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Abstract. In this paper, we first generalized the weighted versions of determinants, perma-
nents and the generalized inverses of rectangular matrices. We also investigate some of their
algebraic properties. As a by product of the above investigation, we then present a deter-
minantal representation for the general and Moore-Penrose inverses which satisfy on certain
conditions. Finally, we give a general algorithm for determining the inverse of some certain
class of the rectangular matrices defined based on weighted determinants.
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1. Introduction and preliminaries

The generalized inverses of matrices play an essential role in both theoretical and prac-
tical applications. In particular, the Moore-Penrose inverse of a matrix and its weighted
versions have many interesting applications in various fields of science and engineering
including optimization problems, machine learning regularization problems, singularity
of matrices in data science and statistical problems. Here, we will consider a more gener-
alized version of this problem on the class of rectangular matrices. Next, we will quickly
review some important research works in this respect.

Next, we introduce some notations that we need throughout this paper. Let C™ be
the vector space over the complex field C. We also let C"™*™ be the set of all m by n
matrices with complex entries and C]”*" is the subclass of these matrices with the rank
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exactly equal to 7. We reserve the notations A, AT and A* for the conjugate, transpose
and conjugate transpose of the matrix A, respectively. The determinant of a square ma-
trix A is denoted by det(A) or |A|. The submatrix of A € C™*™ containing rows set
I ={ay,...,;} and columns J = {f,..., [} is denoted by A[ﬂ Moreover, its corre-
sponding minor will be denoted by A(LI]), while its algebraic complement corresponding
to the element a; ; is defined by

AZ(al apil Z ap+1 at> :(_1)p+qA<a1 Oépfl ap+1 at>
TNBL o Bg=1 T Bag+1 o Be Br -+ Bg—1 Bg+1 -+ B

In [10], Penrose showed the existence and uniqueness of a solution X € C"*™ of the
following system of equations

(1) AXA=A, (2) XAX =X, (3)(AX)" =AX, (4) (XA)"=XA.

For simplicity of presentation and arguments, we will use the notations introduced in [I6].
For a given subset S of {1,2,3,4}, the collection of matrices X satisfying the conditions
represented in S will be denoted by A(S). For example, if S = {1,2}, then

A{1,2} ={X e C""™: AXA = A, XAX = X }.

A matrix X € A(S) is called an S-inverse of A and is denoted by A(®). In particular,
for any A € C"™*™ the set A{1,2,3,4} which consists of a onlyone element is called the
Moore-Penrose inverse of A, will be denoted by AT (see [IT]).

The main motivation behind of this paper originates from the determinantal represen-
tation of Moore-Penrose inverse, which is the next theorem:

Theorem 1.1 [2, 4, 6] The element agj in the ith row and the jth column of the Moore-
Penrose pseudoinverse of a matrix A € C"*™ is given by

Z al...]-'...ar A al---‘j...ar
A(J[:T) 1<B1<Z<Br< <61 HR 5r 7 ﬁl 5T
Jt

n
1Sa; <~ <ar<m

~

aT:

Zj NT(A) - PR— P}/l “ e fyr ’}/1 ... P}/r
1@1;:@“” A <51 s Gy A 5 -+ O,
1<y <<y sm

We recall that the (i, j)th entry of adjoint matrix adj(t") (A), with be defined by Ag7r).
The next theorem describes the {i, j, k}-inverse of a rectangular matrix.

Theorem 1.2 [[4] If A € C"*" has a full-rank factorization A = PQ,P € C["*",Q €
Crm, Wy e C™7 and Wy € C"™™ are some matrices such that rank(QW;) =
rank(WP) = rank(A), then AT = QTPT = Q*(QQ*)~'(P*P)~' P*; and also,

the generalized solution of the equations (1) and (2) is given by

A{1,2) = {Wl(QI/Vl)_l(WQP)_IWQ};
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the generalized solution of the equations (1), (2) and (3) is given by
{1,238} = {wi @)~ (P )P s

the generalized solution of the equations (1), (2) and (4) is given by
A{1,2,4) = {Q"(QQ") " (WaP) ' Wa }.

Theorem 1.3 [2] Let A € C"™*" be a full-rank matrix. If rank(A) = m < n, then the
System

AX = I,; (XA)" = XA
has a unique solution X = A, Similarly, if m > n = rank(A), then the system
XA =1 (AX)* = AX.

has a unique solution X = Af.

In this paper, we present a generalization of the weighted determinant and the perma-
nent of rectangular matrices. We first need some definitions and notations.
Let V be a vector space over a field C. The p-th exterior power V, denoted AP(V)
is the vector subspace of the exterior algebra A (V') spanned by elements of the form
Vi A Avp,v; € Vi =1,...,p. If the dimension of V is n and {ey,...,e,} is a basis of
V, then the set {e;, A---Aej, : 1 <p<n,1<ip<---<ip,<n}isa basis for AP(V)
and dim AP(V) = (7).

p

2. Rectangular determinants and induced generalized inverses

In recent years, some researchers have been investigated new versions of the determinant
of a rectangular matrices [, B, B, [4, 9, T3, I5-17].

Definition 2.1 Suppose A € C™*™ is a rectangular matrix with n < m. A weighted

determinant of A is a function get) : C™*" — C is defined, as follows:
87p

p p
Z Eil?"'7ip;jla"-7jp< /\ Ajl’ /\ eil>7 lf 1 < p < n < m7
=1 =1

1<i < <ip<m
1<j1<<jp<n

det (4) = - 1)
(€.p) 0 if p > min{m,n},

1 if p=0,

\

where (., .) is the inner product, Aj, is the ji-th column of the matrix A and
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which &;,, . i,:j,..j, 15 an arbitrary constant coefficient. For n > m > p > 1, we set
det (A) = det (AT).
E (€,p)

(€,p)

From now on, for simplicity of presentation, we will assume A € C"™*" with n < m and
the inner product (. , .) will be considered as the Euclidean inner product over A?(C™).
Now, in the following lemma, we express the generalized determinant based on its square
minors.

Lemma 2.2 Let A € C"™*", where 1 < p <n <m. Then

JE— . . . - Z‘]‘ e i
det(A) = > i A <j1 jf; > (2)

&
( ,p) 1<i7 <--<ip<m
1<j1 < <jp<n

Proof. According to () for 1 < j; < --- < j, < n, we obtain

p p m
A A= N\Daije
=1

I=11=1

p
= > Naige

i1y 1=1

p p
= E H ail,jl /\ e’il
=1

i1y 1=1

p p
= Z Z H Qi) /\ Cis)
!

1<iy <-<i,<m €S, \l=1 =1

p p
= > | Zs@]]aws | Aes
=1 =1

1<iy < <ip<m \0€S,

. LN P

- Al A

1<iy < <ip<m N /o

Using (), we obtain the formula (2). [ |
Example 2.3 For p =2 and A = (a;j)3x2, we have

a1 a12

(QGQt) a1 a2 | = €12:12
57
a3l as2

az1 a2
asz1 as2

ail aig
a3l as2

ail ai2
a1 a2

+€1,3:1,2 +e€

ISR ]

For p = m, the determinant ((jet)(A) is an alternating multilinear mapping of the
gm

column vectors of A. In case of m =n =pand ¢;, ... ; 5, ... j, = 1, we obtain the classical

determinant of the square matrix A.

In (B), for €, i,:j,..5, = 1, we get the Stojakovi¢ determinant [I'7], which we will

denote by %et (A). Similarly, for ;, i .4, = (—1)(i1+“'+ip)+(j1+-"+jp)’ one can obtain
P
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the determinant introduced by Radié [TT1-T3] which we denote it (%et)(A). Now, let € be an
7p

arbitrary but a constant number, for €t yeryipi1yerdp — €(i1+"'+ip)+(jl+"'+jp), we will obtain
the determinant introduced by Stanimirovié¢ [I6], which we denote by det(A). Moreover,
&p

we can also consider some generalized versions of the Stanimirovié¢’s determinant by
letting €;,,...i, 51, jy = glisttip)+(t++52) o be written in the following multiplicative
forms:

Eityensipigtrrendy = QityernyipBjiyenip

Eih"':ip?jlv“yjp = (0/11 tee a;p) (ﬁ‘{l T ﬁgp)

ety giitetd
8117"'77’1’;]17"'7]1’ = ' plB]l I

In [0}, Abhimanyu has consider the weight &;,  ; .;\ ;i = A (;1 ;?’), and in [9],
L dp

Nakagami has defined the determinants of a rectangular matrix A = (Ay,...,A,) €

C™*™ with the weight &, i .j,..;, = 1 as follows:

det (A): Z <A1/\---/\An,ej1/\--~/\ej”>, (3)
(N.n) 1< < KGn <
Det (A)= Y Al/\--~/\An,ej1/\~--/\ejn>. (4)
(Nyn) 1< < <jn <M

In (2), if we replace the determinant with permanent, we immediately obtain a weighted
version of the permanent by the following formula:

A) = i e ; alb Y, 5
per(d) = X w e (4]0 7)) ®)

(5710) 1<ig < <ip<m
171 < <jpsn

inijr, o jn = 1, we get the definition of classic permanent (see

3]

In particular, for ¢;, .
[

R)):

bt = 3 per(ai ). )

1< << m

3. The generalized Cauchy-Binet formula

A generalization of the multiplicative property of determinants is the well-know
Cauchy-Binet formula. In this section, we present several extensions of Cauchy-Binet
formula for determinant and permanent of a rectangular matrix. We first need to in-
troduce some notations. Let » and n be positive integers. The set I',,, consists of all
sequences of integers w = (w1, ...,w,) for which 1 < w; < n,i =1,...,r. If r < n, then
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Grn and @, denote as follows:

Grnz{(w1,...,w7«)€f‘r,n:1<w1g---éwTén},

)

an:{(wl,...,wr)el‘rnzlgwl<---<wrén}.

)

If w= (wi,...,wr) € Gy then by the notation p(w), we mean p(w) = [[;_; wg!, where
wy! denotes the factorial of the positive integer wy.

Let A = (a;;) € C™*" and a € Qpm and B € Qp . Then A[a|ﬁ] denotes the h x k
submatrix of A whose (i, j) entry is aq,s,. Again, if o € Qp, and B € Qy, p, then A(a|ﬁ)
denotes the (m — h) x (n — k) submatrix of A complementary to A[a|3], that is, the
submatrix obtained from A by deleting rows « and columns /.

Theorem 3.1 (The generalized Cauchy-Binet formula) Let A € C™*!, B € C*" and
p < min{m,n,t}. Then

det (AB) = Y er,sdet(A[I|K])det(B[K|J]), (7)
(€.p) IJK

per(AB) = > er yper(A[I|K])per(B[K|J]),

(Ep) LLK

where I € Qpm,J € Qpn and K € Q).

Proof. According to Definition ET1l, we obtain

det (AB) = Z Eirsnsipifiseenp </\(AB)jz’ /\ ei1> ) (8)

g
(&) 1<ip < <ip<m, =1 =1
1K1 < <ip<n

By a similar calculation as in the proof of Lemma P72, it can be seen that

p p
N\(AB);, = > det (A[T|K])det (B[K|J]) \ es, (9)
=1 1< < <sp <M =1

1<k < <kp<t

Thus, considering formulas B and B, we finally get, the formula [a. [ ]

We note that, in the case p = 1, for every I € Q¢ m,J € Q¢n and K € Q4+, we get the
classic Cauchy-Binet formula.

Corollary 3.2 Let A € C™*! B € C*" and p < min{m,n,t}. Then

det (AB)= Y e det (A[I|K]) det (BIK|J)),

(e1,5€p3P) LK (€15+5€piP) (€1,+5€p;P)
per (AB)= Y e vper (A[|K]) per (B[K|J]),
(E15e-EpsP) 1,J,K (1,--sEp3p) (E15e-EpsP)

k
where e =¢e7" - €p", I € Qpm,J € Qppn and K € Qpy.
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In the special case of t < min{m,n} and e; = --- =¢, = ¢,

det(AB) = e~ t*+1 det(A) det(B),
(e,t) (e,t) (e,t)

per(AB) = e~ "+1) per(A) per(B).
(Eyt) (Evt) (E’t)

Before stating our next theorem, we present the following combinatorial lemma.

Lemma 3.3 [§] Let f be a scalar function defined on the set of m-tuples of integers.
Then

1
Z f(W1,---,wm): Z m Zf(wa(1)7"'awa(m))7

wel', n WEG m,n oESH

where w = (w1, ..., wn).

Theorem 3.4 Let A € C™*! and B € C*" where p < min{m, n,t}. Then

det(AB) = Y ey ydet(A[I|K])det(B[K|J]),

Ep) o
(mn;(AB) = I;K ﬁ&th} per (A[I|K])per(B[K|J]),
E’p ¢

where I € Qpm,J € Qpn and K € G ;.

Proof. Using Lemma B=3, the proof is similar to the proof of Theorem B |

4. The generalized Laplace expansion

One of the fundamental and classic results in the theory of determinants and permanent
is the Laplace expansion formula. Next, we obtain some results regarding the Laplace
expansion of rectangular matrices.

Theorem 4.1 [3] For A = (a;;) € C™*" with 1 <n < m,

det(A)= 33 S0 Dsgn(o) [T a . (10)
=1

en ) .
(&) 1< < <ipn <M oES,
n

per (A) = Z Z g2i=1(lo+1) H i, -

(en) 1< < <in<m oes, =1

We note that the formula of permanent is different from the formula of determinant
A because the sign of permutations is not taken into account.
In [0, ©7], it has been shown that the classic Laplace expansion for rectangular matrix
(m < n) is valid with respect to each row and for the case of (n < m) is true with respect
to each column. Next, we generalize the Laplace expansion formula for an arbitrary
partition of rows and columns of rectangular matrices of Radi¢ and Stojakovi¢ types.
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Theorem 4.2 Let A = (a;;) € C™*" with 2 <n <m and J € Q. Then

det (A) = —1)" det (A[1]J]) det (A(I]])), 11
et (4) Ie%;m( ) (Rg)( /] ])( fr)( (117)) (11)
det (A) = det (A[I|.7]) det (A(I]J)).
g= 2 det (AlT1J) det (A(11))

Proof. Fix arbitrary ji,...,j, columns where J = (ji,...,Jr) € Qrn. By neglecting
the sign of terms, we can imagine that det (A) is the products of (%et) (A[I]J]) and
T

7”)

( det )(A(I|J)) where I = (i1,...,%,) € Qrm; without no other terms in the expansion
Rn—r

of the determinant of A. To compute the signs of these products, let us shuffle the rows
and columns so as to replace the term (det) (A[I|J]) in the upper left corner. Hence, we
Ryr

have to perform
(=14 +—r)+ -+ +0r—r) =@ +4) (mod 2)

permutations. |

Corollary 4.3 [B, 8] For A = (a; ;) € C"*" with 2 < n, we have

det(A) = IE%: (=) det (A[I]J])det (A(I]])).

Our next result is a generalized Laplace expansion for determinant of rectangular
matrices based on the generalized cofactors.

Theorem 4.4 For a full-rank matrix A € C™*" the following Laplace’s expansion is

valid

n
det( ) Z zkAkZ s i=1,...,m, mgn;

(&;m)

(@et)() ZalkA(en, t1=1,...,n, n<m
En

where Ag’m), ie. Ag’n) is the generalized algebraic complement corresponding to the
element aj; defined as follows:

(Em) 1. Geeem
Aij - > ElpmijiygnAgii | . . , m<mn
1<j1<"'<j7n<n .]1 o .] e ]m
(&,n) - b i
A'L] = Z Eil,...,ingl,,,,,nAj7Z' . . n < m.
1< < <ip <m 1.7+ n

Proof. For 1 < n < m, by (B) and using Laplace’s expansion for the square minors
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A <Zl Z;Z) , we conclude that

n . . .
o ] ) ) ) ) ) Zl PEEErY Zk PR Zn
((éent)(A) = Z €ityernyinil,n [; a’LkaA'LIm] ( 1..- ] een )]

1< <<t <M

.. ... 'Zn
:Zal,j Z iy ,eningl, ,Al,J<1...j...n>
=1

1< < <in<m

= Z alJ'A(E n)
=1

Corollary 4.5 If A € C"™*" is a full-rank matrix, then

z AG™ = 655 det (4), m<n,

T Em)

mA =9;; det (A), n < m,
k J
k=1 J (&,n)

where ¢;; is the Kronecker delta symbol.

Proof. For m < n, in the case that ¢ # j the above expansion indicates the rectangular
determinant of a matrix which has the identical ith row and jth column. [ |

5. The generalized induced inverse of the determinant of rectangular
matrices

In this section, we present a definition of generalized inverses of the rectangular ma-
trices based on in tearms of determinant and the generalized cofactors, which we call it
the determinantal generalized inverses.

Definition 5.1 Suppose A € C"*", the generalized inverse of A denoted by Al
defined by

(€, p)

(€p)

(42,

Er)/ij det(A)’
(&,p)

in which 1 < p < rank(A) < min{m,n} is the greatest integer such that (det)(A) # 0
7p

(where we denote it by pz(A)). Similarly A( *) for each p is defined as follows:

(Ep) Jl]]
A0 = 2. Eiryosipityerdn A <Z-1 L ‘p> :
<n

tp
151 <+ <J<-<jp<
1<i < << <ip<m
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Now, we define the generalized adjoint of A of the order p as follows:

adj (4) = (457).

(€.p) Y

Remark 1 Considering the Corollary G-, if p = pz(A) = min{m,n}, then the matriz

A( 1p) with m < n has the right inverse and for m > n, it has the left inverse.

Our next results are concerned with the properties of the generalized adjoint and
determinantal inverse of rectangular matrices.

Lemma 5.2 Let g;, ... ;, j, - j. = ezfﬂl e where 1 < iy < ++- < ip <m, 1< g1 <
- < jr <nandeq,...,e are arbitrary but fixed non-zero constants. If A € me’” and

B € C™™ are two full-rank matrices such that rank(A) = r = rank(B) = p(., . ,)(A) =
p(el,...,s,‘)(B) = p(sl,...,aT)(AB)a then

adj (AB)=¢e;% -, adj (B) adj (A).

r
(E1yeesEryT) (E1yesEryT) (E1yeemsEryT)

Let ey =---=¢, =¢. Then

adj(AB) = e 70D adj(B) adj(A).
(e,r) (g,r) (e,r)

Proof. The entry in the ith row and jth column of the matrix adj (AB) is equal

(€1, ,&r,T)

to

(51, ",ET,T) _ o1+ B - [ TIEEE .7 e

1B < <i<--<Br<n
1€a; < <j<--<arp<m

Using the Cauchy-Binet formula for square matrices (Theorem B), we get

" QG ap
ZAj,k<1lk 7«)
k=1

(.AB)E;I’“.’ET’T) — Z 811311+,31 . €?T+BT

1<B1 < <i< < Br<n
1Sy <-<j<--<ar<m

1 oo koen o
By ; .
'“(51---1“'&)]
- 1k
[ Z l+ﬂ1,..5:+5er’i<B . g)
1<G1 << < Br<n ! " J

k=1
1+a1 DR
€1

I<ar < <]< <a<m i

Q)
=3
+
Q
S
S
S
B
7N\
-8
<
= 8
~~

—812 L. —2’/‘§ Belv €T A(ah 7577).
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According to Lemma P2 and Lemma B2, we can compute the determinantal inverses
using the notion of the full-rank matrix factorization.

Corollary 5.3 If A = PQ is a full-rank matrix factorization of A € C"*", then the
determinantal inverse of A is

-1 ) —2r—1 -1 —
A(Elz-“vgr:r) =& & TQ(EI:-~~75r7T)P(51:-~~75r:T)’ "= p(glv"wa")(A)'

Let ey =---=¢, =¢. Then

A(;lr) = s_r(TH)Q(;lr)P(;lr) and 7= p.(A).

Using Theorem 2, we can immediately prove the following corollary.

Corollary 5.4 If A€ C;"" and r = p(., . ., )(A), then

-1 _ =2 —2rn-1 —1
(e1yemerr) — €1 Er Q(al,...,a,,,m)P(gl,...,a,,.,r)

and also,
o If P(;lm ) = Pf and Q(;} ) = Q', then A € A{1,2,3,4});
o P! _  =PlandQ _ . #Q then A€ A{1,2,3};

o P A#Pland Q. _ . =0Q then A€ A{1,2,4};

e In other cases, we have A € A{1,2}.
Example 5.5 Let

-2 4 4
-3 1 6
A= 2 0 —4
—-1-1 2
Now, we have A = PQ, where
1 3
-1 2 11-2
P=1 14| and Q‘<—11 2)'
-1 0

The right inverse of Q) is

det (12) — det (1-2)

(R,1) (R,1) -1 -3
Qurz = ga@ |~ () (F12) gen(1=2) | =4 | 3 3
) det (=11) —det (11) -2 0

(§)
(R,1) (R,1)
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The left inverse of P is

2 3 3 3

det | =1 | — det | —1 det | 2 | — det 2

b 1 ®=\ ®=\ ®=D \ o R\ _4
(B2) " det (P) -1 1 1 1
(£.2) — det 1 det 1] —det | —1 det | —1

(R \ _q (R \ _q (R \ _q R\

_1/3-4 10
- 8\3-1-13

and the right generalized inverse of A is equal to

L[~ 6 3-9
At =t Pl o =—| 15-12-3 9
R,2 R,2)" (R,2
(R2) " HRATRY T g | e

The next result represents a sufficient condition for the equivalence of the determinan-
tal inverse and the Moore-Penrose inverse.

Corollary 5.6 If r = pz(A) and the matrix A satisfies the condition

A ler =kg id iy keC C1

<]1 ey Eityeesinif1yedin ( )

fOI’ all (il') e 77:7‘) € Qr,m and (.j17 e 7.j’r’) € Qr,na then A(_glr) = AT

Proof. For i € {1,...,m} and j € {1,...,n}, it can be easily seen that N,(4) =

k get) (A) and Ag’r) = k‘Ag-j’r). Thus, the result follows considering Theorem [T. [ |
Er

Now, by Corollary B8 and Corollary B4, the following algorithm is presented for
computing the determinantal inverse A(_élp_ ()"

Algorithm 1.

Case 1. If p = pz(A) = min{m,n}, then apply rules 1.1 and 1.2.
Rule 1.1 If A satisfies the codition (), then A(_;p) = Al
Rule 1.2 If the condition (CI) does not holds for A, then
(a) For m < n, if (Agp)A> = A(_é’lp)A, then A(_é}p) = AT,
else A(}}p) is a right inverse of A;
(b) For n < m, if (AA(;}p)) = AAZL then AL = AT,
else A(_;p) is a left inverse of A.
Case 2. If pz(A) = ran(A) = r < min{m,n}, then
Rule 2.1 If A satisfies the codition (), then A(_é}T) is the Moore-Penrose
inverse of A.
Rule 2.2 If the condition () does not holds, compute a full-rank factor-
ization A = P(Q) and select one of the following two rules.

Rule 2.3 If both P and @ satisfy condition (CT), then A(_é,lr) = Al



M. Bayat / J. Linear. Topological. Algebra. 11(03) (2022) 189-203. 201

Rule 2.4 If both P or @) satisfy condition (), then
(a) A(_;T) satisfies conditions (1), (2) and (3), if m
(b) A(;lr) satisfies conditions (1), (2) and (4), if m > n.
Rule 2.5 If neither P nor @ satisfies condition (1), use Corollary b23.
Case 3. If pz(A) < ran(A), then A(_glr) ¢ A{1,2}.

S
Z

Example 5.7 The matrix

_1 1
1 i 33
Ama =4 = 7373
5 5
Example 5.8 The rank-deficient matrix
110
A=1011
-101

satisfies condition (C). According to rule 2.1, A-L  is the Moore-Penrose inverse of A

(R,2)
and
1 1
lg_1
A2) — i1 ()3
37 )
3 3
Example 5.9 Consider
121
—-123
A= 2 31
022

We have rank(A) = 2, and ((}i%e;c)(A) =9. A full-rank factorization of A is

11

-13 110
P = 91 and Q:<011>.

02
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The matrix @ satisfies condition (), so that Q(_F} 9) = Q. Also, P(g?) # PT so that

|

—

S~

wl )

[SI [N

N[
) Wl

Wl

| oien
= win

satisfies conditions (1), (2) and (4).

Example 5.10 Full-rank factorization of

1 46
31422
21016
0 2 4

18

3

1
311 110
P=1g g &nd Q:(om)'

Using P(;?lﬂ) # Pt and Q(_}%’Q) £ Q1 it is easy to see that

-2-120
-1 _ | 9 5
A(RQ) =1 2 —50 | € A{1,2}.
—3-3 30
1-2 2 3
Example 5.11 Consider a matrix of theform A= [0 0 2 1 |.If we use the Radié
23 -3-1
definition, then it is easy to verify that p.(A) = 2 < rank(A) and ((Ii%et)(A) = —28.
2
oo ~14 773570
Moreover, X = A}, = and AXA = 14 21 -35—-14 | # A and
2 3-8 0 —42 —63 105 42
-6 9-3
XAX = X.
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