Journal of Linear and Topological Algebra Vol. 11, No. 02, 2022, 93-108 DOR: 20.1001.1.22520201.2022.11.02.3.6 DOI: 10.30495/JLTA.2022.1949354.1458

On equality of complete positivity and complete copositivity of positive map

C. A. Winda^{a,*}, N. B. Okelo^a, O. Ongati^a

^aDepartment of Pure and Applied Mathematics, Jaramogi Oginga Odinga University of Science and Technology, Kenya.

> Received 8 January 2022; Revised 24 May 2022; Accepted 30 May 2022. Communicated by Hamidreza Rahimi

Abstract. In this paper we construct a 2-positive map from $\mathcal{M}_4(\mathbb{C})$ to $\mathcal{M}_5(\mathbb{C})$ and state the conditions under which the map is positive and completely positive (copositivity of positive). The construction allows us to create a decomposable map, where the Choi matrix of complete positivity is equal to the Choi matrix of complete copositivity.

 ${\bf Keywords:}\ 2\text{-positivity},\ {\bf Choi\ matrix},\ {\bf completely\ positivity}.$

2010 AMS Subject Classification: 15B48, 46L05, 47B02.

1. Introduction

Positive maps are essential in the description of quantum systems. However, characterization of the structure of the set of all positive maps is a challenge in mathematics and mathematical physics. The famous Choi result in [1] affirms that a map ϕ is completely positive if and only if it's Choi matrix C_{ϕ} is positive definite. The positive map ϕ is completely positive if and only if C_{ϕ} is positive, otherwise it is not completely positive.

The construction of Choi's map [1-3] and Robertson's map [8, 9] among other indecomposable maps have been used to justify the importance of these maps in their application in quantum mechanics. A family of indecomposable maps for an arbitrary finite dimension n = 3 was constructed in [6]. Other construction of indecomposable maps have been given in [5, 7, 11] are in the context of quantum entanglement.

We construct a linear map $\phi_{(\mu,c_1,c_2,c_3)}$ from \mathcal{M}_4 to \mathcal{M}_5 , where $\mu, c_1, c_2, c_3 \in \mathbb{R}^+$ and study its properties of positivity, completely positivity and decomposability.

© 2022 IAUCTB. http://jlta.ctb.iau.ir

^{*}Corresponding author.

E-mail address: windac75@yahoo.com (C. A. Winda); bnyaare@yahoo.com, nbokelo25@gmail.com (N. B. Okelo); nomoloongati@gmail.com (O. Ongati).

By \mathcal{M}_n we denote the set of positive semidefinite matrices of order n; that is, $A \in \mathcal{M}_n$. The identity map on $\mathcal{M}_n(\mathbb{C})$ and the transpose map on $\mathcal{M}_n(\mathbb{C})$ are denoted by \mathcal{I}_n and τ_n respectively. Let A be a $n \times n$ square matrix. A is positive semidefinite if, for any vector x with real components, $\langle x, Ax \rangle \ge 0$ for all $x \in \mathbb{R}^n$ or equivalently, A is Hermitian and all its eigenvalues are nonnegative and positive definite if $\langle x, Ax \rangle > 0$ for all $x \neq 0$. A linear map ϕ is from $\mathcal{M}_n(\mathbb{C})$ to $\mathcal{M}_m(\mathbb{C})$ is called positive if $\phi(\mathcal{M}_n(\mathbb{C}))^+ \subseteq \mathcal{M}_m(\mathbb{C})^+$. A linear map ϕ form $\mathcal{M}_n(\mathbb{C})$ to $\mathcal{M}_m(\mathbb{C})$ is k-positive if $\mathcal{I}_k \otimes \phi : \mathcal{M}_k \otimes \mathcal{M}_n \longrightarrow \mathcal{M}_k \otimes \mathcal{M}_m$ is positive. On the other hand, a linear map ϕ form $\mathcal{M}_n(\mathbb{C})$ to $\mathcal{M}_m(\mathbb{C})$ is k-copositive. A linear map ϕ from A to $\mathbf{B}(\mathcal{H})$ is k-decomposable if there are maps $\phi_1, \phi_2 : A \longrightarrow \mathbf{B}(\mathcal{H})$ such that ϕ_1 is k-positive, ϕ_2 is k-copositive and $\phi = \phi_1 + \phi_2$.

Let $X \in \mathcal{M}_n(\mathbb{C})$ be a positive semidefinite matrix written, $X = (x_i x_j^*)$, where $x_i = (x_1, \ldots, x_n)^T \in \mathbb{C}^n$ is a column vector and x_j^* is the transpose conjugate(row vector) of x_i . The diagonal elements of the positive semidefinite matrix X given by $x_n \bar{x}_n = |x_n|$ are positive real numbers.

Definition 1.1 Let X be a 4×4 positive semidefinite matrix with complex entries. Let $c_1, c_2, c_3 \in \mathbb{R}^+$, $0 < \mu < 1$ and $r \in \mathbb{N}$. Then we define the positive map $\phi_{(\mu,c_1,c_2,c_3)}$ as follows:

$$\phi_{(\mu,c_1,c_2,c_3)}: \mathcal{M}_4(\mathbb{C}) \longrightarrow \mathcal{M}_5(\mathbb{C})$$

$$X \mapsto \begin{pmatrix} P_1 & -c_1 x_1 \bar{x}_2 & -c_2 x_1 \bar{x}_3 & 0 & -\mu x_1 \bar{x}_4 \\ -c_1 x_2 \bar{x}_1 & P_2 & -c_2 x_2 \bar{x}_3 & -c_3 x_2 \bar{x}_4 & 0 \\ -c_2 x_3 \bar{x}_1 & -c_2 x_3 \bar{x}_2 & P_3 & -c_3 x_3 \bar{x}_4 & 0 \\ 0 & -c_3 x_4 \bar{x}_2 & -c_3 x_4 \bar{x}_3 & P_4 & 0 \\ -\mu x_4 \bar{x}_1 & 0 & 0 & 0 & P_5 \end{pmatrix},$$
(1)

where

$$P_{1} = \mu^{-r}(|x_{1}| + c_{1}|x_{2}|\mu^{r} + c_{2}|x_{3}|\mu^{r} + c_{3}|x_{4}|\mu^{r}),$$

$$P_{2} = \mu^{-r}(|x_{2}| + c_{1}|x_{3}|\mu^{r} + c_{2}|x_{4}|\mu^{r} + c_{3}|x_{1}|\mu^{r}),$$

$$P_{3} = \mu^{-r}(|x_{3}| + c_{1}|x_{1}|\mu^{r} + c_{2}|x_{2}|\mu^{r} + c_{3}|x_{3}|\mu^{r}),$$

$$P_{4} = \mu^{-r}(|x_{1}| + |x_{2}| + |x_{3}| + |x_{4}|),$$

$$P_{5} = \mu^{-r}(|x_{4}| + c_{1}|x_{1}|\mu^{r} + c_{2}|x_{2}|\mu^{r} + c_{3}|x_{4}|\mu^{r}).$$

2. Positivity

A linear map ϕ from $\mathcal{M}_n(\mathbb{C})$ to $\mathcal{M}_m(\mathbb{C})$ preserving symmetry is positive if the matrices $\phi(X)$ are positive semidefinite for all positive semidefinite matrices $X \in \mathcal{M}_n(\mathbb{C})$. The linear map ϕ is the image of positive semidefinite matrices of rank 1 if the matrix $x_i x_j^*$ has rank 1. By definition of positive semidefinite matrices, positivity of the map ϕ gives the biquadratic polynomials of $\phi(X)$. The linear map ϕ is uniquely determined by the polynomial function $F(z, x) := z\phi(x_i x_j^*)z^T$ as a biquadratic function in $x := (x_1, ..., x_n)$ and $z := (z_1, ..., z_m)$. The map ϕ is positive if and only if the biquadratic form F(z, x) is a biquadratic function.

Lemma 2.1 Let $0 < \mu < 1$ and $c_1, c_2, c_3 \ge 0$. Then the function

$$\begin{aligned} F(z_1, z_2, z_3, z_4, z_5, t) \\ &= c_3 |t| z_1^2 + (c_3 + c_2 |t| - 2\mu^r c_2^2) z_2^2 + (c_1 |t| + c_3) z_3^2 + (3\mu^{-r} + \mu^{-r} |t| - 3\mu^r c_3 \operatorname{Re}(t)^2) z_4^2 \\ &+ (c_1 + c_2 + c_3 + |t| \mu^{-r} - \mu^{2+r} \operatorname{Re}(t)^2) z_5^2 + c_1 (z_1 - z_2)^2 + c_2 (z_1 - z_3)^2 + \frac{\mu^{-r}}{2} (z_3 - 2\mu^r c_2 z_2)^2 \\ &+ \mu^{-r} (z_2 - 2\mu^r c_3 \operatorname{Re}(t) z_4)^2 + \mu^{-r} (z_3 - 2\mu^r c_3 \operatorname{Re}(t) z_4)^2 + \mu^{-r} (z_1 - \mu^{1+r} \operatorname{Re}(t) z_5)^2 \end{aligned}$$

is positive semidefinite for every z_1, z_2, z_3, z_4, z_5 and $t \in \mathbb{C}$ whenever it satisfy the inequalities

$$\mu^{-r} \geqslant 2c_3,\tag{2}$$

$$\mu^{-r} \geqslant 2c_1,\tag{3}$$

$$c_1 \geqslant c_2,\tag{4}$$

$$c_1 \mu^{-r} \geqslant c_2^2. \tag{5}$$

Proof. If $z_1 = 0$, then

$$\begin{aligned} F(0, z_2, z_3, z_4, z_5, t) \\ &= \mu^{-r} (1 + c_1 \mu^r + c_2 |t| \mu^r + c_3 \mu^r) z_2^2 + \mu^{-r} (1 + c_1 |t| \mu^r + c_2 \mu^r + c_3 \mu^r) z_3^2 + \mu^{-r} (3 + |t|) z_4^2 \\ &+ \mu^{-r} (|t| + c_1 \mu^r + c_2 \mu^r + c_3 \mu^r) z_5^2 - 2 c_2 z_2 z_3 - 2 c_3 \operatorname{Re}(t) z_2 z_4 - 2 c_3 \operatorname{Re}(t) z_3 z_4 \\ &= \mu^{-r} (1 + c_1 \mu^r) z_2^2 + \mu^{-r} (1 + c_1 |t| \mu^r) z_3^2 + 3 \mu^{-r} z_4^2 + \mu^{-r} (|t| + c_1 \mu^r + c_2 \mu^r + c_3 \mu^r) z_5^2 \\ &+ c_2 (z_3 - c_2)^2 + c_2 (|t| - 1) z_2^2 + c_3 (z_2 - \operatorname{Re}(t) z_4)^2 + (\mu^{-r} \frac{|t|}{2} - c_3 \operatorname{Re}(t)^2) z_4^2 \\ &+ c_3 (z_3 - \operatorname{Re}(t) z_4)^2 + (\mu^{-r} \frac{|t|}{2} - c_3 \operatorname{Re}(t)^2) z_4^2. \end{aligned}$$

From the coefficients of z_2^2 and z_4^2 , we have

$$\mu^{-r} + c_1 + c_2|t| - c_2 = \mu^{-r} + (c_1 - c_2) + c_2|t|,$$

$$3\mu^{-r} + \mu^{-r}|t| - 2c_3 \operatorname{Re}(t)^2 = 3\mu^{-r} + \mu^{-r}(|x|^2 + |y|^2) - 2c_3|x|^2,$$

respectively. The function $F(0, z_2, z_3, z_4, z_5, t)$ is positive whenever it satisfy the inequalities $\mu^{-r} \ge c_2$ and $\mu^{-r} \ge 2c_3$. If $z_2 = 0$, then

$$\begin{split} F(z_1, 0, z_3, z_4, z_5, t) \\ &= \mu^{-r} (1 + c_1 \mu^r + c_2 \mu^r + c_3 |t| \mu^r) z_1^2 + \mu^{-r} (1 + c_1 |t| \mu^r + c_2 \mu^r + c_3 \mu^r) z_3^2 + \mu^{-r} (3 + |t|) z_4^2 \\ &+ \mu^{-r} (|t| + c_1 \mu^r + c_2 \mu^r + c_3 \mu^r) z_5^2 - 2 c_2 z_1 z_3 - 2 c_3 \operatorname{Re}(t) z_3 z_4 - 2 \mu \operatorname{Re}(t) z_1 z_5 \\ &= (c_1 + c_3 |t|) z_1^2 + (c_1 |t| + c_3) z_3^2 + 3 \mu^{-r} z_4^2 + (c_1 + c_2 + c_3) z_5^2 + c_2 (z_1 - z_3)^2 \\ &+ \mu^{-r} (z_3 - \mu^r c_3 \operatorname{Re}(t) z_4)^2 + (\mu^{-r} |t| - \mu^r c_3^2 \operatorname{Re}(t)^2) z_4^2 \\ &+ \mu^{-r} (z_1 - \mu^{1+r} \operatorname{Re}(t) z_5)^2 + (\mu^{-r} |t| - \mu^{2+r} \operatorname{Re}(t)^2) z_5^2 \geqslant 0. \end{split}$$

The coefficients of z_4^2 satisfy the inequality

$$\mu^{-2r}(3+|t|) - c_3^2 \operatorname{Re}(t)^2 = 3\mu^{-2r} + \mu^{-2r}(|x|^2 + |y|^2) - c_3^2 |x|^2 \ge 0$$

whenever (2) hold. If $z_2 = 0$ then

If
$$z_3 = 0$$
, then

$$\begin{aligned} F(z_1, z_2, 0, z_4, z_5, t) \\ &= \mu^{-r} (1 + c_1 \mu^r + c_2 \mu^r + c_3 |t| \mu^r) z_1^2 + \mu^{-r} (1 + c_1 \mu^r + c_2 |t| \mu^r + c_3 \mu^r) z_2^2 + \mu^{-r} (3 + |t|) z_4^2 \\ &+ \mu^{-r} (|t| + c_1 \mu^r + c_2 \mu^r + c_3 \mu^r) z_5^2 - 2c_1 z_1 z_2 - 2c_3 \operatorname{Re}(t) z_2 z_4 - 2\mu \operatorname{Re}(t) z_1 z_5 \\ &= (c_2 + c_3 |t|) z_1^2 + (c_1 + c_2 |t|) z_2^2 + 3\mu^{-r} z_4^2 + (c_1 + c_2 + c_3) z_5^2 + c_1 (z_1 - z_2)^2 \\ &+ (c_3 - c_1) z_2^2 + \mu^{-r} (z_2 - \mu^r c_3 \operatorname{Re}(t) z_4)^2 + (\mu^{-r} |t| - \mu^r c_3^2 \operatorname{Re}(t)^2) z_4^2 \\ &+ \mu^{-r} (z_1 - \mu^{1+r} \operatorname{Re}(t) z_5)^2 + (\mu^{-r} |t| - \mu^{2+r} \operatorname{Re}(t)^2) z_5^2 \ge 0. \end{aligned}$$

The coefficients of z_4^2 satisfy the inequality (2). If $z_4 = 0$, then

$$\begin{split} F(z_1, z_2, z_3, 0, z_5, t) \\ &= \mu^{-r} (1 + c_1 \mu^r + c_2 \mu^r + c_3 |t| \mu^r) z_1^2 + \mu^{-r} (1 + c_1 \mu^r + c_2 |t| \mu^r + c_3 \mu^r) z_2^2 + \mu^{-r} (1 + c_1 |t| \mu^r + c_2 \mu^r + c_3 \mu^r) z_3^2 + \mu^{-r} (|t| + c_1 \mu^r + c_2 \mu^r + c_3 \mu^r) z_5^2 - 2c_1 z_1 z_2 - 2c_2 z_1 z_3 - 2c_2 z_2 z_3 - 2\mu \operatorname{Re}(t) z_1 z_5 \\ &= c_3 |t| z_1^2 + c_1 z_2^2 + \mu^{-r} (1 + c_1 |t| \mu^r + c_3 \mu^r) z_3^2 + \mu^{-r} (|t| + c_1 \mu^r + c_2 \mu^r + c_3 \mu^r) z_5^2 \\ &+ c_1 (z_1 - z_2)^2 + c_2 (z_1 - z_3)^2 + \mu^{-r} (z_3 - \mu^r c_2 z_2)^2 + (c_2 |t| - \mu^r c_2^2) z_2^2 \\ &+ \mu^{-r} (z_1 - \mu^{1+r} \operatorname{Re}(t) z_5)^2 + (\mu^{-r} |t| - \mu^{2+r} \operatorname{Re}(t)^2) z_5^2 \ge 0. \end{split}$$

The function $F(z_1, z_2, z_3, 0, z_5, t)$ is positive if the coefficients of z_2^2 satisfy the inequality (5).If $z_5 = 0$, then

$$\begin{split} F(z_1, z_2, z_3, z_4, 0, t) \\ &= \mu^{-r} (1 + c_1 \mu^r + c_2 \mu^r + c_3 |t| \mu^r) z_1^2 + \mu^{-r} (1 + c_1 \mu^r + c_2 |t| \mu^r + c_3 \mu^r) z_2^2 \\ &+ \mu^{-r} (1 + c_1 |t| \mu^r + c_2 \mu^r + c_3 \mu^r) z_3^2 + \mu^{-r} (3 + |t|) z_4^2 \\ &- 2c_1 z_1 z_2 - 2c_2 z_1 z_3 - 2c_2 z_2 z_3 - 2c_3 \operatorname{Re}(t) z_2 z_4 - 2c_3 \operatorname{Re}(t) z_3 z_4 \\ &= \mu^{-r} (1 + c_3 |t| \mu^r) z_1^2 + c_3 z_2^2 + \mu^{-r} z_3^2 + 3\mu^{-r} z_4^2 + c_1 (z_1 - z_2)^2 + c_2 (z_1 - z_3)^2 \\ &+ c_2 (|t| z_2 - z_3)^2 + (c_1 |t| - c_2) z_3^2 + \mu^{-r} (z_2 - c_1 \mu^r \operatorname{Re}(t) z_4)^2 + (\mu^{-r} \frac{|t|}{2} - \mu^r c_1^2 \operatorname{Re}(t)^2) z_4^2 \\ &+ c_3 (z_3 - \operatorname{Re}(t) z_4)^2 + (\mu^{-r} \frac{|t|}{2} - c_3 \operatorname{Re}(t)^2) z_4^2. \end{split}$$

The function $F(z_1, z_2, z_3, z_4, 0, t)$ is positive whenever the coefficients of z_3^2 satisfy (4) while the coefficients z_4^2 satisfy the inequalities (2) and (3). Now let $z_i \neq 0, i = 1, 2, 3, 4, 5$ and assume that there exist $z_1, z_2, z_3, z_4, z_5 \in \mathbb{R}$ and $t \in \mathbb{C}$ such that $z_1 \neq 0$ and $F(z_1, z_2, z_3, z_4, z_5, t) < 0$. Since $0 < \mu < 1$ and $c_1, c_2 \ge 0$,

then

$$\begin{split} F(z_1, z_2, z_3, z_4, z_5, t) \\ &= \mu^{-r} (1 + c_1 \mu^r + c_2 \mu^r + c_3 |t| \mu^r) z_1^2 + \mu^{-r} (1 + c_1 \mu^r + c_2 |t| \mu^r + c_3 \mu^r) z_2^2 \\ &+ \mu^{-r} (1 + c_1 |t| \mu^r + c_2 \mu^r + c_3 \mu^r) z_3^2 + \mu^{-r} (3 + |t|) z_4^2 + \mu^{-r} (|t| + c_1 \mu^r + c_2 \mu^r + c_3 \mu^r) z_5^2 \\ &- 2c_1 z_1 z_2 - 2c_2 z_1 z_3 - 2c_2 z_2 z_3 - 2c_3 \operatorname{Re}(t) z_2 z_4 - 2c_3 \operatorname{Re}(t) z_3 z_4 - 2\mu \operatorname{Re}(t) z_1 z_5 \\ &= c_3 |t| z_1^2 + \mu^{-r} z_2^2 + \mu^{-r} z_3^2 + 3\mu^{-r} z_4^2 + (c_1 + c_2 + c_3) z_5^2 + c_1 (z_1 - z_2)^2 + c_2 (c_1 - c_3)^2 \\ &+ c_2 (|t| z_2 - z_3)^2 + (c_1 |t| - c_2) z_3^2 + c_3 (z_2 - \operatorname{Re}(t) z_4)^2 + (\mu^{-r} \frac{|t|}{2} - c_3 \operatorname{Re}(t)^2) z_4^2 \\ &+ c_3 (z_3 - \operatorname{Re}(t) z_4)^2 + (\mu^{-r} \frac{|t|}{2} - c_3 \operatorname{Re}(t)^2) z_4^2 \\ &+ \mu^{-r} (z_1 - \mu^{1+r} \operatorname{Re}(t) z_5)^2 + (|t| \mu^{-r} - \mu^{2+r} \operatorname{Re}(t)^2) z_5^2 < 0. \end{split}$$

The function $F(z_1, z_2, z_3, z_4, z_5, t) < 0$ is a contradiction when the inequalities (2) and (4) hold. Thus, $F(z_1, z_2, z_3, z_4, z_5, t) \ge 0$ for every $z_1, z_2, z_3, z_4, z_5 \in \mathbb{R}$ and $t \in \mathbb{C}$

Proposition 2.2 Let $\phi_{(\mu,c_1,c_2,c_3)}$ satisfy the conditions in Lemma 2.1. The linear map $\phi_{(\mu,c_1,c_2,c_3)}$ is positive if $c_1 \ge c_2$.

Proof. We need to show that

$$\phi_{(\mu,c_1,c_2,c_3)} \left(\begin{pmatrix} q\\s\\u\\t \end{pmatrix} \left(\bar{q} \ \bar{s} \ \bar{u} \ \bar{t} \right) \right) \in \mathcal{M}_5^+$$

for every $q, s, u, t \in \mathbb{C}$; that is,

$$\begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \\ z_5 \end{pmatrix}^T \begin{pmatrix} p_1 & -c_1 q \bar{s} - c_2 q \bar{u} & 0 & -\mu q \bar{t} \\ -c_1 s \bar{q} & p_2 & -c_2 s \bar{u} - c_3 s \bar{t} & 0 \\ -c_2 u \bar{q} - c_2 u \bar{s} & p_3 & -c_3 u \bar{t} & 0 \\ 0 & -c_3 t \bar{s} & -c_3 t \bar{u} & p_4 & 0 \\ -\mu t \bar{q} & 0 & 0 & 0 & p_5 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \\ z_5 \end{pmatrix} \ge 0,$$
(6)

where

$$p_{1} = \mu^{-r}(|q| + |s|c_{1}\mu^{r} + |u|c_{2}\mu^{r} + c_{3}|t|\mu^{r}),$$

$$p_{2} = \mu^{-r}(|s| + |u|c_{1}\mu^{r} + c_{2}|t|\mu^{r} + |q|c_{3}\mu^{r}),$$

$$p_{3} = \mu^{-r}(|u| + c_{1}|t|\mu^{r} + |q|c_{2}\mu^{r} + |s|c_{3}\mu^{r}),$$

$$p_{4} = \mu^{-r}(|q| + |s| + |u| + |t|),$$

$$p_{5} = \mu^{-r}(|t| + |q|c_{1}\mu^{r} + |s|c_{2}\mu^{r} + |u|c_{3}\mu^{r})$$

for every $z_1, z_2, z_3, z_4, z_5 \in \mathbb{R}$ and $q, s, u, t \in \mathbb{C}$.

For q, s and u are not equal to zero, assume that q = s = u = 1. Then, by Lemma 2.1,

$$z^{T}\phi_{(\mu,c_{1},c_{2},c_{3})}\left(\begin{pmatrix}1\\1\\1\\t\end{pmatrix}\begin{pmatrix}1111\bar{t}\end{pmatrix}\\\end{pmatrix}z$$

is positive for every $z = (z_1, z_2, z_3, z_4, z_5) \in \mathbb{R}^5$ and $t \in \mathbb{C}$. Taking q = s = u = 0, we have

$$c_3|t|z_1^2 + c_2|t|z_2^2 + c_1|t|z_3^2 + \mu^{-r}|t|z_4^2 + \mu^{-r}|t|z_5^2 \ge 0.$$

If u = 0 and $0 < \mu < 1$, then

$$\begin{split} \mu^{-r}(1+c_1\mu^r+c_3|t|\mu^r)z_1^2 + \mu^{-r}(1+c_2|t|\mu^r+c_3\mu^r)z_2^2 + (c_1|t|+c_2+c_3)z_3^2 \\ &+\mu^{-r}(2+|t|)z_4^2 + \mu^{-r}(|t|+c_1\mu^r+c_2\mu^r)z_5^2 - 2c_1z_1z_2 - 2c_3\operatorname{Re}(t)z_2z_4 - 2\mu\operatorname{Re}(t)z_1z_5 \\ &= c_3|t|z_1^2 + \mu^{-r}(1+c_2|t|)z_2^2 + (c_1|t|+c_2+c_3)z_3^2 + 2\mu^{-r}z_4^2 + (c_1+c_2)z_5^2 \\ &+ c_1(z_1-z_2)^2 + (\mu^{-r}-c_1)z_2^2 + c_3(z_2-\operatorname{Re}(t)z_4)^2 + (\mu^{-r}|t|-c_3\operatorname{Re}(t)^2)z_4^2 \\ &+ \mu^{-r}(z_1-\mu^{1+r}\operatorname{Re}(t)z_5)^2 + (|t|\mu^{-r}-\mu^{2+r}\operatorname{Re}(t)^2)z_5^2 \end{split}$$

is positive when the inequalities (2) and (3) are satisfied.

Let s = 0. Since $0 < \mu < 1$, then

$$\begin{split} \mu^{-r}(1+c_{2}\mu^{r}+c_{3}|t|\mu^{r})z_{1}^{2}+(c_{1}+c_{2}|t|+c_{3})z_{2}^{2}+\mu^{-r}(1+c_{1}|t|\mu^{r}+c_{2}\mu^{r})z_{3}^{2} \\ &+\mu^{-r}(2+|t|)z_{4}^{2}+\mu^{-r}(|t|+c_{1}\mu^{r}+c_{3}\mu^{r})z_{5}^{2}-2z_{2}z_{3}c_{2}-2z_{3}z_{4}c_{3}\operatorname{Re}(t)-2z_{1}z_{5}\mu\operatorname{Re}(t) \\ &=c_{3}|t|z_{1}^{2}+(c_{1}+c_{2}|t|+c_{3})z_{2}^{2}+c_{1}|t|z_{3}^{2}+2\mu^{-r}z_{4}^{2}+(c_{1}+c_{3})z_{5}^{2}+c_{2}(z_{1}-z_{3})^{2} \\ &+\mu^{-r}(z_{3}-\mu^{r}c_{3}\operatorname{Re}(t)z_{4})^{2}+(\mu^{-r}|t|-\mu^{r}c_{3}^{2}\operatorname{Re}(t)^{2})z_{4}^{2} \\ &+\mu^{-r}(z_{1}-\mu^{1+r}\operatorname{Re}(t)z_{5})^{2}+(|t|\mu^{-r}-\mu^{2+r}\operatorname{Re}(t)^{2})z_{5}^{2} \end{split}$$

is positive when the inequality (4) hold.

If q = 0 and $0 < \mu < 1$, then

$$\begin{aligned} (c_1 + c_2 + c_3|t|)z_1^2 + \mu^{-r}(1 + c_1\mu^r + c_2|t|\mu^r)z_2^2 + \mu^{-r}(1 + c_1\mu^r + c_3\mu^r)z_3^2 \\ &+ \mu^{-r}(2 + |t|)z_4^2 + \mu^{-r}(|t| + c_2\mu^r + c_3\mu^r)z_5^2 - 2c_2z_2z_3 - 2c_3\operatorname{Re}(t)z_2z_4 - 2c_3\operatorname{Re}(t)z_3z_4 \\ &= (c_1 + c_2 + c_3|t|)z_1^2 + c_1z_2^2 + \mu^{-r}z_3^2 + 2\mu^{-r}z_4^2 + \mu^{-r}(|t| + c_2\mu^r + c_3\mu^r)z_5^2 \\ &+ c_2(|t|z_2 - z_3)^2 + (\frac{c_1}{c_2} - 1)z_2^2 + \mu^{-r}(z_2 - \mu^r c_3\operatorname{Re}(t)z_4)^2 \\ &+ (\mu^{-r}\frac{|t|}{2} - \mu^r c_3^2\operatorname{Re}(t)^2)z_4^2 + c_3(z_3 - \operatorname{Re}(t)z_4)^2 + (\mu^{-r}\frac{|t|}{2} - c_3\operatorname{Re}(t)^2)z_4^2 \end{aligned}$$

is positive when inequalities (2) and $c_1 \ge c_2$ hold.

3. Completely positivity

The tensor product of positive semidefinite matrices \mathcal{M}_n and \mathcal{M}_{n+1} is isomorphic to the block matrices $\mathcal{M}_n(\mathcal{M}_{n+1})$.

$$\mathcal{M}_n \otimes \mathcal{M}_{n+1} \cong \mathcal{M}_n(\mathcal{M}_{n+1}) \cong \mathcal{M}_2(\mathcal{M}_{m+1}) \text{ for some } n \in \mathbb{N}.$$

By the isomorphism and canonical shuffling we present the structure of the Choi matrix $C_{\phi_{(\mu,c_1,\dots,c_n)}}$ as

$$C_{\phi} = \begin{pmatrix} a & C_{1 \times m} & 0 & Y_{1 \times m} \\ \frac{C_{m \times 1}^{*} & B_{m \times m} & Z_{m \times 1}^{*} & T_{m \times m}}{0 & Z_{1 \times m} & d & F_{1 \times m}} \\ Y_{m \times 1}^{*} & T_{m \times m}^{*} & F_{m \times 1}^{*} & U_{m \times m} \end{pmatrix},$$
(7)

where a, d are positive real numbers while B, U and T are positive semidefinite matrices in \mathcal{M}_m and C, Y, Z are vectors in \mathbb{C}^m . By \bar{c}_{ij} we denote the conjugate of $c_{ij} \in \mathbb{C}$ while conjugate transpose of a matrix C is denoted by C^* . Recall a classical result,

Theorem 3.1 [4] Let S be an invertible matrix. The self-adjoint block matrix $M = \begin{pmatrix} S & P \\ D & C \end{pmatrix}$

$$\left(P^*Q\right)$$

- (i) is positive if and only if S is positive and $P^*S^{-1}P \leq Q$.
- (ii) det $M = (\det S) \det(Q P^*S^{-1}P)$.

Remark 1 For $M = \begin{pmatrix} s & \vec{p} \\ \vec{p^*} & Q \end{pmatrix}$, $\det M = (\det S) \det(Q - P^*S^{-1}P) = s \det(Q - \vec{p^*}s^{-1}\vec{p}) \ge 0$

if and only if $sQ - \vec{p}^*\vec{p} \ge 0$.

The Choi result in [1] shows that a positive map is completely positive if and only if the Choi matrix is positive semidefinite. We look at the conditions for 2-positive, complete positivity and complete copositivity of this map by applying Remark 1 the matrix (7). Then Propositions 3.1 and 3.2 in [12] can be stated as the following:

Proposition 3.2 Let $\phi : \mathcal{M}_n \longrightarrow \mathcal{M}_{n+1}$ be a 2-positive map with the Choi matrix of the form (7). ϕ is completely positive if the following conditions hold:

(i) Z = 0;(ii) $C^*C \leq aB;$ (iii) $Y^*Y \leq aU;$ (iv) if B is invertible, then $T^*B^{-1}T \leq U.$

Proposition 3.3 Let $\phi : \mathcal{M}_n \longrightarrow \mathcal{M}_{n+1}$ be a 2-positive map with the Choi matrix of the form (7). ϕ is completely copositive if the following conditions hold.

(i) Y = 0;(ii) $CC^* \leq aB;$ (iii) $ZZ^* \leq aU;$ (...) $CC^* \leq aU;$

(iv) if B is invertible, then $TB^{-1}T^* = U$.

Remark 2

(1) The transposition in this case implies the partial positive transpose of the Choi

matrix $C_{\phi} \in \mathcal{M}_n(\mathcal{M}_{n+1})$. The transposition is operated with respect to the blocks \mathcal{M}_n . This leads to the partial positive transpose Choi matrix $C_{\phi}^{\Gamma} \in \mathcal{M}_n(\mathcal{M}_{n+1})$ with the structure

$$C_{\phi}^{\Gamma} = \begin{pmatrix} a & C_{1 \times m}^{*} & 0 & Z_{1 \times m}^{*} \\ \frac{C_{m \times 1} & B_{m \times m}}{0 & Y_{1 \times m}^{*}} & Y_{m \times 1} & T_{m \times m}^{*} \\ \frac{C_{m \times 1} & T_{m \times m}}{0 & Y_{1 \times m}^{*}} & d & F_{1 \times m} \\ Z_{m \times 1} & T_{m \times m} & F_{m \times 1}^{*} & U_{m \times m} \end{pmatrix} \in \mathcal{M}_{n}(\mathcal{M}_{n+1}).$$
(8)

(2) The proof of $F^*F \ge dU$ which we include in our paper follows from the proof of Remark 1 of Theorem 3.1.

3.1 Completely positivity of $\phi_{(\mu,c_1,c_2,c_3)}$

Proposition 3.4 Let $\phi_{(\mu,c_1,c_2,c_3)}$ be a positive map given by (1). Then the following conditions are equivalent:

- (i) $\phi_{(\mu,c_1,c_2,c_3)}$ is completely positive.
- (ii) $\phi_{(\mu,c_1,c_2,c_3)}$ is 2-positive.

Proof. $(i) \Rightarrow (ii)$. Assume $\phi_{(\mu,c_1,c_2,c_3)}$ is 2-positive. Consider a rank one matrix $P = [x_i x_j]$ a positive element in $\mathcal{M}_2(\mathcal{M}_5(\mathbb{C}))$, where $x_i = (1, 1, 0, 0, 1, 1, 0, 0, 1, 1)^T$. We have

in $\mathcal{M}_2(\mathcal{M}_5(\mathbb{C}))$, where zeros are replaced by dots.

Since $\phi_{(\mu,c_1,c_2,c_3)}$ is 2-positive, the above matrix is positive definite. Therefore,

$$\begin{vmatrix} \mu^{-r} - c_1 - c_2 & . & \mu \\ -c_1 & \mu^{-r} - c_2 - c_3 & . \\ -c_2 - c_2 & \mu^{-r} - c_3 & . \\ . & -c_3 - c_3 & \mu^{-r} & . \\ \mu & . & . & . & \mu \end{vmatrix} \ge 0$$
(10)

and

$$\mu^{-r} > c_1, \, \mu^{-r} > c_2 \text{ and } \mu^{-r} \ge 2c_3$$
(11)

hold.

The Choi matrix $C_{\phi_{(\mu,c_1,c_2,c_3)}}$ is

<i>μ</i>	-r	0	0	0	0	0	$-c_1$	0	0	0	0	0	$-c_{2}$	0	0	0	0	0	0	$-\mu$
(0	c_3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(0	0	c_2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(0	0	0	μ^{-r}	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(0	0	0	0	c_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(0	0	0	0	0	c_1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	c_1	0	0	0	0	0	μ^{-r}	0	0	0	0	0	$-c_{2}$	0	0	0	0	0	$-c_3$	0
(0	0	0	0	0	0	0	c_3	0	0	0	0	0	0	0	0	0	0	0	0
(0	0	0	0	0	0	0	0	μ^{-r}	0	0	0	0	0	0	0	0	0	0	0
(0	0	0	0	0	0	0	0	0	c_2	0	0	0	0	0	0	0	0	0	0
(0	0	0	0	0	0	0	0	0	0	c_2	0	0	0	0	0	0	0	0	0
(0	0	0	0	0	0	0	0	0	0	0	c_1	0	0	0	0	0	0	0	0
_	c_2	0	0	0	0	0	$-c_{2}$	0	0	0	0	0	μ^{-r}	0	0	0	0	0	$-c_3$	0
(0	0	0	0	0	0	0	0	0	0	0	0	0	μ^{-r}	0	0	0	0	0	0
(0	0	0	0	0	0	0	0	0	0	0	0	0	0	c_3	0	0	0	0	0
(0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c_3	0	0	0	0
(0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c_2	0	0	0
,		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	c_1	0	0
	0	0	U	0	~															
(0 0	0 0	0	0	0	0	$-c_{3}$	0	0	0	0	0	$-c_3$	0	0	0	0	0	μ^{-r}	0

Clearly, Z is a zero matrix and $a,d\in\mathbb{R}^+$ while B and U are positive matrices. Since $a\geqslant 0,$ we have

which inequality $aB - C^*C \ge 0$ hold when $\mu^{-r} > c_1$. Next,

$$dU = c_2 \begin{pmatrix} c_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \mu^{-r} & 0 & 0 & 0 & 0 & 0 & -c_3 & 0 \\ 0 & 0 & \mu^{-r} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & c_3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & c_3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & c_1 & 0 & 0 \\ 0 & -c_3 & 0 & 0 & 0 & 0 & 0 & \mu^{-r} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mu^{-r} \end{pmatrix}.$$

The inequality $dU \ge 0$ holds when $\mu^{-r} > c_3$. For

$$aU-Y^*Y = \begin{pmatrix} c_1\mu^{-r} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \mu^{-2r} - c_2^2 & 0 & 0 & 0 & 0 & 0 & -c_3\mu^{-r} & 0 \\ 0 & 0 & \mu^{-2r} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & c_3\mu^{-r} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & c_3\mu^{-r} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & c_1\mu^{-r} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mu^{-2r} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mu^{-2r} - \mu^2 \end{pmatrix}.$$

the matrix $aU - Y^*Y$ is positive when $\mu^{-2r} > c_2^2 + c_3^2$ holds. Since $c_3 \ge c_1 \ge c_2$, the maximum value of $c_2^2 + c_3^2$ is attained when $c_3 = c_2$. Therefore, $\mu^{-2r} > c_2^2 + c_3^2 \le c_3^2 + c_3^2 = 2c_3^2$, where $\mu^{-r} \ge 2c_3$.

All the principal minors of $U - TB^{-1}T$ are positive when $c_1\mu^{-r} - (c_2^2 + c_3^2) > 0$. It is clear that $c_3 \ge c_1 \ge c_2$, so

$$c_1\mu^{-r} - (c_2^2 + c_3^2) < c_3\mu^{-r} - (c_3^2 + c_3^2) = c_3\mu^{-r} - 2c_3^2 > 0.$$

This implies that $\mu^{-r} > 2c_3$. Hence the set of inequalities (11) are satisfied, consequently $C_{\phi_{(\mu,c_1,c_2,c_3)}}$ is positive semidefinite. Hence, complete positivity of $\phi_{(\mu,c_1,c_2,c_3)}$ follows.

3.2 Completely copositivity of $\phi_{(\mu,c_1,c_2,c_3)}$

Proposition 3.5 Let $\phi_{(\mu,c_1,c_2,c_3)}$ be a positive map given by (1). The positive map $\phi_{(\mu,c_1,c_2,c_3)}$ is completely copositive if the following conditions holds:

- (i) $\phi_{(\mu,c_1,c_2,c_3)}$ is 2-copositive.
- (ii) $\phi_{(\mu,c_1,c_2,c_3)}$ is completely copositive.

Proof. Assume $\phi_{(\mu,c_1,c_2,c_3)}$ is 2-copositive. Consider a rank one matrix P an element in

 $\mathcal{M}_2(\mathcal{M}_5(\mathbb{C}))$ where $x_i = (1, 1, 0, 0, 1, 1, 0, 0, 1, 1)^T$, we have

in $\mathcal{M}_2(\mathcal{M}_5(\mathbb{C}))$. By computation of the minors, $\tau_2 \otimes \phi_{(\mu,c_1,c_2,c_3)}(P)$ is positive semidefinite on condition that

$$\mu^{-r} > c_1, \ \mu^{-r} > c_2, \ \mu^{-r} \ge 2c_3, \ c_3 \ge c_1 \ and \ c_1 \ge c_2$$
(13)

hold. The choi matrix $C^{\Gamma}_{\phi_{(\mu,c_1,c_2,c_3)}}$ is

μ^{-r}		•			•	•		•	•							•			. \
	c_3	•		•	$-c_1$				•	.	•	•	•	•			•	•	
•	•	c_2	•	•	•	•	•	•	•	$ -c_2 $	•	•	•	•	•	•	•	•	•
•	•	•	μ^{-r}	•	•	•	•	•	•	.	•	•	•	•	•	•	•	•	•
•	•	•	•	c_1	•	•	•		·	.	•	•	•	•	$-\mu$	•	•	•	·
•	$-c_1$	•	•	•	-	•		•	•	.	•	•	•	•	•	•	•	•	•
•	•	•	•	·	•	μ^{-r}	•	•	·	.	•	•	•	·	·	•	•	•	•
•	•	•	•	·	•	•	c_3	•		.	$-c_2$	•	•	·	·	•	•	•	•
•	•	•	•	·	•	•	•	μ^{-r}	•	.	•	•	•	·	·	$-c_3$	•	•	•
•	•	•	•	•	•	•	•	•	c_2	•	•	•	•	•	•	•	•	•	•
	•	$-c_2$					•	•		c_2	•	•	•			•		•	
•	•	•	•	•	•	•	$-c_{2}$	•	•	.	c_1	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	.	•	μ^{-r}	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	.	•	•	μ^{-r}	•	•	•	$-c_3$	•	•
•	•	•	•	·	•	•	•	•	·	.	•	•	•	c_3	•	•	•	•	•
•	•	•	•	$-\mu$	•	•	•	•	•	.	•	•	•	•	c_3	•	•	•	•
•	•	•	•	•	•	•	•	$-c_3$; .	.	•	•	•	•	•	c_2	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	$-c_3$	•	·	•	-	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	·	•	•	μ^{-r}	•
\ ·	•	•	•	•	·	·	•	•	•	.	•	•	•	•	•	•	•	•	μ^{-r} /

Since $a \ge 0$ and C = 0, we have

The inequality $aB - CC^* \ge 0$ hold when $c_3 \ge c_1$.

Since F is a zero matrix, $dU - FF^*$ is positive when the inequality $c_1\mu^{-r} > c_3^2$ hold.

$$aU - ZZ^* = \begin{pmatrix} \mu^{-r}c_3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \mu^{-2r} - c_1^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \mu^{-2r} & 0 & 0 & 0 & -c_3\mu^{-r} & 0 & 0 \\ 0 & 0 & 0 & \mu^{-r}c_3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \mu^{-r}c_3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & \mu^{-r}c_2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \mu^{-r}c_1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mu^{-2r} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \mu^{-2r} \end{pmatrix}.$$

The matrix is positive when the inequality $c_1\mu^{-r} > c_2^2$ holds. Finally,

The minors of $U - TB^{-1}T^*$ are nonnegative when the inequalities $\mu^{-r} > c_3$, $c_1 \ge c_2$ and $c_1\mu^{-r} > c_3^2$ hold.

Example 3.6 The linear map $\phi_{(\frac{1}{2},\frac{2}{3},\frac{1}{5},\frac{3}{4})}$ is completely positive and completely copositive for $r \ge 1$.

4. Construction of a decomposable map

Given the positive map $\phi : \mathcal{M}_n \longrightarrow \mathcal{M}_{n+1}$. Our aim is to construct a new map $\Phi : \mathcal{M}_n \longrightarrow \mathcal{M}_{n+1}$ by means of the given map ϕ such that $\Phi_1 = \phi(X)$ and $\Phi_2 = \phi(X^T)$. It is clear that the Hermitian conjugation and transposition transform column-vectors into row-vectors and vice-versa.

Definition 4.1 By a merging of the maps Φ_1 and Φ_2 , we can define

$$\Phi_{(\mu,c_1,c_2,c_3)}:\mathcal{M}_4(\mathbb{C})\longrightarrow\mathcal{M}_5(\mathbb{C}),$$

$$X \mapsto \begin{pmatrix} 2P_1 & -c_1(x_1\bar{x}_2+x_2\bar{x}_1) & -c_2(x_1\bar{x}_3+x_3\bar{x}_1) & 0 & -\mu(x_1\bar{x}_4+x_4\bar{x}_1) \\ -c_1(x_2\bar{x}_1+x_1\bar{x}_2) & 2P_2 & -c_2(x_2\bar{x}_3+x_3\bar{x}_2) & -c_3(x_2\bar{x}_4+x_4\bar{x}_2) & 0 \\ -c_2(x_3\bar{x}_1+x_1\bar{x}_3) & -c_2(x_3\bar{x}_2+x_2\bar{x}_3) & 2P_3 & -c_3(x_3\bar{x}_4+x_4\bar{x}_3) & 0 \\ 0 & -c_3(x_4\bar{x}_2+x_2\bar{x}_4) & -c_3(x_4\bar{x}_3+x_3\bar{x}_4) & 2P_4 & 0 \\ -\mu(x_4\bar{x}_1+x_1\bar{x}_4) & 0 & 0 & 0 & 2P_5 \end{pmatrix},$$
(14)

104

where

$$P_{1} = \mu^{-r}(|x_{1}| + c_{1}|x_{2}|\mu^{r} + c_{2}|x_{3}|\mu^{r} + c_{3}|x_{4}|\mu^{r}),$$

$$P_{2} = \mu^{-r}(|x_{2}| + c_{1}|x_{3}|\mu^{r} + |x_{4}|c_{2}\mu^{r} + |x_{1}|c_{3}\mu^{r}),$$

$$P_{3} = \mu^{-r}(|x_{3}| + c_{1}|x_{1}|\mu^{r} + |x_{2}|c_{2}\mu^{r} + |x_{3}|c_{3}\mu^{r}),$$

$$P_{4} = \mu^{-r}(|x_{1}| + |x_{2}| + |x_{3}| + |x_{4}|),$$

$$P_{5} = \mu^{r}(|x_{4}| + c_{1}|x_{1}|\mu^{r} + c_{2}|x_{2}|\mu^{r} + c_{3}|x_{4}|\mu^{r}).$$

Proposition 4.2 The linear map $\Phi_{(\mu,c_1,c_2,c_3)}$ is positive.

Proof. Let $b_{ij} = x_i \bar{x}_j + x_j \bar{x}_i$. Then the map (14) reduces to

$$\Phi(X) = \begin{pmatrix} 2P_1 & -c_1b_{12} & -c_2b_{12} & 0 & -\mu b_{14} \\ -c_1b_{21} & 2P_2 & -c_2b_{23} & -c_3b_{24} & 0 \\ -c_2b_{31} & -c_2b_{32} & 2P_3 & -c_3b_{34} & 0 \\ 0 & -c_3b_{42} & -c_3b_{43} & 2P_4 & 0 \\ -\mu b_{41} & 0 & 0 & 0 & 2P_5 \end{pmatrix}.$$

The proof follows from Proposition 2.2.

Proposition 4.3 The linear map $\phi_{(\mu,c_1,c_2,c_3)}$ is 2-positive (2-copositive).

Proof. Let $\Phi_{(\mu,c_1,c_2,c_3)}$ be positive. We have that $\mathcal{I}_2 \otimes \Phi_{(\mu,c_1,c_2,c_3)}(X)$ is the matrix

1	$2\mu^{-r}$.	$-c_1$	$-c_{2}$		$-\mu$	
	•	$2c_3$	•			$ -c_1 $	•	•	•		
	•	•	$2c_2$			$-c_2$	•	•	•		
	•	•	•	$2\mu^{-r}$			•	•	•		
	•	•	•	•	$2c_1$	$ -\mu $	•	•	•		. (15
	•	$-c_1$	$-c_{2}$		$-\mu$	$2c_1$	•	•	•		. (10
	$-c_1$		•				$2\mu^{-r}$	$-2c_{2}$	$-2c_{3}$		
	$-c_{2}$	•	•				$-2c_{2}$	$2\mu^{-r}$	$-2c_{3}$		
	•	•	•					$-2c_{3}$			
1	$-\mu$	•	•	•	•	.	•	•	•	$2\mu^{-r}$	1

Since $\phi_{(\mu,c_1,c_2,c_3)}$ is 2-positive, the matrix $\mathcal{I}_2 \otimes \Phi_{(\mu,c_1,c_2,c_3)}(X)$ is positive definite. Therefore,

$$\mu^{-r} > c_1, \ \mu^{-r} > c_2, \ \mu^{-r} > c_3, \ c_3 \ge c_1, \ c_1 \ge \mu, \ c_1 \ge c_2$$

hold.

Proposition 4.4 The linear map $\phi_{(\mu,c_1,c_2,c_3)}$ is completely positive (completely copositive).

Proof. The computation of the Choi matrix of the linear map $\Phi_{(\mu,c_1,c_2,c_3)}$ gives

 $C_{\Phi_{(\mu,c_1,c_2,c_3)}}$ as

1	$2\mu^{-r}$	0	0	0	0	0	$-c_{1}$	0	0	0	0	0	$-c_{2}$	0	0	0	0	0	0	$-\mu$
	0	$2c_3$	0	0	0	$-c_1$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	$2c_2$	0	0	0	0	0	0	0	$ -c_2 $	0	0	0	0	0	0	0	0	0
	0	0	0	$2\mu^{-r}$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	$2c_1$	0	0	0	0	0	0	0	0	0	0	$-\mu$	0	0	0	0
	0	$ -c_1 $	0	0	0	$2c_1$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	$-c_1$	0	0	0	0	0	$2\mu^{-r}$	0	0	0	0	0	$-c_{2}$	0	0	0	0	0	$-c_3$	0
	0	0	0	0	0	0	0	$2c_3$	0	0	0	$-c_2$	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	$2\mu^{-r}$	0	0	0	0	0	0	0	$-c_3$	0	0	0
	0	0	0	0	0	0	0	0	0	$2c_2$	0	0	0	0	0	0	0	0	0	0
	0	0	$-c_{2}$	0	0	0	0	0	0	0	$2c_2$	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	$-c_{2}$	0	0	0	$2c_1$	0	0	0	0	0	0	0	0
	$-c_{2}$	0	0	0	0	0	$-c_{2}$	0	0	0	0	0	$2\mu^{-r}$	0	0	0	0	0	$-c_3$	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	$2\mu^{-r}$	0	0	0	$-c_3$	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$2c_3$	0	0	0	0	0
	0	0	0	0	$-\mu$	0	0	0	0	0	0	0	0	0	0	$2c_3$	0	0	0	0
	0	0	0	0	0	0	0	0	$-c_3$	0	0	0	0	0	0	0	$2c_2$	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	$-c_3$	0	0	0	$2c_1$	0	0
	0	0	0	0	0	0	$-c_3$	0	0	0	0	0	$-c_{3}$	0	0	0	0	0	$2\mu^{-r}$	0
($-\mu$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	$2\mu^{-r}$ /

and

The matrix is positive when $2\mu^{-r} > c_1$ and $4c_3 \ge c_1$.

$$dU = 2c_2 \begin{pmatrix} 2c_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2\mu^{-r} & 0 & 0 & 0 & 0 & 0 & -c_3 & 0 \\ 0 & 0 & 2\mu^{-r} & 0 & 0 & 0 & -c_3 & 0 & 0 \\ 0 & 0 & 0 & 2c_3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2c_3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2c_2 & 0 & 0 & 0 \\ 0 & 0 & -c_3 & 0 & 0 & 0 & 2c_1 & 0 & 0 \\ 0 & -c_3 & 0 & 0 & 0 & 0 & 0 & 2\mu^{-r} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\mu^{-r} \end{pmatrix}.$$

 $dU \ge 0$ is positive when $4\mu^{-r} > c_3$ and $4c_1\mu^{-r} > c_3^2$.

$$aU - Y^*Y = \begin{pmatrix} 4c_1\mu^{-r} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4\mu^{-2r} - c_2^2 & 0 & 0 & 0 & 0 & 0 & -2c_3\mu^{-r} & -c_2\mu \\ 0 & 0 & 4\mu^{-2r} & 0 & 0 & 0 & -2c_3\mu^{-r} & 0 & 0 \\ 0 & 0 & 0 & 4c_3\mu^{-r} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 4c_3\mu^{-r} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2c_4\mu^{-r} & 0 & 0 & 0 \\ 0 & 0 & -2c_3\mu^{-r} & 0 & 0 & 0 & 4c_1\mu^{-r} & 0 & 0 \\ 0 & -2c_3\mu^{-r} & 0 & 0 & 0 & 0 & 4\mu^{-2r} & 0 \\ 0 & -c_2\mu & 0 & 0 & 0 & 0 & 0 & 4\mu^{-2r} - \mu^2 \end{pmatrix}$$

is positive when $2\mu^{-r} > c_2$, $4\mu^{-2r} > c_2^2 + c_3^2$ and $4\mu^{-2r} > c_2^2 + \mu^2$ holds.

is positive when $2\mu^{-r} > c_2$ and $4\mu^{-2r} > c_2^2 + c_3^2$ holds.

$$U - TB^{-1}T^* = \begin{pmatrix} 2c_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2\mu^{-r} & 0 & 0 & 0 & 0 & 0 & -c_3 & 0 \\ 0 & 0 & 2\mu^{-r} & 0 & 0 & 0 & -c_3 & 0 & 0 \\ 0 & 0 & 0 & 2c_3 & 0 & 0 & \frac{c_2\mu}{c_1+c_3} & 0 & 0 \\ 0 & 0 & 0 & 0 & 2c_3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2c_2 - \frac{1}{2}(c_2 + c_3\mu^r) & 0 & 0 & 0 \\ 0 & 0 & -c_3 & 0 & 0 & 0 & 2c_1 - \frac{c_2^2}{c_1+c_3} & 0 & 0 \\ 0 & -c_3 & 0 & \frac{1}{2}c_3\mu^{r+1} & 0 & 0 & 0 & 2\mu^{-r} - \frac{1}{2}c_3^2\mu^r & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2\mu^{-r} \end{pmatrix}.$$

The minors of $U - TB^{-1}T^*$ are nonnegative when the inequalities $2\mu^{-r} > c_3$, $c_1 \ge c_2$ and $4c_1\mu^{-r} > c_3^2$ hold.

Proposition 4.5 The linear map $\Phi_{(\mu,c_1,c_2,c_3)}$ is decomposable.

Proof. From Proposition 4.5, $\Phi_{(\mu,c_1,c_2,c_3)}$ is 2-positive (2-copositive) and complete positivity is equivalent to complete copositivity. Observe that the sum of $C_{\phi_{(\mu,c_1,c_2,c_3)}}$ in Proposition 3.4 and $C_{\phi_{(\mu,c_1,c_2,c_3)}}^{\Gamma}$ in Proposition 3.5 is given by $C_{\Phi_{(\mu,c_1,c_2,c_3)}}$. That is, $C_{\Phi_{(\mu,c_1,c_2,c_3)}}^{\Gamma} = C_{\phi_{(\mu,c_1,c_2,c_3)}} + C_{\phi_{(\mu,c_1,c_2,c_3)}}^{\Gamma}$. Therefore, $\Phi_{(\mu,c_1,c_2,c_3)}$ is decomposable with $\phi_{1(\mu,c_1,c_2,c_3)}$ 2-positive and $\phi_{2(\mu,c_1,c_2,c_3)}$ 2-copositive.

Proposition 4.6 Let be ϕ linear map in $\mathbf{B}(\mathcal{M}_n(\mathbb{C}), \mathcal{M}_m(\mathbb{C}))$. If the matrix transpose of $[\phi(x_{ij})]$ is equal to $[\phi(x_{ji})]$, then ϕ decomposable.

Proof. Assume that $\mathcal{M}_n \subset \mathbf{B}(\mathcal{S})$ for some Hilbert space \mathcal{S} . Let

$$S = \{ \begin{pmatrix} x & 0 \\ 0 & x^T \end{pmatrix} \in \mathcal{M}_2(\mathbf{B}(\mathcal{S})) : x \in \mathcal{M}_n \},$$
(16)

where T represents the transposition map with respect to some orthonormal basis in S. Then S is a self-adjoint subspace of $\mathcal{M}_2(\mathbf{B}(S))$ with the identity. One can observe that both $[x_{ij}]$ and $[x_{ji}]$ are in $\mathcal{M}_k(\mathcal{M}_n)^+$ if and only if

$$\begin{pmatrix} \begin{bmatrix} x11 & 0 \\ 0 & x_{11}^T \end{bmatrix} \cdots \begin{bmatrix} x_{1k} & 0 \\ 0 & x_{1k}^T \end{bmatrix} \\ \vdots & \vdots \\ \begin{bmatrix} x_{k1} & 0 \\ 0 & x_{k1}^T \end{bmatrix} \cdots \begin{bmatrix} x_{kk} & 0 \\ 0 & x_{kk}^T \end{bmatrix} \end{pmatrix} \in \mathcal{M}_K(\mathcal{S})^+.$$

Therefore, ϕ is k-positive. Since $[\phi(x_{ij})] = [x_{ij}]^T = [x_{ji}] = [\phi(x_{ji})] \in \mathcal{M}_k(\mathcal{A})^+$. By [10, Theorem 1], ϕ is decomposable.

Conjecture 4.7 If ϕ is a linear map in $\mathbf{B}(\mathcal{A}, \mathbf{B}(\mathcal{H}))$ and is decomposable to a 2-positive map ϕ_1 and a 2-copositive map ϕ_2 such that $\phi_1, \phi_2 : \mathcal{A} \longrightarrow \mathbf{B}(\mathcal{H})$. Then ϕ_1 is also 2-decomposable whenever C_{Φ} is equal to C_{Φ}^{Γ} .

Acknowledgments

We wish to thank an anonymous referees for their insightful suggestions that helped to improve the content of the paper.

References

- M. D. Choi, Completely positive maps on complex matries, Linear Algebra and its Applications. 10 (1975), 285-290.
- W. Hall, Constructions of indecomposable positive maps based on a new criterion for indecomposability, arXiv:quant-ph/0607035v1, (2006), 1-11.
- [3] W. Hall, A new criterion for indecomposability of positive maps a new criterion for indecomposability of positive maps a new criterion for indecomposability of positive maps, J. Phys. A. 39 (2006), 14119-14131.

[4] F. Hiai, D. Petz, Introduction to Matrix Analysis and Applications, Springer, New Delhi, 2014.

- [5] H. J. Kim, S. H. Kye, Indecomposable extreme positive linear maps in matrix algebras, London Math. Soc. 26 (1994), 575-581.
- [6] A. Kossakowski, A class of linear positive maps in matrix algebras, Open Sys. Inform. Dyn. 10 (2003), 213-220.
- [7] H. Osaka, Indecomposable positive maps in low dimensional matrix algebras, Linear Algebra and its Applications. 153 (1991), 73-83.
- [8] A. G. Robertson, Positive prjection on C*-algebra and extremal positive maps, J. London Math. Soc. 32 (2) (1985), 133-140.
- [9] A. G. Robertson, Automorphisms of spin factors and the decomposition of positive maps, Quart. J. Math. Oxford. 34 (1983), 87-96.
- [10] E. Stømer, Decomposable positive maps on C*-algebras, Amer. Math. Soc. 86 (1982), 402-404.
- W. Tang, On positive linear maps between matrix algebras, Linear Algebra and its Applications. 79 (1986), 33-44.
- [12] C. A. Winda, N. B. Okelo, O. Ongati, Choi matrices of 2-positive maps on positive semidefinite matrices, Asian Research Journal of Mathematics. 16 (4) (2020), 60-71.