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Abstract. In this work, we first introduce the concept of weighted sequence space
my (A%, %, q). Then, we construct a Hausdorfl measure of noncompactness on this sequence
space. Furthermore, by employing this measure of noncompactness we discuss the solvability
of an infinite system of nonlinear third-order differential equations with initial conditions in
the weighted sequence space me, (Ag, ¥, q). Eventually, we demonstrate an example to show
the usefulness of the obtained result.
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1. Introduction and preliminaries

Third-order differential equations occur in some fields of physics like electromagnetic
waves, the deflection of curved beams with varying cross or constant sections, gravity
driven flows and three-layer beams [I3]. Therefore, third-order differential equations with
different initial conditions have been attracted a lot of attention during the recent several
decades (see [B, 810, [, [8] and the references therein). On the other hand, we encounter
many problems in the mechanics, the branching processes and neural nets, and so on
[@, 23]. These problems can be modelled and described using infinite systems of ordinary
differential equations (IODEs). The measure of noncompactness (MNC), which was first
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introduced by Kuratowski [I6], is a powerful tool for studying IODEs. In recent times,
the MNC has been effectively applied in sequence spaces for some classes of differential
equations [8, 05, 20, P2, 4]. Ghanenia et al. [I1] studied the existing results for an infinite
system of second-order BVP in the space m(Aj, ¢, ¢). Motivated by the above papers, in
this work, we first introduce the concept of weighted sequence space m, (A, 1, q). Then,
we construct a Hausdorff measure of noncompactness in this sequence space. Employing
this Hausdorff MNC, we study the existence of solutions of the infinite system of third-
order differential equations with initial conditions (IDE for short)

=Z"(1) = ai(1) fi(1, Z(7),W(7)), 0 <7 <1
=W(7) = bi(1)gi(1, Z(7 ) Wi(r)), 0<7<1
Z;(0) = z{(0) = 0, Z{(1) = aZ{(C),
Wi(0) = W/(0) = 0, W/(1) = aW!(C), i =1,2,...

in the weighted sequence space m, (A, ¥, q), where f;,g; € C([0,1] x R¥ x R, R, ),
1=1,2,..,0< (<, 1l <ac< %, ,b € C([0,1],R4) such that they are different
from zero on any subinterval of [0, 1]. Eventually, we present an example illustrating the
main result. Here, we preliminarily collect some definitions and auxiliary facts applied
throughout this paper.

Suppose that (A, || - ||) is a real Banach space containing zero element. We mean by
D(z,7) the closed ball centered at z with radius 7. For () # U C A, the symbols U and
Convl{ denote the closure and closed convex hull of U, respectively. We denote by 9is
the family of all non-empty, bounded subsets of A and by 91, its subfamily consisting of
non-empty relatively compact subsets of A.

Definition 1.1 [l] The function g : My — Ry = [0,400) is called a measure of
noncompactness (MNC) in A if for any U, Vi, Vs € My, the following conditions hold:

() 0 # ker i = {U € My : fUh) = 0} C Ny,
(i) If Vi C Va, then (V1) < fi(V2).
(i73) pU) = p(Convld) = a(U).
(iv) For each £ € [0,1], (V1 + (1 — 0)V2) < Lp(OV1) + (1 — £)a(V2).
(v) If for each natural number n U, is a closed set in My, Upt1 C Uy, and
nh_}n(}o i(Uy) =0, then Uy, = Dlun is non-empty.

In the sequel, My is the family of bounded subsets of the metric space (Y, d).

Definition 1.2 [d] Suppose that (Y, d) is a metric space. Also, suppose that P € My
The Kuratowski MNC of P, which is denoted by a(P), is defined by

a(P) = 1nf{5>0 PCUK“K cY,diam(K;) <e (i = 1,...,n);n€N},
=1

where diam(K;) = sup{d(s,v) : s,v € K;}.

The Hausdorff MNC (ball MNC) of the bounded set P, which is denoted by S(P), is
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defined by

B(P):inf{6>0:73c UD(zi,ri),ziEY,ri<5 (t=1,...,n); nEN}.

i=1

Here, we quote the following result contained in [4].
Lemma 1.3 Let (Y, d) be a metric space and P, Py, Py € My . Then

(1) B(P) =0« P is totally bounded,
(it) P1 C P2 = B(P1) < B(P2),
(112) B(P) = B(P),
() B(P1UPz) =max{B(P1),B(P2)}.

The notion of Meir—Keeler contractive mapping was first introduced by Meir and
Keeler [T9]. They studied some fixed point theorems using such mappings. After that
Aghajani et al. [2] generalized this notion via MNC.

Definition 1.4 [?] Suppose that A is a Banach space and () # § C A. Also, suppose
that [ is an arbitrary MNC on A. An operator S : § — § is said to be a Meir—Keeler
condensing operator if for each ¢ > 0, 6 > 0 exists such that ¢ < a(U) < € + § implies
a(S(U)) < e for each bounded subset U of §.

Theorem 1.5 [?] Assume that ® is a non-empty closed, bounded and convex subset
of a Banach space A, i is a MNC in A and S : ® — © is a continuous Meir—Keeler
condensing operator. Then S has fixed point and the set of fixed points of S is compact.

Suppose that K = [0, s] is a closed bounded interval, and A is a Banach space. Con-
sider the Banach space C(K,A) with the norm ||z|c(x,a) := sup{[|z(p)|| : p € K, z €
C(K,N)}.

Proposition 1.6 [4] Suppose that 2 C C(K,A) is equicontinuous and bounded. Then
(€2(.)) is continuous on K and

Q) = sup i Qp)), i /0 " Qo)) < /0 " 1(9(0))de.

peEK

We terminate this section with a remark concerning the construction of a MNC in a
product space.

Remark 1 [3] Suppose that i is a MNC on a Banach space A. Then, u(U) = p(ly) +
w(Us) is a MNC in the product space A x A where Uy,Us denote the natural projections
of U.

2. Weighted Sequence space m, (A3, v, q)

Suppose that & denote the set of real sequences and ¢y is the set of null sequences

z = (z) with complex terms, normed by ||z|lcc = sup|zx|. Let 1 < ¢ < co. By a weight
keN
we mean a positive, measurable, and locally g-summable function on the locally compact

group Z. Assume that § is the family of finite subsets of different natural numbers. For
each element ¥ of §, we consider the sequence c¢(d) = (¢, (1)), where the terms of the
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sequence are given by c,(J) = 1 if n € ¥ and ¢,(¥) = 0, otherwise. Moreover, take

So =19 €T : 200 calV) < o} and
U={¢=(p) €6: 11 >0, Ay > OandA(%)go(kzl,Z...)},

when Aty = ¢y — ¥_1 [21]. Now, suppose that ¢ € N, v = (by) is a sequence of nonzero
complex numbers and ¢ € W. The weighted sequence space my, (A}, 1, ¢) is defined by

mu(AS,10,q) = {z=(2) € &: sup sup Z|A<zk\qwk) <00, 1 <g< oo},
01>1 196391 /llz)Ql kv

where w is a weight, wy = w(k) for each k € ¥ and

0
Az = 02,

1
Az = 02K — V%1241,

S _ AS—1 s—1
Anzk = An 2k — An Zk+15

such that

S

S, NN ) .
Anzku( 1) |:,L~:|Uk+zzk+l~

i=0
Similar to procedure presented in [Z5], we get the following result.

Theorem 2.1 Suppose that ¢ € ¥ and 1 < ¢ < co. Then the weighted sequence space
me (A, 1, q) is a Banach space with the norm given by

1

Z | A 2| w) 7.

kev

||Z||mw Agb,g) — Z|Z’L|w1 + sup sup
P 0121963, %1

From now on, it is supposed that 1 < g < co. We describe the Hausdorff MNC y in
the Banach space my,(A§, 1, q). For, we quote the following result.

Theorem 2.2 [21] Suppose that T is a normed space and () # P C T is bounded,
where T is ¢y or I, (the space of all absolutely g-summable series). Also, suppose that
T, : T — T is the operator given by T,,(z) = (20, 21, - - -, 2n, 0, ...), then

x(P) = lim {sup|| (I -T,) ZH}

n—oo

Hence, for P € M, , we get

x(P) = lim {sup Z \zk\q)i}.

n—00
z€P k>n

Theorem 2.3 Suppose that ) # P C my (A, 1, q) is bounded. Then the Huasdorff
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MNC x on my, (A}, 9, q) can be defined as the following form:

1 1
X(P) := lim {sup sup sup A5z Twil) @ } (2)
n—oo ( op (91>n V€T, (1/1@1 % ’ k) )
Proof. It can be achieved with slight modification from [T, Theorem 2.3]. [ |

We terminate this section by describing the unique positive solution of the IDE ().
Set I = [0,1]. Suppose that C3(I,R) is the space of functions with continuous third
derivative defined on I. According to [I7],

(2,w) = (), W) € (C*ILR)) ™ x (C(1,Ry))

is a solution of (W) if and only if (Z, W) is a solution of the following infinite system of
integral equations

(fo (1, 0)ai(o )fi(QaZ(Q),W(Q))dQ)a

(3)
(fo (0)9i(0, Z(0), W(Q))d@>,
when the Green’s function A associated with (I) is given by
(270 — 0*)(1 — al) + 7%0(a — 1), o < min{(¢, 7},
L (1 -a¢) +7%0(a—1), 7< 0 <,
AT, 0) = (1-ag) +7%0(a—1), T<0<( (4)

2(1—a€) | (270 — 0®)(1 — o) + 72(al — 0), (<0< T,
72(1 — o), max{(,7} < o

Now, we reveal a property of the function A which will be needed later.

Lemma 2.4 [04] For all (1,0) € I x I, 0 < A(7,0) < (1), when (1) = 11+5§Q(1 0).

3. Solvability of infinite systems of third-order differential equations
n mw(Af,’ P, q)

In this section, we establish some sufficient conditions to discuss the existence of solutions
of IDE (I) in the space m, (A, v, q).

Here, we consider some assumptions.
(B1) Suppose that f;,g; € C(I x RY x R¥,Ry), i € N. The mapping A : I x
Mo (AS, 1, 9) X Mu(AS, 1, q) = mu(AS, ¥, 9) x mu(AS, ¥, q) is defined by

(0, 2(0), W (0)) = A(Z W)(o) = ((fi<g,z<g>, w(o)), (s:(e. Z o). W<g>>)>

in which the family (A(Z, W)(Q)) ; is equicontinuous at any point of m, (A, 1, q) x
o€
mw(Afﬂ Y, Q)'
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(B2) The following inequalities hold:

hi(0)|(1Zk ()] + [Wi(0)]) k €N,

|fk(sz(Q)7W(Q))’ |
g0, Z(0), W (0))| < |hi(0)|(|Zk(0)| + [Wk(0)]), k € N,

(S etiasfile. 2. W@ < (X wllon@l1asZilo)?)’

kev ked

NN

+ (Y wtlen@ AWl

Q|-

ked
(Zwk|Angk 0, Z(0), W )i (Zwk|¢k AL Zy(0)]? );
kev kev
(D etlo@rIasWilal)
ked

where ¥ € §, hg, ¢ : I — R are continuous and the sequences (hi(0)) and (¢x(0)) are
equibounded on I.

(B3) Assume that the sequence (a;(7)) and (b;(7)) are Riemann integrable on I and they
are equibounded. Put

M’ = max{supsupa;(o),supsupb;(0)},
€N pel €N pel

H = supsup |h;(0)],
1€EN pel

® = supsup |¢;(0)|-
1€EN pel

Theorem 3.1 Assume that the IDE (M) fulfills the hypotheses (B1)-(B3), and

% < 1, then it has at least one solution

(Z,W) € C(I,my(A%, 1, q)) x C(I,my, (A3, 1), q))-

Proof. Suppose that (Z, W) = ((Z;), (W;)) satisfies the initial conditions of the IDE
() and also, suppose that each Z; and Wj is continuous on I. Take the mapping F :
C(Ia mw(Af,, % Q)) X C(Iv mw(Afn wa Q)) - C(Iv mw(Ag’ wv q) X mw(Agn 1% Q)) deﬁned by

(F(2,W))(r) = (( /0 Al 0ai(0) (e, Z(0), W (@) de). /0 LA ob0)a:e, Z(0), W(Q))d@>)~

The product space C(I, my, (A}, 1, q)) x C(I,my,(A},1,q)) is furnished with the sum
norm

1(Z, W)l (1,me (A8 10,0) xC(Lmo (A5 0,0) = 121l c(tma (a5 0,9) T IW o measv.9)

for each (Z,W) € C(I,my(A,1,q)) x C(I,my,(AY,1,q)). Applying the assumptions
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(B1)-(B3) and Lemma P4, we get
IE(Z, W) (M)l (a30.0) xmew (A5 20.0)

=1/ L A(r. 0Jai(0)fi(e. Z(0). W(e))de) [ / LA 0 (@)1 (0. Z(0). W (0))do)

me, (AY,,q)

0121 796391 le ke

S 1 1
=301 [ AGae)ie. 2(0). W(@)delws + sup. sup (o > IAY( / A(r, @)a(0) (o, Z(e), W (e))do)|wi) @
=1

S 1 1
AT, 0)b: ACL i E As( | Ao , q,,9\q
+;|/0 (1,0)bi(0)gi (0, Z(0), W (0))do|w; —i—gslu;)1 19s€u?121 1/’91 k60| / (7, 0)br(0)gr (0, Z(0), W (0))do)| wk)
< 1 ) )
! i i\Q ) AS , q 7
<BloM (gw |, Ve, 20, Wielde + sup e s 3 183 200, W(@)wdo) )
! i 1\& —_— g Au , q,.,9 %
P ( - / e ienidet Qs1u>pl 921%1;1 oy /0 ]g€19| 9r(e, Z(e), W(e))|"wyde) )

(1+a 5 (sz/ |hi(2)I(1Zi(e)] + [Wi(e)l)de + sup sup sup ( Zw’k N Ang(Tquk)E

4(1 - af) T€l 1>19€F,, Vo1 jicy

X
1=

1
s sup sup (S S (oA E) )
TEI 0121 9€F,, w@l ked

< (1+Q)MI( (supztwlz T)|+SUPZM‘W’(T

S 2(1-a)
F(sup sup sup (1 ST AT x wf)T +sup sup sup (- 37 IATWR(IY x w ﬁ))
T€l 0121965, Yeor jcy TEl 121 9€8,; Vo1 ey
< %(H +@)NZllc(1,me (a8, w.0) T IWllo@,meas,v.9)))
- %(waz, W0 s (A )X O (A )

Accordingly, we obtain

14+a)M
IE(Z W)l c(1,me, (A% 1,0 xmaw (A ,0) S ﬁ“‘” PYZ W)l (1,m (A%, ,0) X Cma (A5 1,0))"

It implies that

(1+ )M’

21— o) H O (5)

Let ro denote the optimal solution of the inequality (H). Take

D = D((u,u0), ) = {(z, W): Z = (Z) and W = (W;) are in C(I, mu(AS, ¥, q)),

1(Z, W)l (1m (85 10,0)) x CLime, (A5 5,9)) < T0, and Z;(0) = Z{(0) = 0,

Zi(1) = aZ{(),Wi(0) = W/(0) = 0, W/(1) = aW/((), Vi € N}

where u°(7) = (u?(7)) and w?(7) = 0 for any 7 € I. Evidently, D is bounded, closed
and convex, and also F' is bounded on D. We prove that F' is continuous. For, let
(Z1,W71) € D x D and let € > 0 be arbitrarily fixed. Employing assumption (B1), a
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real number § > 0 exists such that if (Z2, W3) € D x D and

1(Z1, W1) = (Z2, Wa)ll o(1,me, (A% ,0) x C(Im (A% 1,0)) < 0

then
4e(1 — aQ)
ANZ — ANZ . < ———r
|| ( 13W1) ( 27W2)||C (I,mu (A ,q) xme, (A ,%,9)) (1+a)M’
Therefore, for any 7 in I, we have
1F(Z1, Wi)(7) = F(Z2, W2 ) (T)lm, (A5 ,q) xmaw (A 16,0)
S 1
= Zwi|/0 A(r, 0)ai(e) (file, Z1(e), Wi(e)) — file, Z2(e), Wa(e)))del
=1
+;fl§1ﬁse%€1 Ton %\/ A(r, 0) A} (ak () (fr (e Z1(0), Wi(0)) — fk(g,Zz(QLWz(@))))dSI‘Iwk)

+sz| / A(r, @)bi(0) (910, Z1(0), W1(0)) — gie, Za(e), Wa(e)))del

1
q

+sup s (- o / A, 0) A5 (b(0) 9k (o, Z1.(0), Wi(0)) — gk (0, Z2(0), Wa(0))) ) do)| 7w

( + o)’ |
< {res (Zw@ sup (£1(r 24(1). W1 (7)) = £i(r, Za(r), Wa (7))
+sup sup ﬁselgl wm %IN fe(T, Z1(7), Wi(7)) — fu(T, Zz(T),Wz(T)))Iqu)E)

(1 1|__01)0[]\</[)’ (Zm sup <g7, , Z1(7), Wi (7)) — gi (T, Z2(T), Wa (7-)))

1 1
+sup sup sup (—— > [A§(gk(7, Z1(7), Wi (7)) — gi(T, Za(7), Wa(7)))|9w]) ‘1)
TEl 01210€F,, Vor joh

14+ a)M’
= 00— ag) AEL WD) = AZ, Wollo(r me (ag w,0) xmes (85 5.0)

<L e

Accordingly, we get

|1F'(Z1, W1) = F(Za, W)l o(1,mu (A5 15,0) xm (A% 0,0) < €

Therefore, F' is continuous. Now, we are going to show that (F'(Z,W)) is continuous on
(0,1). For this, let 7 € (0,1) and let € > 0. Applying the continuity of A(r,0) w.r.t. 7,

we are able to find 6 = d(7y,¢) > 0 such that if |7 — 71| < J, then

g
A T,0) — A T1,0)| < .
|A(T, 0) = A(71, 0)] 2M'(H + @)[[(Z, W)l o(1,mu (A5 4,0)) x C(Lmo (A5 15,0))

Using Minkowski’s inequality, we can write
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I(F(Z,W(T) = (F(Z, W) (T0)lline, (A 6,0) x e (A 6,0)

1
| [ (a0 - a1, ) alo) e 2(0). W(e)ae]

+ sup sup Z ’/ (A(r,0) (7-17g))Ag(ak(g)fk(g,Z(g),W(g)))dQ‘qu)%

0121 9€Fp, ¢'Ql ke

S 1
+3 w] [ (4r0) = Alm 0)bil@aite. Z(0). W)
=1

q¢ .1
+ sup sup Z ’/ (A(T, 0) — (Tla@))Ag(bk(Q)gk(Q,Z(Q)7W(@)))dQ‘ wi)a
0121 9€F ’w@l ke
oM’ He - 3
< w; sup |Zi(10)| + Y  w; sup |[W;(70)]
2M'(H + @)(Z, W)l e (1,me (A5 6,0) x C(1ma (A% ¢,0) (; To€l ; To€! )

M'e
2M'(H + @) (2, W)llo(1,me, (A ,0) x O (Ime, (A% ,a))

X

1 1
(sup sup (ﬁ /0 > 183 frle, Z(0), W(0))| "dewf) 4

0121 9€F o, ke

1
vow o (5[5 1AGn(e 20, WeIanst) )

01>19€5,, 1/)@1 0 jco

<
£
< w; sup |Z;(70)| + Y w; sup [W;i(70)|
”(Z?W)”C’(I,mw(A;,w,q))XC(I,mw(szqu))(; "roer Z "roel )
M'e
+o— x
2M"(H + @) (2, W)l (1,mu (A% ,,)) X C (1 mu (A% 1,0))
1 1
(SUP sup sup (—— > [A§fu(70, Z(10), W (70))|%wil) @
o€l 01219€F,; Vo1 oy
q 1
+ sup sup sup ( > \Aggk(m,Z(To)vVV(To))WWk)q)
T0€l 0121 9E€Fp, ¢Ql ked
< S
< w; sup |Zi(T0)| + w; sup |Wi(1o0)|
1(Z, W)lle(r,me (A%, 9,0) x C(Ime (A%, ,a)) (; ' 12; mer )
2e %
2(H + 2)|I(Z, W)“C(I,mw(Afj ,0)) X C(I,me (A ,%,9))
; 1
sup sup sup q( (O wiltr(10)|9]A3 Zk (10)|9) @
T0€El 0121 9€F o, 71/)91 ke
1
O wlon(m) AT W) )
ked
c <
< w; sup |Z;(70)| + w; sup [W; (7o)l
”(Z?W)”C’(I,mw(A;,w,q))XC(I,mw(A;va))(; "roer Z "roel )
ed 1
+ (Sup sup sup WA Zy(10)]7) @
(H + @)(ZW)llo(1,me (A% 1,00) < C(Limw (AF 46,0) \ToET 01>19EF, %1 % g )

1
+sup s swp (S Y W IATW()IY) )
T0€l 0121 9E€Fp, 1/191 ko

&€

< 1Zllc(r,me, a8 F W ller,me (a3
||(27W)||C(I,mw(AE,w,q))xc(l,mw(AE,w,q))( (i (85 ) Gimatas. )

€

N(Z,W)le(1,me (A C(I,me (AS )
1(Z, W)l (1m0 (A5 6,0) X O m (A% 1,0) (Lo By @) x L (B .))

= €.
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Eventually, we are going to verify that F' is a Meir—Keeler condensing operator w.r.t.
the Hausdorff MNC x on the space C(I, my(AS,1,q)) x C(I,my,(AS,v,q)). Due to
the formula () and Proposition [, it can be concluded that the Hausdorff MNC for
D C C(I,my(A%,1,q)) x C(I,my(Ag,1,q)) is defined as

XO(Im (A 1,0) X C(ILim (A3 10,)) (D) = Sup X, (A% 9,9) < (A5 ,9) (D (7)),
T

where D(7) = {(Z,W)(r): (Z,W) € D}. Therefore, we deduce
X’mw(Af,,q/;,q)me(Af,,q/;,q) (F(D))(T)

1 1
—lm{ swp (sup sup (- ZIAE(/O A(r, 0)ar(0) fi(0, Z(0), W (e))de) |"wi) ) }

N0 T (ZW)EB  012n9E€F,, Yo, eo

Q|

1 1
lim {sup (s sup (2= Y IAL( [ (A(r obu(@)an(e Z(0). W (@)do) ")
e T (ZW)EB  012n €T, Yo, ked 0

(1+ )M’ <
T 41 - ag)

. 1 1
lim { sup sup ( sup sup ( Z |AS fie (70, Zi(70), Wk(To))\qwg) Q)}>
n—00 " oy (ZW)eB o012n9€3F,, 01 key

1+ a)M'
+4a—ao<

2(1 + a)M’
<A

. 1 1
lim {sup sup (sup sup (— Y [Aggr(r0, Ze(70), Wi(70))|%wf) *) }
N0t el (ZW)eB  012nY€F,, Yo keo

. 1 1 1
lim { sup sup ( sup sup ( )q ((Z ’¢k(70)’p|AfaZk<TO)‘qwg) !
N0t el (ZW)EB  o13n¥eS,, Vou P

Q |-

+ (S 16w (o) 9] A§ Wi (70) %) ))})
ked
(1+a)M'®
S W(XC(me(Az7w7q)>xc(1,mw(m w.0)(D))-

Hence, we get

X, (A% 1,9) xm (A5 1bq) (F(D)) = Sup X, (A% 1,g) xm (A5 1bq) (F(D))(T)

14+ a)M'P
=~ 2(1 _ O{C) XC(Ivmw(Az7w7q))XC(I=mW(AE7w7Q))(D)

<e.

Then

2(1 — al)e
XC(I,’VTLW(A;7w7Q))XC(I’mW(A?”1’Z}’q))(D) < m

Let us take § = 5(% —1). It easily can be verified that F' is a Meir-Keeler condens-
ing operator on D C C(I,my, (A, 1, q)) x C(I, my,(Ag, 1, q)). Owing to the Theorem I3,
we conclude that F' has a fixed point in D, and hence the IDE (@) admits at least one

solution iIl C(Ia mw(Ag’ 1/), Q)) X C(Iv mw(A;’ 1/), Q)) u

)}

)
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Exzample 3.2 Consider the IDE

oo
4
—Z!"(r) = ﬁz arctan (
1 0000 ; ;
' 7> +240000 £ 1+ (45 +3)(45 - 1)

9
)6727— In (ﬁ +1Zi(r)+ W;(n)]), 0<T<1

3

o0
W) = 3
+240001 s ;
‘ " 2 (45 - 3)(4j + 1)

1 1
|Sin(Zj(7')+Wj(T)+§)—§|C052(2T+1), 0<r<1 (6)

Z:(0) = Z[(0) =0, Z[(1) = 99.9Z/(155)

—

Wi(0) = W/(0) = 0, W/(1) = 99.9W/(1k5), i =1,2,....
By taking a;(7) = 772”}10000, bi(1) = 772”10001, a=99.9, (= ﬁ,
filr, Z(T),W (1)) = iarctan ( 4 )6_2T In (g +|Z;(1) + W(T)D
7 p= T+ (4 +3)(4j 1) 0 e
and
(7, Z(7), W (7)) = i 51 ISin(Z;(7) + Wi(7) + 2) — | cos2(2r + 1)

the system (B) is a special case of IDE (). Clearly, for each i € N, f;,g; €
C([0,1] x (R4)* x (R4)*,R4). Notice that, for each 7 € I, if (Z(r),W(r)) €
(DS, 6,0) X mu(AS, 6,q), then A(Z, W)(r) = ((i(r, Z(), W (7)), (g:(r, Z(), W (7))
is in my (A, 1Y, q) X my,(Ay, 1, q). We claim that the hypothesis (B1) of Theorem
B holds. Indeed, let € > 0 be given and let (Z(7),W (7)) = ((Zi(1)),(Wi(7))) €
m(A3,6,q) X mu(A3,1,q). Then, by taking (Z1(7),Wi(r) € mu(As,v,q) x
mw(Agu¢aQ) with

2e

we get

IA(Z(7), W (7)) = AMZ1(7), Wi (T)) llm.. (a5 9) xme (85 0,0)

3T
< S (), W(T)) = (Z1(7), WiT)) lme (a5 9.0y xme (25 90) = €

which implies the equicontinuity of A. Now, we prove condition (B2). We can write

. 2. W )] = 13 aretan () (35 + 140) + W)
3

< e (120 + Win)l),
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and
wi| Ay fi(T, Z(T T) 7: wi|Agy )  arctan 1 efz'rng i(T i(T qé
(kg LA 20 W17 (% IS Z o (=) G A0+ WD)
< (et Creras izl +wim)*)*
kev
Sl —ZT( S WAz T + (S wiAgIW, q)%).
kev kev
Hence, the function h;(r) = 3Te~? is continuous and the sequence (h;(7)) is equi-
bounded on I and also H = %Tﬂ' Also, we have

|9i(7, Z(7), W(7))| = ‘Z 4] n 1)|SIH(Z () + Wi(T) + é) — é]cosz(27+ 1)]

< ?j{cosmw D(1Z(7)| + W),

Moreover, we obtain

1

(ngmggi(n Z(7), W(r) ) = (Zwszm\sin(%m +w; (1) + é) - %lcosQ(QT + 1))\‘1) !

kev kev J=

< (et (G co(r + 1)985 (12:(n)| + [Wi(r)) ) *

kev

<(?%cos 2r + 1) (Wi A2 & + (St AgIwi(r)|7) )

key kev

when ¢;(7) = 27 cos?(2r + 1) is continuous and the sequence (¢;(7)) is equibounded
on I and also ® = 2. Trivially the condition (B3) holds. On the other hand, we get

(1+02{Zi\{,¢%+¢) = 4158%'39 < 1. Thus, infinite system (B) fulfils the hypotheses of Theorem

B0. So the (B) has at least one solution in C(I,my, (A, %, q)) x C(I,my,(AS, 1, q)).
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