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Abstract. Topological complexity which plays an important role in motion planning problem
can be generalized to homotopic distance D as introduced in [6]. In this paper, we study the
homotopic distance and mention that it can be realized as a pseudometric on Map(X,Y ).
Moreover we study the topology induced by the pseudometric D. In particular, we consider
the space Map(S1, S1) and use the non-compactness of it to talk about the non-compactness
of Map(X,Y ).
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1. Introduction and preliminaries

In [4], Michael Farber introduced a new concept in topology which is related to com-
puter sciences and engineering based on the theory of robot motion planning by Latombe
et al. [5]. Farber considered the following problem: Roughly speaking, one asks if it is
possible to control a robot’s motion from any point A to any point B in X using only
one rule (continuous function). More precisely, one asks if it is possible to write only one
continuous function which assings any pair (A,B) ∈ X×X a path in X starting at A and
terminating at B. In [4], Farber showed that it is possible to find only one such a function
if and only if X is contractible. For non-contractible spaces, Farber introduced a notion
called topological complexity (denoted by TC). In some sense, topological complexity
measures how far a space is away from admitting such a function.
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Homotopic distance which is introduced by Maćıas-Virgós and Mosquera-Lois, is a
generalization of topological complexity and also Lusternik Schnirelmann category (cat).
One of the importance of this new concept is to give easier proofs of the cat- and TC-
related theorems due to the theorems in [6] which tells how the homotopic distance
behaves under the composition. This leads us to think that new theorems on cat and TC
can be proved with a help of homotopic distance.

In this section, we first give a brief background recalling the definitions of Lusternik
Schnirelmann category, topological complexity, and homotopic distance and giving the
relations between these concepts. Secondly, we talk about three properties of homotopic
distance which allow us to understand the distance as an extended pseudometric. Later we
introduce the topology induced by this pseudometric and give some topological properties
of open balls Br(f)’s.

In Section 2, we consider a specific space Map(S1, S1) where S1 is a unit circle in
a plane. One of the main results of this section is that open balls in this space are
Br(f) = {f}, if r ⩽ 1 and Map(S1, S1) otherwise. One another important result is that
Map(S1, S1) is not compact. Later in the last section, we will combine these results with

C̆ech closure operators and conclude that Map(X,Y ) is not compact under some certain
conditions.

In Section 3, we consider the general space Map(X,Y ) and introduce some of its
topological properties such as connectedness.

Let us recall that a map f : X → Y is called null-homotopic, provided f is homotopic
to a constant map c : X → Y and also recall that an open covering of a topological space
X is a collection of open subsets of X whose union is X.

Definition 1.1 [2] The Lusternik Schnirelmann category of a space X, cat(X), is the
least non-negative integer k ⩾ 0, provided there exists an open covering {U0, U1, . . . , Uk}
of X such that the inclusion on each Ui is null-homotopic for i = 0, 1, . . . , k. If there is
no such a covering, cat(X) = ∞.

Recall that the fibration π : PX → X ×X which assigns a path γ in X its initial and
final points is called a path fibration.

Definition 1.2 [4] Let π : PX → X ×X, by π(γ) = (γ(0), γ(1)) be the path fibration.
The topological complexity of a space X, TC(X), is the least non-negative integer k ⩾ 0,
provided there exists an open covering {U0, U1, . . . , Uk} of X ×X such that there exists
a continuous section si : Ui → PX for each i = 0, 1, . . . , k. If there is no such a covering,
TC(X) = ∞.

Definition 1.3 [6] Let f, g : X → Y be continuous maps. The homotopic distance
between f and g, denoted by D(f, g), is the least non-negative integer k such that there
exist open subsets U0, U1, · · · , Uk of X covering X satisfying f

∣∣
Ui

' g
∣∣
Ui

for each i =

0, 1, · · · , k. If there is no such a covering, D(f, g) = ∞.

The relations between homotopic distance D, cat and TC can be given as follows. We
have D(id, c) = cat(X) where id and c are the identity map and a constant map on X,
respectively. We also have D(i1, i2) = cat(X), provided ij : X ↪→ X × X for j = 1, 2,
given by i1(x) = (x, x0) and i2(x) = (x0, x). Further, D(pr1,pr2) = TC(X), provided
prj : X ×X → X is the projection to the j-th factor for j = 1, 2. For proofs and more
details, we refer to [6].

The following three propositions listed below are the properties of homotopic distance
which allow us to build a metric space. Also, The following proposition follows from the
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fact that homotopy is an equivalence relation.

Proposition 1.4 [6] If f, g : X → Y are maps, then D(f, g) = D(g, f).

Proposition 1.5 [6] If f, g : X → Y are maps, then D(f, g) = 0 iff f ' g.

The above proposition follows from the fact that if f ' g, we can take U = X so
D(f, g) = 0, and vice versa.

Proposition 1.6 [6] If f, g, h : X → Y are maps and X is a normal space, then

D(f, h) ⩽ D(f, g) + D(g, h)

Proof. This proof is given by Maćıas-Virgós and Mosquera-Lois in [6]. Let D(f, g) = m
and D(g, h) = n. Then there exists an open covering U = {U0, . . . , Um} of X satisfying
that f |Ui

' g|Ui
for each i = 0, 1, . . . ,m and an open covering V = {V1, . . . , Vn} of X

satisfying that g|Vj
' h|Vj

for each j = 0, 1, . . . , n. Since these properties are closed
for open subsets and disjoint unions, by [7, Lemma 4.3], X has an open covering W =
{W0, . . . ,Wm+n} satisfying that f |Wk

' g|Wk
' h|Wk

for all k = 0, 1, . . . ,m+n. Therefore
D(f, h) ⩽ m+ n. ■

A pseudometric d on a non-empty set M is a function d : M × M → [0,∞) that
satisfies

M1) d(m,m) = 0,
M2) d(m,n) = d(n,m),
M3) d(m,n) ⩽ d(m, k) + d(k, n)

for all m,n, k ∈ M . Further d is called a semimetric, provided it satisfies all but M3 with
the additional condition that d(m,n) = 0 implies m = n. An extended pseudometric on
M is a map d : M ×M → [0,∞] satisfying the three axioms.

Let Map(X,Y ) be the set of continuous maps from X to Y

Map(X,Y ) = {f : X → Y | f is continuous}.

Consider the following function

D : Map(X,Y )×Map(X,Y ) → [0,∞]

(f, g) 7→ D(f, g).

Notice that D is an extended semimetric on the quotient Map(X,Y )/R where R is the
equivalence relation on Map(X,Y ) defined by

f R g iff D(f, g) = 0.

We restrict ourselves for X to be a normal space so that D turns into an extended
pseudometric on Map(X,Y ). An (extended) pseudometric also induces an (extended)
pseudometric space which is generated by the set of open balls. Then the topology on
Map(X,Y ) induced by D is generated by the open balls

Br(f) := {g ∈ Map(X,Y ) | D(f, g) < r}

for r > 0. Observe that Br(f) consists of maps which are homotopic to f for r ⩽ 1.

Remark 1 For a simplicial complex K, the geometric realization ||K|| is a normal
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Hausdorff space (see Theorem 17 in [9]). So, for simplicial complexes K and L, we
can consider the topology on Map(||K||, ||L||) which is induced by D. More generally,
for a simplicial complex K and a topological space X, we can consider the topology on
Map(||K||, X) induced by D.

Throughout this paper, the ‘domain space’ X of Map(X,Y ) is assumed to be a normal
space.

Proposition 1.7 For f ∈ Map(X,Y ), the open ball Br(f) has the indiscrete topology
for r ⩽ 1.

Proof. We have Bε(f) ⊇ Br(f) for all f ∈ Br(f) and ε > 0. ■

Proposition 1.7 yields that the open ball Br(f) is connected for r ⩽ 1. However this is
not true for the case r > 1 under a certain condition.

Theorem 1.8 Br(f) is not connected for r > 1, provided B1(f) is a proper subset of
Br(f).

Proof. Take U = B1(f). For r > 1, U = B1(f) ⊆ Br(f). U is obviously open. Further,
U is also closed, since its closure U = U ∪ {h ∈ Br(f) |D(h,U) = 0} is equal to U where
D(h,U) = ming∈U D(g, h).

Now take V = U c which is an open set. Since B1(f) is a proper subset of Br(f), V is
non-empty. Hence U and V separates Br(f). This concludes that Br(f) is not connected.
■

Throughout this paper when we say ‘space’, we mean the pseudometric space induced
by D.

2. Map(S1, S1)

In this section, we consider a special case of Map(X,Y ), that is, the space of continuous
maps from S1 to S1. One of the main results in this section is that Map(S1, S1) is not
compact and this result will be used in the proof of non-compactness of Map(X,Y ) in
the last section.

Let us start with the results which give the relation between the degree of a map and
the homotopic distance.

Consider the space Map(S1, S1) where S1 is the unit circle and let f ∈ Map(S1, S1).
Then the induced map f∗ from the fundamental group of the circle π1(S

1) to itself is a
group homomorphism f∗ : π1(S

1) → π1(S
1). Note that Im(f) is a subgroup of Z so that

it is of the form nZ for some n ∈ Z. This gives us that either f is a constant map or is
of the form z 7→ zn for n ∈ Z.

Theorem 2.1 Consider the space Map(S1, S1). Let fn, fm ∈ Map(S1, S1) of degree n
and m, respectively. Then D(fn, fm) = 1.

Proof. We know that D(fn, fm) ⩽ cat(S1) by Corollary 3.9 in [6]. The fact that
cat(S1) = 1 implies D(fn, fm) ⩽ 1. Since the degrees of fn and fm are not equal, these
maps cannot be homotopic. So D(fn, fm) 6= 0. Hence D(fn, fm) = 1. ■

Corollary 2.2 Consider the space Map(S1, S1) and the map fn as described in Theo-
rem 2.1 where n ∈ Z+. Then D(fn, c) = 1, where c is any constant map c : S1 → S1.

Proof. The constant map c and fn are not homotopic and the proof follows similarly
from Theorem 2.1. ■
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For fn ∈ Map(S1, S1) as described in Theorem 2.1, observe that Br(fn) = {fn} for
r ⩽ 1 and Br(fn) = Map(S1, S1) for r > 1. Also Br(c) = {all constant maps on S1}
for 0 < r ⩽ 1 and Br(c) = Map(S1, S1) for r > 1.

Corollary 2.3 The space Map(S1, S1) is second countable (hence separable and Lin-
delöf).

Proof. A countable basis for Map(S1, S1) is B = {{fn} : n ∈ Z} ∪ {B 1

2
(c)}}. In a

(extended) pseudometric space being second countable is equivalent with being separable
and Lindelöf by [1, Lemma 17]. ■

Corollary 2.4 The space Map(S1, S1) is not compact.

Proof. Let fn be the maps described in Theorem 2.1 and c be any constant map. Then
the open cover G = {{fn} : n ∈ Z} ∪ {B 1

2
(c)}} for Map(S1, S1) does not have a finite

subcover. ■

3. Topological properties of Map(X,Y )

Lemma 3.1 Suppose X is an infinite discrete space. Then D(idX , c) = ∞ where idX
and c are the identity map and a constant map on X, respectively.

Proof. Any discrete space is normal so that D is a pseudometric on Map(X,X). Since X
is discrete, idX and c cannot be homotopic. Hence D(idX , c) > 0. Suppose D(idX , c) = n
where n is a positive integer. By the definition of the homotopic distance, there exists
an open cover U = {U0, U1, . . . , Un} for X such that idX

∣∣
Ui

' c
∣∣
Ui

for i = 0, 1, . . . , n.

idX
∣∣
Ui

' c
∣∣
Ui

implies that Ui is contractible in X, so that it is path connected. Since the
only path connected subsets of a discrete space are singletons, U cannot be a cover for
X. Thus D(idX , c) = ∞. ■

The space Map(X,Y ) is not interesting whenever X or Y is contractible.

Theorem 3.2 If X or Y is contractible, then Map(X,Y ) is indiscrete.

Proof. The proof follows from the fact that any two continuous maps from a contractible
space to any space or vice versa are homotopic. ■

Proposition 3.3 If X is an infinite discrete space, then Map(X,X) is not path con-
nected.

Proof. See Lemma 13 in [1]. ■

Theorem 3.4 Map(X,Y ) is not connected, provided that Map(X,Y ) is not indiscrete.

Proof. We can choose U = B1(f) for a fixed f ∈ Map(X,Y ). Notice that U is non-
empty, open and closed (see proof of Theorem 1.8). Define a set V = Map(X,Y )\B1(f).
More precisely, there is a g ∈ Map(X,Y ) which is not in B1(f). If we cannot find such
a g, then we have Map(X,Y ) = B1(f) which contradicts with the fact that Map(X,Y )
is not indiscrete. Hence V is non-empty and Map(X,Y ) is not connected. ■
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4. Non-compactness of Map(X,Y )

We begin this section with a brief introduction to Čech closure spaces on a set and on
a pseudometric.

Definition 4.1 LetX be a setX and P (X) denote its powerset. A Čech closure operator
on X is a map c : P (X) → P (X) satisfying the following three axioms

(1) c(∅) = ∅
(2) A ⊆ c(A)
(3) c(A ∪B) = c(A) ∪ c(B).

If c is a Čech closure operator on X, then the pair (X, c) is called a (Čech) closure space.

For a Čech closure space (X, c), the interior of a subset A of X is defined by ic(A) =
X− c(X−A). A covering {Ui | i ∈ I} of (X, c) is said to be an interior covering, provided
∪i∈Iic(Ui) = X.

The compactness for Čech closure spaces is given as follows.

Definition 4.2 [8] A Čech closure space (X, c) is said to be compact, provided every
interior cover of a closure space (X, c) has a finite cover.

Definition 4.3 [8] For a metric space (X, dX), x ∈ X, and A ⊂ X, the distance between
x and A is given by d(x,A) := inf

y∈A
d(x, y).

For r ⩾ 0, define a map cr : P (X) → P (X) given by cr(A) = {x ∈ X | d(x,A) ⩽ r}.
Observe that cr is a closure operator on the metric space (X, dX) and c0 is the topological
closure operator on X for the topology induced by the metric [8].

Definition 4.4 [8] For a fixed q, r > 0, a map f : (X, dX) → (Y, dY ) is (q, r)-continuous
if for every ε > 0 and x ∈ X, there exists δx > 0 such that

dX(x, x′) < q + δx implies dY (f(x), f(x
′)) < r + ε.

We know from [8, Proposition 3.5] that the (q, r)-continuity on metric spaces is equiv-
alent to the continuity of maps between the associated closure spaces.

Proposition 4.5 [8] If (K, cK) is a compact closure space, then a continuous map
f : (K, cK) → (X, cr) has bounded image.

The proof of the above proposition as given by Reiser in [8] requires the following
theorem which tells the continuity of a map between closure spaces.

Theorem 4.6 [3, Theorem 16.A.4 and Corollary 16.A.5] A map f : (X, cX) → (Y, cY )
between closure spaces is continuous at x if and only if for every neighbourhood U ⊆ Y
of f(x), the inverse image f−1(U) ⊆ X is a neighbourhood of x.

Proof. [Proof of Proposition 4.5] This proof is given by Reiser in [8]. Fix an ε > 0,
consider the interior cover given by U = {Bx}x∈X where

Bx := B(x, r + ε) = {y ∈ X | d(x, y) < r + ε}

is a neighbourhood of x. By Theorem 4.6, {f−1(Bx)}x∈X is an interior cover of K. Com-
pactness of K tells that {f−1(Bx)}x∈X must have a finite subcover, say {f−1(Bxi

)}ni=1.
Then the image of f is contained in ∪n

i=1Bxi
, hence the image of f is bounded. ■
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Theorem 4.7 If there is a continuous, surjective map F : Map(X,Y ) → Map(S1, S1)
such that F−1(ImF ) is finite, then Map(X,Y ) is not compact.

Proof. Let us take the closure operators c0 on both Map(X,Y ) and Map(S1, S1).
Assume that Map(X,Y ) is compact. We will show that if F is continuous and ImF
is not bounded, then we will obtain a contradiction. Hence we will conclude that
Map(X,Y ) is not compact. Let us assume that ImF is bounded. Then ImF ⊆ B where
B = ∪k

j=1Br(fmj
) = ∪k

j=1{fmj
} for r ⩽ 1. Since F−1(ImF ) is finite and F is surjective,

Map(X,Y ) must be finite which is a contradiction since Map(S1, S1) is not compact by
Corollary 2.4. ■
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