contemp. Math. 345 (2004), 87-113.
- [9] R. J. Duffin, A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
 [10] D. Hua, Y. Huang, Controlled K-g-frames in Hilbert spaces, Results. Math. 72 (3) (2017), 1227-1238.
- [10] D. Hua, T. Huang, Controlled K-g-frames in Hilbert spaces, Results. Ma[11] H. Heuser, Functional Analysis, John Wiley, New York, 1982.
- [12] M. Mirzaee Azandaryani, A. Khosravi, Duals and approximate duals of g-frames in Hilbert spaces, J. Linear. Topological. Algebra. 4 (4) (2015), 259-265.
- [13] G. J. Murphy, C^{*}-algebras and operator theory, Academic Press, London, 1990.
- [14] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (1) (2006), 437-452.
- [15] X. Xiao, Y. Zhu, L. Gavruta, Some properties of K-frames in Hilbert spaces, Results Math. 63 (3-4) (2013), 1243-1255.