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Abstract. In this paper, we give an explicit formula for the Moore-Penrose inverse of W ,
denoted by W †, on L2(Σ). As an application, we give a characterization for some operator
classes that are weaker than p-hyponormal with W †. Moreover, we give specific examples
illustrating these classes.
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1. Introduction and preliminaries

Let (X,Σ, µ) be a sigma finite measure space and let φ : X → X be a mea-
surable transformation such that µ ◦ φ−1 is absolutely continuous with respect to µ.
It is assumed that the Radon-Nikodym derivative h = dµ ◦ φ−1/dµ is finite valued
or equivalently (X,φ−1(Σ), µ) is sigma finite. We use the notation L2(φ−1(Σ)) for
L2(X,φ−1(Σ), µ|φ−1(Σ)) and henceforth we write µ in place of µ|φ−1(Σ). All comparisons
between two functions or two sets are to be interpreted as holding up to a µ-null set.
We denote that the linear space of all complex-valued Σ-measurable functions on X by
L0(Σ). The support of f ∈ L0(Σ) is defined by σ(f) = {x ∈ X : f(x) ̸= 0}. For a finite
valued function u ∈ L0(Σ), the weighted composition operator W on L2(Σ) induced by
φ and u is given by W = Mu ◦ Cφ where Mu is a multiplication operator and Cφ is a
composition operator on L2(Σ) defined by Muf = uf and Cφf = f ◦ φ, respectively.
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Let A = φ−1(Σ), 0 ⩽ u ∈ L0(Σ). If φ−1(Σ) ⊆ Σ, there exists an operator E :=
Eφ−1(Σ) : Lp(Σ) → Lp(A) which is called conditional expectation operator. D(E), the
domain of E, contains the set of all non-negative measurable functions and each f ∈
Lp(Σ) with 1 ⩽ p ⩽ ∞, which satisfies

∫
fdµ =

∫
A
E(f)dµ, A ∈ φ−1(Σ).

Recall that E : L2(Σ) → L2(A) is a surjective, positive and contractive orthogonal
projection. For more details on the properties of E see [16, 22, 23]. Since by the change
of variable formula,

∫
X
f ◦ φdµ =

∫
X
hfdµ, f ∈ L1(Σ),

then ∥Wf∥2 = ∥
√

hE(|u|2) ◦ φ−1f∥2. Put J = hE(|u|2) ◦ φ−1. It follows that W is
bounded on L2(Σ) if and only if J ∈ L∞(Σ) (see [17] and also [8] for a discussion of
E(·) ◦ φ−1 when φ is not invertible).

Composition operators as an extension of shift operators are a good tool for separating
weak hyponormal classes. Classic seminormal (weighted) composition operators have
been extensively studied by Harrington and Whitley [15], Lambert [17, 22], Singh [24],
Campbell [6–8] and Stochel [11]. In [4, 5] some weak hyponormal classes of composition
operators are studied. In those works, examples were given which show that composition
operators can be used to separate each partial normality class from quasinormal through
w-hyponormal. But in some cases composition operators can not be separated some
of these classes. Hence, it is better that we consider the weighted case of composition
operators. In [10, 18], the authors generalized the work done in [4] and have obtained some
characterizations of related p-hyponormal weighted composition operators as separately.
In [18] some examples were presented to illustrate that weighted composition operators
lie between those classes. We then give specific examples illustrating these classes.

Given a complex separable Hilbert space H, let B(H) denote the linear space of all
bounded linear operators on H. N(T ) and R(T ) denote the null-space and range of an
operator T , respectively. Let T = U |T | be the polar decomposition of T . Associated

with T ∈ B(H) there is a useful related operator T̃ = |T |1/2U |T |1/2, called the Aluthge
transform of T . Let CR(H) be the set of all bounded linear operators on H with closed
range. For T ∈ CR(H), the Moore-Penrose inverse of T , denoted by T †, is the unique
operator T † ∈ CR(H) that satisfies the following:

TT †T = T, T †TT † = T †, (TT †)∗ = TT †, (T †T )∗ = T †T.

We recall that T † exists if and only if T ∈ CR(H). The Moore-Penrose inverse is designed
as a measure for the invertibility of an operator. If T = U |T | is invertible, then T−1 = T †,
U is unitary and so |T | = (T ∗T )1/2 is invertible. It is a classical fact that the polar

decomposition of T ∗ is U∗|T ∗|. It is easy to check that U∗|T ∗|† and |T †|
1

2U∗|T †|
1

2 are
the polar decomposition and Aluthge transform of T †, respectively. For other important
properties of T † see [1–3, 9, 12, 13, 20].
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2. Main results

Let CR(H) be the set of all bounded linear operators on H with closed range. Also,
W ∈ CR(L2(Σ)) if and only if J is bounded away from zero on σ(J) (see [17]). In the
following we give an explicit formula for the Moore-Penrose inverse of W . In addition, to
avoid tedious calculations, we investigate some characterizations of weak p-hyponormal
and A(p) classes of Moore-Penrose inverse of weighted composition operators on L2(Σ).
We give specific examples illustrating these classes. From now on, we assume that W has
closed range.

Theorem 2.1 Let W ∈ CR(L2(Σ)). Then W † = Mχσ(J)

J

W ∗ and (W ∗)† = Mχσ(J◦φ)

J◦φ
W .

Proof. Since W ∈ CR(L2(Σ)) has closed range. Put Λ = Mχσ(J)

J

W ∗. Then Λ ∈
CR(L2(Σ)), because

χσ(J)

J is bounded away from zero on X. Since for each f ∈ L2(Σ),
W ∗f = hE(uf) ◦ φ−1, then we have

WΛWf = u(ΛWf) ◦ φ

= u(
χσ(J)

J
hE(u2) ◦ φ−1f) ◦ φ

= u(
χσ(J)

J
hE(u2)φ−1f) ◦ φ

= uχσ(J◦φ)f ◦ φ.

Since, u ⩾ 0 and σ(h ◦ φ) = X, σ(J ◦ φ)) = σ(h ◦ φE(u2)) = σ(E(u2)) ⊇ σ(u), and so

WΛWf = (uχσ(u))χσ(E(u2))f ◦ φ

= (uχσ(u))f ◦ φ = Wf.

Also,

ΛWΛf = χσ(J)

J

hE(uWΛf) ◦ φ−1

= χσ(J)

J

hE(u2(Λf) ◦ φ) ◦ φ−1

= χσ(J)

J

h(E(u2)(Λf) ◦ φ) ◦ φ−1

= χσ(J)

J

(hE(u2) ◦ φ−1)Λf

= χσ(J)Λf = Λf.

Similar computations show that

WΛ = Muχσ(E(u))

E(u2)

EMu = (WΛ)∗

and ΛW = Mχσ(J)
= (ΛW )∗. This completes the proof. ■

Corollary 2.2 Let Cφ ∈ CR(L2(Σ)). Then Cφ
† = Mχσ(h)

h

Cφ
∗.

Theorem 2.3 Let W ∈ CR(L2(Σ)). Then ∥W †∥ = ∥χσ(J)√
J
∥∞.
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Proof. We have W † = Mχσ(J)

J

W ∗. Put ω :=
χσ(J)

J , hence W † = MωW
∗, and so (W †)∗ =

WMω. Then for each f ∈ L2(Σ), we get that

∞ > ∥(W †)∗∥2 = |WMωf∥2 =
∫
X
|u2(f ◦ φ)(ω ◦ φ)|2dµ

=

∫
X
E(u2)|(f.ω) ◦ φ|2dµ =

∫
X
(hE(u2) ◦ φ−1)|f.ω|2dµ

=

∫
X
|ω
√
Jf |2dµ = ∥Mω

√
Jf∥

2.

Thus,

∥W †∥ = ∥Mω
√
J∥ = ∥ω

√
J∥∞ = ∥

χσ(J)√
J

∥∞.

■

Example 2.4 Let w := {mn}∞n=1 be a sequence of positive real numbers. Consider
the space ℓ2(w) = L2(N, 2N, µ), where 2N is the power set of natural numbers and µ is
a measure on 2N defined by µ({n}) = mn. Let u = {u(j)}∞j=1 be a sequence of non-
negative real numbers. Let φ : N → N be a non-singular measurable transformation.
Direct computation shows that (see [22])

J(k) =
1

mk

∑
j∈φ−1(k)

(u(j))2mj .

Thus σ(J)c = {k ∈ N : φ−1(k) = ∅ or u(φ−1(k)) = {0}}. It follows that ∥W †∥ = 1
µ ,

where

µ := inf
k∈σ(J)

1

mk

∑
j∈φ−1(k)

(u(j))2mj > 0.

In particular, if h ∈ ℓ∞(w) and bounded away from zero on σ(h), then ∥C†
φ∥ = 1

λ , where

λ = inf{ 1
mk

∑
j∈φ−1(k)mj : φ

−1(k) ̸= ∅}.

Now, let B and C be bounded and positive operators on H such that BC = CB. Put
A = BC. Then by using of the functional calculus we obtain Ap = BpCp, for each p > 0.
In particular, take B = Mν and C = MωEMω, where 0 ⩽ ν ∈ L0(A) and 0 ⩽ ω ∈ L0(Σ).
Then we can obtain from direct computations that Cp = MωE(ω2)p−1EMω. Consequently,
we have the following lemma.

Lemma 2.5 [19] Let 0 ⩽ ν ∈ L0(A), 0 ⩽ ω ∈ L0(Σ) and let A := MνωEMω ∈ B(L2(Σ)).
Then for each p ∈ (0,∞), Ap = MνpωE(ω2)p−1EMω.

Let p > 0, in the following two theorems, to avoid tedious calculations, we investigate
only p-hyponormal and p-quasihyponormal classes of Moore-Penrose inverse of weighted
composition operators. Note that an operator T ∈ B(H) is p-hyponormal if and only
if (T ∗T )p ⩾ (TT ∗)p, for 0 < p ⩽ 1[1]. If p = 1, T is called hyponormal, and T is
p-quasihyponormal if and only if T ∗(T ∗T )pT ⩾ T ∗(TT ∗)pT . An operator T is said to
be p-paranormal if ∥|T |pU |T |px∥ ⩾ ∥|T |px∥2 and operator T is absolute-p-paranormal
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operator if ∥|T |pTx∥ ⩾ ∥Tx∥p+1, for every unit vector x ∈ H. From now on, we assume
that K := hE(u) ◦ φ−1.

Theorem 2.6 [5] W is p-hyponormal if and only if σ(u) ⊆ σ(J) and

(hp ◦ φ)E(
u2(E(u2))p−1χσ(J)

Jp
) ⩽ 1.

Theorem 2.7 Let W ∈ CR(L2(Σ)). Then W † is p-hyponormal if and only if

(E(u))2

(J ◦ φ)pE(u2)
⩾ 1

Jp
on σ(J ◦ φ).

Proof. Let f ∈ L2(Σ). By direct computations and Lemma 2.5, we get that

(W †∗W †)pf = |W †|2pf =
χσ(J◦φ)

(J ◦ φ)pE(u2)
uE(uf),

(W †W †∗)pf = |W ∗†|2pf =
1

Jp
f.

Then W † is p-hyponormal if and only if

⟨
χσ(J◦φ)

(J ◦ φ)pE(u2)
uE(uf)− 1

Jp
f, f⟩ ⩾ 0. (1)

Put f = χφ−1B with µ(φ−1B) < ∞. Hence, (1) holds if and only if∫
φ−1B

{
χσ(J◦φ)

(J ◦ φ)pE(u2)
uE(u)− 1

Jp
}dµ ⩾ 0.

Equivalently, ∫
B
{

χσ(J)

JpE(u2) ◦ φ−1
(E(u) ◦ φ−1)2 − 1

Jp ◦ φ−1
}hdµ ⩾ 0.

But, this is equivalent to

χσ(J)

JpE(u2) ◦ φ−1
(E(u) ◦ φ−1)2 − 1

Jp ◦ φ−1
⩾ 0,

on σ(J). Equivalently, by composing with φ, we get that

(E(u))2

(J ◦ φ)pE(u2)
⩾ 1

Jp
,

on σ(J ◦ φ). Then W † is p-hyponormal if and only if

(E(u))2

(J ◦ φ)pE(u2)
⩾ 1

Jp
,
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on σ(J ◦ φ). ■

Corollary 2.8 Let Cφ ∈ CR(L2(Σ)). Then Cφ
† is p-hyponormal if and only if (h ◦ φ)p ⩽

hp.

Lemma 2.9 [21] Let α and β be nonnegative and measurable functions. Then, for every
f ∈ L2(Σ), ∫

X
α|f |2dµ ⩾

∫
X
|E(βf)|2dµ

if and only if σ(β) ⊆ σ(α) and E(β
2

α χσ(α)) ⩽ 1.

Theorem 2.10 Let W ∈ CR(L2(Σ)). Then (W ∗)† is p-hyponormal if and only if σ(u) ⊆
σ(J) and

E(
u2

Jp
χσ(J)) ⩽ (Jp ◦ φ)E(u2).

Proof. Let f ∈ L2(Σ). Since (W ∗)† = (W †)∗, then we get that

⟨((W ∗†)∗(W ∗†))pf, f⟩ = ⟨((W †)(W †)∗)pf, f⟩ =
∫
X

χσ(J)

Jp
|f |2dµ,

and

⟨((W ∗†)(W ∗†)∗)pf, f⟩ = ⟨((W †)∗(W †))pf, f⟩ =
∫
X

χσ(J◦φ)

(J ◦ φ)2p
u(hp ◦ φ)(E(u2))p−1E(uf)f̄dµ

=

∫
X
|E(

χσ(J◦φ)

(J ◦ φ)p
(h

p

2 ◦ φ)(E(u2))
p−1

2 uf)|2dµ.

Put α =
χσ(J)

Jp and β =
χσ(J◦φ)

(J◦φ)p (h
p

2 ◦ φ)(E(u2))
p−1

2 u =
uχσ(J◦φ)

(J◦φ)
p
2 (E(u2))

1
2
. Then σ(α) = σ(J)

and σ(β) = σ(u). Now, the desired conclusion follows from Lemma 2.9. ■

Let B(H) be the algebra of all bounded linear operators on the infinite dimensional
complex Hilbert space H. Let T = U |T | be the polar decomposition for T ∈ B(H), where
U is a partial isometry and |T | = (T ∗T )1/2. In the following we concentrate on the polar
decomposition of W † and (W ∗)†.

Proposition 2.11 LetW ∈ CR(L2(Σ)). ThenW † = U∗|W †| is the polar decomposition
of W †, such that

|W †|(f) =
χσ(J◦φ)√

J ◦ φ(E(u2))
uE(uf),

U∗(f) = (
χσ(J)

J
)

1

2W ∗f.

Proof. Let f ∈ L2(Σ). Then (W †∗W †)(f) =
χσ(J◦φ)

(J◦φ)2 u(h ◦ φ)E(uf). Now |W †| follows
from Lemma 2.5. Moreover, by direct computations we have U∗ = Mχ

(J)√
J

W ∗. Moreover,

it is easy to check that U∗|W †| = W †, U∗UU∗ = U∗ and N (U∗) = N (W ∗) = N (W †).
This completes the proof. ■
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Similar to above result we obtain the following proposition.

Proposition 2.12 Let W ∈ CR(L2(Σ)). Then (W ∗)† = U |(W ∗)†| is the polar decom-
position of (W ∗)† such that

|(W ∗)†|(f) = 1√
J
(f),

U(f) =
χσ(J◦φ)√
J ◦ φ

Wf.

Example 2.13 Let X = (0, 1), equipped with the Lebesgue measure µ on the Lebesgue
measurable subsets. Set u(x) =

√
x and let φ : X → X is defined by

φ(x) =

{
2x 0 < x < 1

2 ,

2− 2x 1
2 ⩽ x < 1.

Direct computation (see [25]) shows that for each f ∈ L2(Σ),

E(f) ◦ φ−1(x) =
1

2

(
f(

x

2
) + f(1− x

2
)
)
.

It follows that J(x) = 1
2

(
u2(x2 ) + u2(1− x

2 )
)
= 1

2 , J ◦φ = E(u2) = 1
2 . Hence we get that

W †(f) =

√
x

2
f(

x

2
) +

√
1− x

2
f(1− x

2
);

|W †|(f) =
√
2x{

√
xf(x) +

√
1− xf(1− x)};

U∗(f) =
√
xf(

x

2
) +

√
2− xf(1− x

2
);

(W †)∗(f) =

{
2
√
xf(2x) 0 < x < 1

2 ,

2
√
xf(2− 2x) 1

2 ⩽ x < 1;

|(W ∗)†|(f) =
√
2(f);

U(f) =

{√
2xf(2x) 0 < x < 1

2 ,√
2xf(2− 2x) 1

2 ⩽ x < 1.
.

Theorem 2.14 [14] Let W ∈ L2(Σ). Then W is p-quasihyponormal if and only if

E(u2Jp) ⩾ (hp ◦ φ)(E(u2))p+1.

Theorem 2.15 Let W ∈ CR(L2(Σ)). Then W † is p-quasihyponormal if and only if

(E(u))2

E(u2)
E(

K

J
) ⩾ (

J ◦ φ
J

)p
K

J
, on σ(J).
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Proof. Let f ∈ L2(Σ). Direct computations show that

(W †)∗((W †)∗W †)pW †f =
χσ(J◦φ)

(J ◦ φ)(J ◦ φ2)pE(u2) ◦ φ
u(u ◦ φ)E(u

χσ(J)

J
hE(uf) ◦ φ−1) ◦ φ := af,

(W †)∗(W †(W †)∗)pW †f =
χσ(J◦φ)

(J ◦ φ)p+2
u(h ◦ φ)E(uf) := bf.

Then W † is p-quasihyponormal if and only if

⟨af − bf, f⟩ ⩾ 0 (2)

for each λ ∈ (0,∞). Put f = χφ−1B with µ(φ−1B) < ∞. Hence, (2) holds if and only if∫
φ−1B

{
χσ(J◦φ)

(J ◦ φ)(J ◦ φ2)pE(u2) ◦ φ
u(u ◦ φ)E(u

χσ(J)

J
hE(u) ◦ φ−1) ◦ φ

−
χσ(J◦φ)

(J ◦ φ)p+2
u(h ◦ φ)E(u)}dµ ⩾ 0.

Equivalently,∫
B
{

χσ(J◦φ)

J(J ◦ φ)pE(u2)
(E(u))(E(u) ◦ φ−1)E(u

χσ(J)

J
hE(u) ◦ φ−1)

−
χσ(J)

Jp+2
hE(u)2 ◦ φ−1}hdµ ⩾ 0.

This is equivalent to

χσ(J◦φ)

(J ◦ φ)pE(u2)
(E(u))2(E(u) ◦ φ−1)E(

K

J
)−

χσ(J)

Jp+1
hE(u)2 ◦ φ−1 ⩾ 0,

on σ(J). Then W † is p-quasihyponormal if and only if

(E(u))2

E(u2)
E(

K

J
) ⩾ (

J ◦ φ
J

)p
K

J
, on σ(J).

■

Corollary 2.16 Let Cφ ∈ CR(L2(Σ)). Then Cφ
† is p-quasihyponormal if and only if

h ⩾ (h ◦ φ) on σ(h).

Theorem 2.17 Let W ∈ CR(L2(Σ)). Then (W ∗)† is p-quasihyponormal if and only if

(hp ◦ φ)(E(u2))p−1E(
u2

Jp
) ⩾ 1, on σ(J).

Proof. Let f ∈ L2(Σ). It is easy to check that

W †(W †(W †)∗))p(W †)∗f =
χσ(J)

J2
hE(

u2

Jp
) ◦ φ−1f,

(W †)((W †)∗)W †)p(W †)∗f =
χσ(J)

Jp+1
f.
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Thus, (W ∗)† is p-quasihyponormal if and only if

hE( u
2

Jp ) ◦ φ−1

J2
⩾ 1

Jp+1

on σ(J). Equivalently, (hp ◦ φ)(E(u2))p−1E( u
2

Jp ) ⩾ 1 on σ(J). ■

For k > 0, an operator T ∈ B(H) belongs to class A(p) if (T ∗|T |2pT )
1

p+1 ⩾ |T |2 ([26]).

Theorem 2.18 [18] Let W ∈ L2(Σ). Then is belongs to class A(p) if and only if

E(u2Jp) ⩾ (hp ◦ φ)(E(u2))p+1.

Theorem 2.19 Let W ∈ CR(L2(Σ)). Then W † is belongs to class A(p) if and only if

(
E(u2)

E(u2) ◦ φ
)p+1E(

K

J
) ◦ φ ⩾ (

E(u)

E(u) ◦ φ
)2, on σ(J).

Proof. Let f ∈ L2(Σ). By easy calculations we get that

(W †)∗|W †|2pW †f =
χσ(J◦φ)

(J ◦ φ)(J ◦ φ2)p(E(u2) ◦ φ)
(u ◦ φ)E(u

χσ(J)

J
W ∗f),

|W †|2f =
χσ(J◦φ)

(J ◦ φ)2
u(h ◦ φ)E(uf).

Then by similar to the proof of Theorem 2.15, the proof is complete. ■

Lemma 2.20 Let T ∈ B(H) and let U |T | be its polar decomposition. Suppose p is a
positive real number. Then we have the following assentations:
(i) [26] T is p-paranormal if and only if for each λ > 0,

|T ∗|p|T |2p|T ∗|p − 2λ|T ∗|2p + λ2 ⩾ 0.

(ii) [26] T is absolute-p-paranormal if and only if for each λ > 0,

|T ∗||T |2p|T ∗| − (p+ 1)λp|T ∗|2 + pλp+r ⩾ 0.

Theorem 2.21 Let W ∈ CR(L2(Σ)). Then The following statements are hold.
(i) W † is p-paranormal if and only if

E(u)

E(u2)
E(

u√
Jp

) ⩾ (
J ◦ φ
J
√
J
)p, on σ(J).

(ii) W † is absolute-p-paranormal if and only if

√
J
E(u)

E(u2)
E(

u√
J
) ⩾ (

J ◦ φ
J

)p, on σ(J).
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Proof. (i) Let f ∈ L2(Σ). It is easy to check that

|W †|2pf =
χσ(J◦φ)

(J ◦ φ)pE(u2)
uE(uf),

|W †|pf =
χσ(J◦φ)√

(J ◦ φ)pE(u2)
uE(uf),

|W †∗|2pf =
1

Jp
f.

It follows that

|W †∗|p|W †|2p|W †∗|pf =
χσ(J◦φ)√

Jp(J ◦ φ)pE(u2)
uE(

uf√
Jp

).

Now, by Lemma 2.20 (i), W † is p-paranormal if and only if

⟨
χσ(J)√

Jp(J ◦ φ)pE(u2)
uE(

uf√
Jp

)− 2λ
χσ(J)

Jp
f + λ2, f⟩ ⩾ 0, (3)

for each λ ∈ (0,∞). Set f = χφ−1B with µ(φ−1B) < ∞. Hence, (3) holds if and only if∫
φ−1B

{
χσ(J)√

Jp(J ◦ φ)pE(u2)
uE(

uχ
B
◦ φ√
Jp

)− 2λ
χσ(J)

Jp
(χ

B
◦ φ) + λ2}dµ ⩾ 0.

Equivalently,∫
B
{

χσ(J)E(u) ◦ φ−1

√
Jp ◦ φ−1JpE(u2) ◦ φ−1

E(
u√
Jp

) ◦ φ−1 − 2λ
χσ(J)

Jp ◦ φ−1
+ λ2}hdµ ⩾ 0.

This is equivalent to

χσ(J)E(u) ◦ φ−1

√
Jp ◦ φ−1JpE(u2) ◦ φ−1

E(
u√
Jp

) ◦ φ−1 − 2λ
χσ(J)

Jp ◦ φ−1
+ λ2 ⩾ 0.

Put

E(u) ◦ φ−1

√
Jp ◦ φ−1JpE(u2) ◦ φ−1

E(
u√
Jp

) ◦ φ−1 := a

and

b :=
1

Jp ◦ φ−1

Then, W † is p-paranormal if and only if

D(λ) := a− 2bλ+ λ2 ⩾ 0, λ ∈ (0,∞).
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Since minλ∈(0,∞)D(λ) = D(b), it follows that

D(b) ⩾ 0 ⇐⇒ a ⩾ b2

⇐⇒ E(u) ◦ φ−1

√
Jp ◦ φ−1JpE(u2) ◦ φ−1

E(
u√
Jp

) ◦ φ−1 ⩾ (
1

Jp ◦ φ−1
)2

⇐⇒ E(u)√
Jp(Jp ◦ φ)E(u2)

E(
u√
Jp

) ⩾ 1

J2p
,

⇐⇒ E(u)

E(u2)
E(

u√
Jp

) ⩾ (
J ◦ φ
J
√
J
)p, on σ(J)

(ii) The proof is similar to part (i). ■

Example 2.22 Let X = (0, 1), equipped with the Lebesgue measure dµ = dx on the
Lebesgue measurable subsets of X and let φ : X → X be a non-singular measurable
transformation defined by and

φ(x) =

{
2x 0 < x ⩽ 1

2 ,

2− 2x 1
2 ⩽ x < 1.

Then for each f ∈ L2(Σ) and x ∈ X we have

h(x) =| d

dx
(
x

2
)|+ | d

dx
(
2− x

2
)| = 1;

(Ef)(x) =
f(x) + f(1− x)

2
;

(E(f) ◦ φ−1)(x) =
1

2
(f(

x

2
) + f(1− x

2
)).

Put u(x) =
√
x. Direct computation show that

E(u) =

√
x+

√
1− x

2
;

E(u) ◦ φ−1 =

√
x
2 +

√
1− x

2

2
;

E(u2) =
1

2
;

E(u2) ◦ φ−1 =
1

2
;

J =
1

2
;

J ◦ φ =
1

2
.

Then by Theorem 2.20, W † is p-hyponormal if and only if x = 1
2 . Also, by Theorem
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2.15, W † is p-quasihyponormal if and only if

(1 + 2
√

x(1− x)){

√
(

√
x

2
+

√
1− x

2
) +

√
1− (

√
x

2
+

√
1− x

2
)} ⩾ 2(

√
x

2
+

√
1− x

2
).

(4)
In particular, if p > 0, x = 1

2 then W † is p-hyponormal, but (4) is not holds on X = (0, 1).

So W † is not p-quasihyponormal, for every p > 0. Also W † is p-paranormal if and only if

(
√
x−

√
1− x)(

√
2px−

√
1− 2px) ⩾ 2

√
2p.

But, the above inequality is not holds on X = (0, 1), then W † is not p-paranormal, and
also W † is absolute-p-paranormal if and only if

√
2(
√
x−

√
1− x)(

√
2x−

√
1− 2x) ⩾ 1.

But this relationship is hold on the (0.5, 1), then W † is absolute-p-paranormal on (0.5, 1).

Example 2.23 Let X = (1,∞), equipped with the Lebesgue measure dµ on the
Lebesgue measurable subsets. The transformation φ and the weighted function u(x)
are given by φ(x) =

√
x and u(x) = 1√

1+x
. Then h(x) = 2x, E = I, J(x) = 2x

1+x2 ,

h ◦ φ(x) = 2
√
x, J ◦ φ(x) = 2

√
x

1+x . So, by using the above theorems p-hyponormality,
p-quasihyponormality and Belonging to class A(p) for W is equivalent to J ⩾ J ◦ φ.
Therefor, W dose not lie in the above classes. Also, p-hyponormality of W † is equiv-
alent to J ⩾ J ◦ φ, then W † is not p-hyponormal. Moreover, p-quasihyponormality of
W † is equivalent to J ⩾ J ◦ φ and also W † is a class A(p) operator if and only if

(1+
√
x

1+x )p
√
1 + x2 ⩾ 1. In particular, if p = 1, then W † is not p-quasihyponormal but it is

in the class of A(p), while for very large values of p, W † is not in none of the classes of
A(p) and p-quasihyponormal.
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