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Abstract. In topology, we found enough literature on topological operators but in general-
ized topology, there is only µ-interior, µ-closure, and µ-boundary operator. In this article,
we explore different types of operators like µ-derived set operator, µ-exterior operator, µ-
preboundary operator in generalized topology. We have shown that any operator can be
developed as the above operators impose certain conditions, giving a unique generalized
topology in each case.

Keywords: µ-interior, µ-derived set, µ-exterior, µ-boundary, generalized topology.

2010 AMS Subject Classification: 54A05.

1. Introduction and preliminaries

Kuratowski first showed that the topological spaces can be axiomatically defined by its
closure operator. There are other important set operators like interior operator, exterior
operator, derived set operator, and boundary operator give a different characterization of
a topological space. Topological set operators are used in many modern fields, including
formal concept analysis, category theory, domain theory, and geographic information
systems. Due to the huge application of topological set operators we are interested in
studying this operator in general set-theoretic structure which is generalized topology.

In [1], Császár introduced the concept of generalized topology. Let X be a non-empty
set and expX denote the collection of all subsets of X. Then µ is called a generalized
topology on X (in short, GT) if ∅ ∈ µ and arbitrary union of elements of µ belongs to
µ. If µ is GT on X and S ⊆ X, then S is µ-open iff S ∈ µ. S is µ-closed iff X − S ∈ µ.
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If µ is a GT on X and X ∈ µ, then µ is said to be strong generalized topology [3]. We
denote Mµ is the union of all µ-open sets in µ and µx = { G : x ∈ G ∈ µ}.

Suppose µ is a GT on X, then one can define the above-mentioned operators on
X. Now the question arises that whether the converse is true or not, i.e., whether an
operator j : expX → expX may give a unique GT on X or not. We are looking for an
affirmative answer even if there are some conditions imposed on the operators. Császár
in [2] answered this question for the µ-interior and µ-closure operators. In this article, we
have shown that the above question has an affirmative answer for some more operators on
X with certain conditions. We have investigated the basic properties of these operators
and the relationship between them. We have also introduced the µ-preboundary operator
to understand the concept in a more formal way. Straight forward proofs are omitted.

µ-Interior Operator: If µ is a GT on X and S ⊆ X, then the µ-interior of S is
the largest µ-open subset of S and denoted by iµS. Equivalently, iµS is the union of all
µ-open subsets of S i.e., iµS = ∪{G ∈ µ : G ⊆ S}.

Theorem 1.1 [2, 5] If µ is a GT on X and S, T ⊆ X, then

(a) iµ∅ = ∅,
(b) iµX = Mµ,
(c) iµS ⊆ S,
(d) if S ⊆ T , then iµS ⊆ iµT ,
(e) iµiµS = iµS,
(f) iµS ∪ iµT ⊆ iµ(S ∪ T ),
(g) iµS ∩ iµT ⊇ iµ(S ∩ T ),
(h) S is µ-open if and only if iµS = S.

All the above results are same as in topology except for (b) and (g). In a topological
space X is open and intersection of two open sets are open set, which are not true for
GT.

Theorem 1.2 [2] Let X be a nonempty set. If j : expX → expX satisfies

(I1) jS ⊆ S;
(I2) if S ⊆ T , then jS ⊆ jT ;
(I3) jjS = jS;

for any S, T ⊆ X, then there exists a unique GT µ ⊆ expX such that j = iµ.

µ-Closure Operator: If µ is a GT on X and S ⊆ X, then the µ-closure of S in X is
the smallest µ-closed subset which contains S and denoted by cµS. Equivalently, cµS is
the intersection of all µ-closed super sets of S, i.e., cµS = ∩{M : X −M ∈ µ, S ⊆ M}.

Theorem 1.3 [2, 5] If µ is a GT on X and S, T ⊆ X, then

(a) cµ∅ = X −Mµ,
(b) cµX = X,
(c) S ⊆ cµS,
(d) if S ⊆ T , then cµS ⊆ cµT ,
(e) cµcµS = cµS,
(f) cµS ∪ cµT ⊆ cµ(S ∪ T ),
(g) cµS ∩ cµT ⊇ cµ(S ∩ T ),
(h) S is µ-closed if and only if cµS = S.

All the above results are same as in topology except for (a) and (f). In a topological
space, empty set is closed and union of two closed sets are closed set, which are not true
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in GT.

Theorem 1.4 [2] Let X be a nonempty set. If j : expX → expX satisfies

(C1) S ⊆ jS;
(C2) if S ⊆ T then jS ⊆ jT ;
(C3) jjS = jS;

for S, T ⊂ X, then there exists a unique GT µ ⊂ expX such that j = cµ.

Theorem 1.5 [2] If µ is a GT on X and S ⊆ X, then

(a) cµS = X − iµ(X − S),
(b) iµS = X − cµ(X − S).

Proposition 1.6 [6] If µ is a GT on X and S ⊆ X, then y ∈ cµS if and only if either
µy = ∅ or S ∩G ̸= ∅ for all G ∈ µy.

2. Main results

µ-Derived Set Operator; If µ is a GT on X and S ⊆ X, then a point p ∈ X is
called a µ-cluster point of S if either µp = ∅ or S ∩ (G−{p}) ̸= ∅ for all G ∈ µp. The set
of all µ-cluster points of S is the µ-derived set of S and denoted by dµS.

dµS = { p ∈ X : either µp = ∅ or S ∩ (G− {p}) ̸= ∅ for all G ∈ µp }.

Proposition 2.1 If µ is a GT on X and S, T ⊆ X, then

(a) dµ∅ = X −Mµ,
(b) if S ⊆ T , then dµS ⊆ dµT ,
(c) dµS ∪ dµT ⊆ dµ(S ∪ T ),
(d) dµ(S ∩ T ) ⊆ dµS ∩ dµT ,
(e) x ∈ dµS ⇔ x ∈ dµ(S − {x}) ⇔ x ∈ cµ(S − {x}),
(f) dµS ⊆ cµS,
(g) cµS = S ∪ dµS,
(h) dµ(S ∪ dµS) ⊆ S ∪ dµS.

Proof.

(g) For any set S we have S ⊆ cµS and by (f) dµS ⊆ cµS, both implies S ∪ dµS ⊆ cµS.
Let y ∈ cµS and y /∈ S (if y ∈ S the proof is done). Then, either µy = ∅ or S ∩G ̸= ∅
for all G ∈ µy. Since y /∈ S, therefore either µy = ∅ or S∩ (G−{y}) ̸= ∅ for all G ∈ µy.
Thus, y ∈ dµS. Hence, S ∪ dµS ⊇ cµS.

(h) By (f) and (g) dµ(S ∪ dµS) ⊆ cµ(S ∪ dµS).

■

All the above results are same as in topology except for (a) and (c). In topology derived
set of an empty set is empty and derived set operator splits under union, i.e., option (c)
has become equality.

Example 2.2 Let X = {α, β, γ} and a GT µ = {∅, {α, β}, {β, γ}, {γ, α}, X}. Consider
S = {α, β} and T = {β, γ}, then dµS = {γ}, dµT = {α} and dµ(S ∪ T ) = X. This
example shows that equality does not hold for (c).

Theorem 2.3 Let X be a nonempty set. If j : expX → expX satisfies
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(D1) x ∈ j(S − {x}) ⇔ x ∈ jS;
(D2) if S ⊆ T , then jS ⊆ jT ;
(D3) j(S ∪ jS) ⊆ S ∪ jS;

for S, T ⊆ X, then there exists a unique GT µ ⊆ expX such that j = dµ.

Proof. Define cS := S ∪ jS. If S ⊆ T , then S ∪ jS ⊆ T ∪ jT by (D2), i.e., cS ⊆ cT .
Now,

ccS = c(S ∪ jS)

= (S ∪ jS) ∪ j(S ∪ jS)

⊆ (S ∪ jS) ∪ (S ∪ jS) by (D3)

= S ∪ jS

= cS.

Thus, c satisfies all conditions of Theorem 1.4. Hence, there exists a unique GT µ ⊆ expX
such that c = cµ. Next, we will show that j = dµ for the induce GT µ. Suppose that
S ∈ expX, then

x ∈ dµ(S) ⇔ x ∈ cµ(S − {x}) by Proposition 2.1 (e)

⇔ x ∈ c(S − {x}) as c = cµ

⇔ x ∈ (S − {x}) ∪ j(S − {x})

⇔ x ∈ (S − {x}) ∪ jS by (D1)

⇔ x ∈ jS.

Hence, the proof is done. ■

µ-Boundary Operator: If µ is a GT on X and S ⊆ X, then the µ-boundary of S in
X is the intersection of the closure of S with the closure of its complement and denoted
by ∂µ, i.e., ∂µS = cµS ∩ cµ(X − S) = cµS − iµS.

Theorem 2.4 [5] If µ is a GT on X and S, T ⊆ X, then

(a) cµS = S ∪ ∂µS,
(b) cµS = iµS ∪ ∂µS,
(c) iµS = S − ∂µS,
(d) iµS = cµS − ∂µS,
(e) X = iµS ∪ ∂µS ∪ iµ(X − S).

Proposition 2.5 If µ is a GT on X and S, T ⊆ X, then

(a) ∂µ∅ = X −Mµ,
(b) ∂µX = X −Mµ,
(c) ∂µS = ∂µ(X − S),
(d) ∂µS ⊆ cµS,
(e) if S ⊆ T , then ∂µS ⊆ T ∪ ∂µT ,
(f) ∂µ(S ∪ ∂µS) ⊆ ∂µS,
(g) ∂µS is µ-closed set,
(h) S is µ-open ⇔ S ∩ ∂µS = ∅,
(i) S is µ-closed ⇔ ∂µS ⊆ S,
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(j) S is µ-clopen ⇔ ∂µS = ∅.

All the above results are same as in topology except for (a) and (b).

Theorem 2.6 Let X be a nonempty set. If j : expX → expX satisfies

(F1) j(X − S) = jS;
(F2) if S ⊆ T , then jS ⊆ T ∪ jT ;
(F3) j(S ∪ jS) ⊆ jS;

for any S, T ⊆ X, then there exists a unique GT µ ⊆ expX such that j = ∂µ.

Proof. Define cS := S ∪ jS. If S ⊆ T , then S ∪ jS ⊆ T ∪ jT by (F2), i.e., cS ⊆ cT .
Therefore,

ccS = c(S ∪ jS)

= (S ∪ jS) ∪ j(S ∪ jS)

⊆ (S ∪ jS) ∪ jS by (F3)

= S ∪ jS

= cS.

Thus, c satisfies all conditions of Theorem 1.4. Hence, there exists a unique GT µ ⊆ expX
such that c = cµ. Now, we will show that j = ∂µ for the induce GT µ. Suppose that
S ∈ expX, then

∂µS = cµS ∩ cµ(X − S)

= cS ∩ c(X − S) as c = cµ

= (S ∪ jS) ∩ ((X − S) ∪ j(X − S))

= (S ∪ jS) ∩ ((X − S) ∪ jS) by (F1)

= (S ∩ (X − S)) ∪ jS

= jS.

Therefore, the proof is complete. ■

µ-Exterior Operator: If µ is a GT on X and S ⊆ X, then the µ-exterior of S is the
µ-interior of compliment of S and is denoted by eµS. eµS = iµ(X − S).

Proposition 2.7 If µ is a GT on X and S, T ⊆ X, then

(a) eµ∅ = Mµ,
(b) eµX = ∅,
(c) eµS ⊆ X − S,
(d) eµeµS = eµS,
(e) if S ⊆ T , then eµT ⊆ eµS,
(f) eµS ∪ eµT ⊆ eµ(S ∩ T ),
(g) eµS ∩ eµT ⊇ eµ(S ∪ T ),
(h) eµS = eµ(X − eµS),
(i) cµS = X − eµS.

All the above results are same as in topology except for (a) and (g). In topology
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equality hold in (g) but not in GT.

Example 2.8 Let X = {α, β, γ} and a GT µ = {∅, {α, β}, {β, γ}, {γ, α}, X}. Consider
S = {α} and T = {β}, then eµS = {β, γ}, eµT = {α, γ} and eµ(S∪T ) = ∅. This example
shows that equality does not hold for (g).

Theorem 2.9 Let X be a nonempty set. If j : expX → expX satisfies

(E1) jS ⊆ X − S;
(E2) if S ⊆ T , then jT ⊆ jS;
(E3) jS = j(X − jS);

for any S, T ⊆ X, then there exists a unique GT µ ⊆ expX such that j = eµ.

Proof. Define cS := X − jS. If S ⊆ T , then S ∪ jS ⊆ T ∪ jT by (E2), i.e., cS ⊆ cT .
Also, (E3) implies that S ⊆ cS. Now,

ccS = c(X − jS)

= X − j(X − jS)

= X − jS by (E3)

= cS.

Thus, c satisfies all conditions of Theorem 1.4. Hence, there exists a unique GT µ ⊆ expX
such that c = cµ. Now, we will show that j = eµ for the induce GT µ. Suppose that
S ∈ expX. Then

eµS = X − cµS

= X − cS by c = cµ

= X − (X − jS)

= jS.

Hence, the proof is done. ■

µ-Preboundary Operator: In [4], the author defines two new topological set oper-
ators. With the same idea we define an operator called µ-preboundary operator. Note
that for a µ-open set µ-preboundary operator becomes µ-boundary operator.

Definition 2.10 If µ is a GT on X and S ⊆ X, then the µ-preboundary of S in
X is the intersection of the closure of S with its complement and is denoted by pµ.
pµS = cµS ∩ (X − S) = cµS − S.

Proposition 2.11 If µ is a GT on X and S, T ⊆ X, then

(a) pµ∅ = X −Mµ,
(b) pµX = ∅,
(c) S ∩ pµS = ∅,
(d) S ∪ pµS = cµS,
(e) if S ⊂ T then pµS ⊂ T ∪ pµT ,
(f) pµ(S ∪ pµS) = ∅,
(g) pµS = ∂µS − S,
(h) ∂µS = pµS ∪ pµ(X − S),
(i) (pµS − T ) ∪ (pµT − S) ⊆ pµ(S ∪ T ),
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(j) S is µ-closed iff pµS = ∅,
(k) S is µ-open iff pµS = ∂µS.

Proof.

(e) Let S ⊆ T then cµS ⊆ cµT . Therefore, (d) implies that

pµS ⊆ cµS ⊆ cµT = T ∪ cµT.

(f) By (d), pµ(S ∪ pµS) = pµ(cµS) = cµcµS ∩ (X − cµS) = ∅.

(g) Let S ⊆ X.

∂
µ
S − S = (cµS ∩ cµ(X − S))− S

= (cµS ∩ cµ(X − S)) ∩ (X − S)

= cµS ∩ (cµ(X − S) ∩ (X − S))

= cµS ∩ (X − S)

= pµS.

(h) Let S ⊆ X.

pµS ∪ pµ(X − S)

= (cµS ∩ (X − S)) ∪ (cµ(X − S) ∩ S)

= {(cµS ∩ (X − S)) ∪ cµ(X − S)} ∩ {(cµS ∩ (X − S)) ∪ S}

= {(cµS ∪ cµ(X − S)) ∩ ((X − S) ∪ cµ(X − S))} ∩ {(cµS ∪ S) ∩ ((X − S) ∪ S)}

= {X ∩ cµ(X − S)} ∩ {cµS ∩X}

= cµ(X − S) ∩ cµS

= ∂µS.

(i) Let S, T ⊆ X.

(pµS − T ) ∪ (pµT − S)

= ( pµS ∩ (X − T ) ) ∪ ( pµT ∩ (X − S) )

= { cµS ∩ (X − S) ∩ (X − T ) } ∪ { cµT ∩ (X − T ) ∩ (X − S) }

= { cµS ∩ (X − (S ∪ T )) } ∪ { cµT ∩ (X − (S ∪ T )) }

= (cµS ∪ cµT ) ∩ (X − (S ∪ T ))

⊆ cµ(S ∪ T ) ∩ (X − (S ∪ T )) by Theorem 1.3 (f)

= p
µ
(S ∪ T ).

(j) S is µ-closed ⇔ cµS ⊆ S ⇔ cµS − S = ∅ ⇔ pµS = ∅.

■

Theorem 2.12 Let X be a nonempty set. If j : expX → expX satisfies



104 N. Sarkar et al. / J. Linear. Topological. Algebra. 12(02) (2023) 97-104.

(P1) jS ⊆ (X − S);
(P2) if S ⊆ T , then jS ⊆ T ∪ jT ;
(P3) j(S ∪ jS) ⊆ S ∪ jS;

for any S, T ⊆ X, then there exists a unique GT µ ⊆ expX such that j = pµ.

Proof. Define cA := A ∪ jA. If S ⊆ T , then S ∪ jS ⊆ T ∪ jT by (P2), i.e., cS ⊆ cT .
Now,

ccS = c(S ∪ jS)

= (S ∪ jS) ∪ j(S ∪ jS)

= (S ∪ jS) by (P3)

= cS.

Thus, c satisfies all conditions of Theorem 1.4. Hence, there exists GT µ ⊆ expX such
that c = cµ. Now, we will show that j = pµ for the induce GT µ. Suppose that S ∈ expX.
Then

pµS = cµS ∩ (X − S)

= cS ∩ (X − S)

= (S ∪ jS) ∩ (X − S)

= (S ∩ (X − S)) ∪ (jS ∩ (X − S))

= jS ∩ (X − S)

= jS, by (P1).

Hence, the proof is done. ■

3. Conclusion

With careful study of these operators, we identify that most of the general topological
results on set operators remain the same for generalized topology. Also, point out some
results that are true in general topology but not in generalized topology.
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