Domination number of complements of functigraphs

A. Shaminezhad ${ }^{\text {a }}$, E. Vatandoost ${ }^{\text {a,* }}$
${ }^{\text {a }}$ Department of mathematics, Imam Khomeini International University, P. O. Box 3414896818, Qazvin, Iran.

Received 29 October 2020; Revised 19 March 2021; Accepted 25 March 2021.

Communicated by Hamidreza Rahimi

Abstract

Let $G=(V, E)$ be a simple graph. A subset $S \subseteq V(G)$ is a dominating set of G if every vertex in $V(G) \backslash S$ is adjacent to at least one vertex in S. The domination number of graph G, denoted by $\gamma(G)$, is the minimum size of a dominating set of vertices $V(G)$. Let G_{1} and G_{2} be two disjoint copies of graph G and $f: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ be a function. Then a functigraph G with function f is denoted by $C(G, f)$, its vertices and edges are $V(C(G, f))=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E(C(G, f))=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{v u \mid v \in V\left(G_{1}\right), u \in\right.$ $\left.V\left(G_{2}\right), f(v)=u\right\}$, respectively. In this paper, we investigate domination number of complements of functigraphs. We show that for any connected graph $G, \gamma(\overline{C(G, f)}) \leqslant 3$. Also we provide conditions for the function f in some graphs such that $\gamma(\overline{C(G, f)})=3$. Finally, we prove if G is a bipartite graph or a connected k - regular graph of order $n \geqslant 4$ for $k \in\{2,3,4\}$ and $G \notin\left\{K_{3}, K_{4}, K_{5}, H_{1}, H_{2}\right\}$, then $\gamma(\overline{C(G, f)})=2$.

(c) 2021 IAUCTB.

Keywords: Domination, domination number, functigraph.
2010 AMS Subject Classification: 05C69, 05C75.

1. Introduction

All graphs throughout this paper considered simple, finite and undirected. The open neighborhood of a vertex $v \in V(G)$, denoted by $N_{G}(v)$, is the set of vertices adjacent to v in G. The closed neighborhood of a vertex v in graph G is $N_{G}[v]=N_{G}(v) \cup\{v\}$. The degree of a vertex $v \in V(G)$ is $\operatorname{deg}_{G}(v)=\left|N_{G}(v)\right|$. We denote the maximum degree of

[^0]G with $\Delta(G)$ and its minimum degree with $\delta(G)$. A vertex is called a universal vertex if it is adjacent to all of the vertices of the graph.

The complement of graph G is denoted by \bar{G} and defined as a graph with vertex set $V(G)$ which $e \in E(\bar{G})$ if and only if $e \notin E(G)$. For any $S \subseteq V(G)$, the induced subgraph on S is denoted by $G[S]$.

A subset $S \subseteq V(G)$ is a dominating set of G if every vertex in $V(G) \backslash S$ is adjacent to at least one vertex in S. The domination number of a graph G, denoted by $\gamma(G)$, is the minimum size of a dominating set of G.

The notations $P_{n}, C_{n}, K_{n}, K_{1, n}, W_{n}$ and K_{3}^{n} are used for path, cycle, complete graph, star, wheel and friendship graph, respectively.

Let G_{1} and G_{2} be two disjoint copies of graph G and $f: V\left(G_{1}\right) \rightarrow V\left(G_{2}\right)$ be a function, where $V\left(G_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V\left(G_{2}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Then a functigraph G with function f is denoted by $C(G, f)$, its vertices and edges are $V(C(G, f))=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E(C(G, f))=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{v u \mid v \in V\left(G_{1}\right), u \in V\left(G_{2}\right), f(v)=u\right\}$, respectively. For $u \in V\left(G_{2}\right), f^{-1}(u)=\left\{v \in V\left(G_{1}\right): f(v)=u\right\}$ and $R(f)=\left\{f(v) \mid v \in V\left(G_{1}\right)\right\}$. Also for each $0 \leqslant \ell \leqslant n$ we define $B_{\ell}=\left\{u \in V\left(G_{2}\right)| | f^{-1}(u) \mid=\ell\right\}$, where $n=|V(G)|$.

In recent years much attention drawn to the domination theory which is very interesting branch in graph theory. Recently, the concept of domination expanded to other parameters of domination such as 2 -rainbow domination, total domination, signed domination and Roman domination. For more details we refer reader to [1, 3, 4]. In 2012, Erol et al. studied the domination in functigraphs, see [2]. They proved that $\gamma(G) \leqslant \gamma(C(G, f)) \leqslant 2 \gamma(G)$ and studied the domination number of $C\left(C_{n}, f\right)$.
In this paper, we study domination number of complements of functigraphs. We show that for any connected graph $G, \gamma(\overline{C(G, f)}) \leqslant 3$ and provide conditions for the function f such that $\gamma(\overline{C(G, f)})=3$. Finally, we prove if G is a bipartite graph or a connected k - regular graph of order $n \geqslant 4$ for $k \in\{2,3,4\}$ and $G \notin\left\{K_{3}, K_{4}, K_{5}, H_{1}, H_{2}\right\}$, then $\gamma(\overline{C(G, f)})=2$.
The main results are the following.
Theorem A. Let graph G has a universal vertex. Then $\gamma(\overline{C(G, f)})=3$ if and only if:
(1) $\delta(G) \neq 1$,
(2) $B_{1}=\emptyset$,
(3) For any $i \geqslant 2$ and any $u \in B_{i}, \delta\left(G_{1}\left[f^{-1}(u)\right]\right) \geqslant 1$,
(4) Every vertex in B_{0} is adjacent to all of the vertices of B_{i}, for any $i \geqslant 2$,
(5) If $\left\{u, u^{\prime}\right\} \subseteq \cup_{i \geqslant 2} B_{i}$ and u is not adjacent to u^{\prime}, then all of the vertices of $f^{-1}(u)$ are adjacent to each vertex of $f^{-1}\left(u^{\prime}\right)$.
Theorem B. Let $n \geqslant 6$ and G be a $(n-2)$-regular graph of order n. Then $\gamma(\overline{C(G, f)})=3$ if and only if:

1) $B_{1}=\emptyset$.
2) If $u \in B_{0}$ and $u^{\prime} \notin N_{G_{2}}(u)$, then $u^{\prime} \in B_{0}$.
3) For each $x \in \cup_{i \geqslant 2} B_{i} ; \delta\left(G_{1}\left[f^{-1}(x)\right]\right) \geqslant 1$.

Theorem C. Let G be a connected k-regular graph of order $n \geqslant 4$, which is not isomorphic to $K_{3}, K_{4}, K_{5}, H_{1}$ and H_{2}. If $k \in\{2,3,4\}$, then $\gamma(\overline{C(G, f)})=2$.

2. Preliminary

For investigating the domination number of complements of functigraphs, the following Lemmas are useful.

Lemma 2.1 For any connected graph $G, \gamma(\overline{C(G, f)}) \leqslant 3$.
Proof. Let $v_{i} \in V\left(G_{1}\right)$ and $u_{j} \in V\left(G_{2}\right) \backslash\left\{f\left(v_{i}\right)\right\}$. Then v_{i} dominates all of the vertices $V\left(G_{2}\right) \backslash\left\{f\left(v_{i}\right)\right\}, u_{j}$ dominates all of the vertices $V\left(G_{1}\right) \backslash S_{j}$ and $f\left(v_{i}\right)$ dominates all of the vertices $V\left(G_{1}\right) \backslash S_{i}$ in $\overline{C(G, f)}$, where $S_{j}=f^{-1}\left(u_{j}\right)$ and $S_{i}=f^{-1}\left(f\left(v_{i}\right)\right)$. Since $S_{i} \cap S_{j}=\emptyset$, so $\left\{v_{i}, f\left(v_{i}\right), u_{j}\right\}$ is a dominating set of $\overline{C(G, f)}$. Hence $\gamma(\overline{C(G, f)}) \leqslant 3$.
Lemma 2.2 Let G be a graph of order n. Then $\gamma(\overline{C(G, f)})=1$ if and only if there is an isolated vertex x in G such that $x \notin R(f)$.

Proof. If $x \in V(G)$ is an isolated vertex and $x \notin R(f)$, then x is an isolated vertex in $C(G, f)$. So x is a universal vertex in $\overline{C(G, f)}$. Thus $\{x\}$ is a dominating set of $\overline{C(G, f)}$ and $\gamma(\overline{C(G, f)})=1$.
Conversely, let $\gamma(\overline{C(G, f)})=1$ and $\{x\}$ be a dominating set of $\overline{C(G, f)}$. Then x is an isolated vertex in $C(G, f)$. Hence x is an isolated vertex in G and $x \notin R(f)$.
Lemma 2.3 Let G be a graph of order n with $\delta(G) \geqslant 1$. If $B_{0}=\emptyset$ or $B_{1} \neq \emptyset$, then $\gamma(\overline{C(G, f)})=2$.
Proof. If $B_{0}=\emptyset$, then $B_{1}=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. It is easy to see that for every $1 \leqslant i \leqslant n$, $\left\{v_{i}, f\left(v_{i}\right)\right\}$ is a dominating set of $\overline{C(G, f)}$. So $\gamma(\overline{C(G, f)}) \leqslant 2$. Since G does not have any isolated vertex, by Lemma 2.2, we have $\gamma(\overline{C(G, f)})=2$.
If $B_{1} \neq \emptyset$ and $u \in B_{1}$, then we can see that $\left\{u, f^{-1}(u)\right\}$ is a dominating set of $\overline{C(G, f)}$. Hence $\gamma(\overline{C(G, f)}) \leqslant 2$. Since G does not have any isolated vertex, by Lemma 2.2, we have $\gamma(\overline{C(G, f)})=2$.

By Lemma 2.3, if f is a bijective function, then $\gamma(\overline{C(G, f)})=2$. So, in the following lemmas and theorems, f is not a bijective function.
Lemma 2.4 Let G be a graph and $\left\{u_{i}, u_{j}\right\} \subseteq V\left(G_{2}\right)$. Then

1) if u_{i} is not adjacent to $u_{j}, u_{i} \in R(f)$ and $u_{j} \notin R(f)$, then $\gamma(\overline{C(G, f)}) \leqslant 2$.
2) if $N_{G_{2}}\left(u_{i}\right) \cap N_{G_{2}}\left(u_{j}\right)=\emptyset$, then $\gamma(\overline{C(G, f)}) \leqslant 2$.

Proof.

1) Let $v_{\ell} \in V\left(G_{1}\right)$ and $f\left(v_{\ell}\right)=u_{i}$. Then v_{ℓ} dominates all of the vertices $V\left(G_{2}\right) \backslash\left\{u_{i}\right\}$ and u_{j} dominates all of the vertices $V\left(G_{1}\right) \cup\left\{u_{i}\right\}$ in $\overline{C(G, f)}$. So $\left\{v_{\ell}, u_{j}\right\}$ is a dominating set of $\overline{C(G, f)}$. Thus $\gamma(\overline{C(G, f)}) \leqslant 2$.
2) Let $N_{G_{2}}\left(u_{i}\right)=N_{i}, N_{G_{2}}\left(u_{j}\right)=N_{j}, f^{-1}\left(u_{i}\right)=S_{i}$ and $f^{-1}\left(u_{j}\right)=S_{j}$. Then u_{i} dominates all of the vertices $\left(V\left(G_{1}\right) \backslash S_{i}\right) \cup\left(V\left(G_{2}\right) \backslash N_{i}\right)$ and u_{j} dominates all of the vertices $\left(V\left(G_{1}\right) \backslash S_{j}\right) \cup\left(V\left(G_{2}\right) \backslash N_{j}\right)$. So $\left\{u_{i}, u_{j}\right\}$ is a dominating set of $\overline{C(G, f)}$. Therefore $\gamma(\overline{C(G, f)}) \leqslant 2$.

Lemma 2.5 Let $G \cong H_{1}$ and $R(f)=\left\{x_{2}, x_{4}, x_{5}\right\}$. If $\delta\left(G_{1}\left[f^{-1}\left(x_{i}\right)\right]\right) \geqslant 1$, for $i \in\{2,4,5\}$, then $\gamma(\overline{C(G, f)})=3$.

Proof. Let $\{a, b\}$ be a dominating set of $\overline{C(G, f)}$. Since $\overline{H_{1}}$ is a disconnected graph with two component of C_{4} and K_{3}, so $\{a, b\} \nsubseteq V\left(G_{i}\right), i \in\{1,2\}$. Hence we may assume that $a \in V\left(G_{1}\right)$ and $b \in V\left(G_{2}\right)$. We know that $f(a)$ is not dominated by a in $\overline{C(G, f)}$. So $b \in\left\{x_{2}, x_{4}, x_{5}\right\}$. Since $\delta\left(G_{1}\left[f^{-1}\left(x_{i}\right)\right]\right) \geqslant 1$, there is at least one vertex in $f^{-1}(b)$ that is not dominated by a and b, which is a contradiction. So $\gamma(\overline{C(G, f)})=3$.

Figure 1: H_{1}
Lemma 2.6 Let G be a graph with $\delta(G) \geqslant 1$ and x a vertex of G such that the induced subgraph on $N_{G}(x)$ has at least an isolated vertex. Then $\gamma(\overline{C(G, f)})=2$.

Proof. Let $u_{i} \in V\left(G_{2}\right)$ be corresponding to vertex $x \in V(G)$. Then all of the vertices $\left(V\left(G_{2}\right) \backslash N_{i}\right) \cup\left(V\left(G_{1}\right) \backslash S_{i}\right)$ are dominated by u_{i}, where $S_{i}=f^{-1}\left(u_{i}\right)$ and $N_{i}=N_{G_{2}}\left(u_{i}\right)$. Let u_{j} be an isolated vertex in $G_{2}\left[N_{G_{2}}\left(u_{i}\right)\right]$. Then all of the vertices N_{i} and S_{i} are dominated by u_{j}. So $\left\{u_{i}, u_{j}\right\}$ is a dominating set of $\overline{C(G, f)}$ and $\gamma(\overline{C(G, f)}) \leqslant 2$. By Lemma 2.2, $\gamma(\overline{C(G, f)})=2$.

3. The proof of our main results

The main results are proven in this section.
Theorem 3.1 Let G be a bipartite graph and $\delta(G) \geqslant 1$. Then $\gamma(\overline{C(G, f)})=2$.
Proof. Let $V\left(G_{2}\right)=X \cup Y$. If $B_{0}=\emptyset$, then by Lemma 2.3, $\gamma(\overline{C(G, f)})=2$. Let $B_{0} \neq \emptyset$ and $u \in B_{0}$. If $u \in X$, then u dominates all of the vertices $V\left(G_{1}\right) \cup X$ and a vertex $u_{i} \in Y$ dominates all of the vertices Y in $\overline{C(G, f)}$. So $\left\{u, u_{i}\right\}$ is a dominating set of $\overline{C(G, f)}$. By Lemmas 2.2 and 2.4, $\gamma(\overline{C(G, f)})=2$.
Corollary 3.2 If G is a tree, then $\gamma(\overline{C(G, f)})=2$.
Proof. By Theorem 3.1, $\gamma(\overline{C(G, f)})=2$.
Theorem 3.3 Let graph G has a universal vertex. Then $\gamma(\overline{C(G, f)})=3$ if and only if:
(1) $\delta(G) \neq 1$,
(2) $B_{1}=\emptyset$,
(3) For any $i \geqslant 2$ and any $u \in B_{i}, \delta\left(G_{1}\left[f^{-1}(u)\right]\right) \geqslant 1$,
(4) Every vertex in B_{0} is adjacent to all of the vertices of B_{i}, for any $i \geqslant 2$,
(5) If $\left\{u, u^{\prime}\right\} \subseteq \cup_{i \geqslant 2} B_{i}$ and u is not adjacent to u^{\prime}, then all of the vertices of $f^{-1}(u)$ are adjacent to each vertex of $f^{-1}\left(u^{\prime}\right)$.
Proof. Let $\gamma(\overline{C(G, f)})=3$ and w be a universal vertex of G_{2}.

1) Let $\delta(G)=1, u_{i} \in V\left(G_{2}\right)$ and $\operatorname{deg}_{G_{2}}\left(u_{i}\right)=1$. Then u_{i} dominates all of the vertices
$\left(V\left(G_{2}\right) \backslash\{w\}\right) \cup\left(V\left(G_{1}\right) \backslash f^{-1}\left(u_{i}\right)\right)$ and w dominates all of the vertices $V\left(G_{1}\right) \backslash f^{-1}(w)$. So $\left\{u_{i}, w\right\}$ is a dominating set of $\overline{C(G, f)}$. Hence $\gamma(\overline{C(G, f)}) \leqslant 2$, which is a contradiction. 2) Let $B_{1} \neq \emptyset$. Then by Lemma 2.3, we have $\gamma(\overline{C(G, f)})=2$, which is a contradiction.
2) If there exists an $i \geqslant 2$ and a $u \in B_{i}$ such that $G_{1}\left[f^{-1}(u)\right]$ has an isolated vertex v, Then v dominates all of the vertices $\left(V\left(G_{2}\right) \backslash\{u\}\right) \cup f^{-1}(u)$ and u dominates all of the vertices $V\left(G_{1}\right) \backslash f^{-1}(u)$. Hence $\{v, u\}$ is a dominating set of $\overline{C(G, f)}$. Hence, $\gamma(\overline{C(G, f)}) \leqslant 2$, which is not true.
3) If there exists a $u_{0} \in B_{0}$ that is not adjacent to $u \in B_{i}$ for some $i \geqslant 2$, then u_{0} dominates all of the vertices $V\left(G_{1}\right) \cup\{u\}$ and v_{k} dominates all of the vertices $V\left(G_{2}\right) \backslash\{u\}$, where $f\left(v_{k}\right)=u$. Hence $\left\{u_{0}, v_{k}\right\}$ is a dominating set of $\overline{C(G, f)}$. Therefore $\gamma(\overline{C(G, f)}) \leqslant$ 2, which is a contradiction to the fact $\gamma(\overline{C(G, f)})=3$.
4) If $\left\{u, u^{\prime}\right\} \subseteq \cup_{i \geqslant 2} B_{i}, u$ is not adjacent to u^{\prime} and choose $v \in f^{-1}(u)$ such that v is not adjacent to any vertex of $f^{-1}\left(u^{\prime}\right)$, then v dominates all of the vertices $\left(V\left(G_{2}\right) \backslash\{u\}\right) \cup$ $f^{-1}\left(u^{\prime}\right)$. Also all of the vertices $\left(V\left(G_{1}\right) \backslash f^{-1}\left(u^{\prime}\right)\right) \cup\{u\}$ are dominated by u^{\prime}. Hence $\left\{v, u^{\prime}\right\}$ is a dominating set of $\overline{C(G, f)}$ and so $\gamma(\overline{C(G, f)}) \leqslant 2$, which is impossible.
Conversely, on the contrary let $\gamma(\overline{C(G, f)})=2$ and $D=\{a, b\}$ be a dominating set of $\overline{C(G, f)}$. We need only consider 3 cases:
Case 1: Let $D=\{a, b\} \subseteq V\left(G_{1}\right)$. If a and b are universal vertices of G, then by (1), $G \nexists P_{2}$ and so there is a $v_{k} \in V\left(G_{1}\right) \backslash\{a, b\}$ such that it is not dominated by D in $\overline{C(G, f)}$. If a is a universal vertex and b is not a universal vertex, then by (1), there is a $v_{k} \neq a$ such that it is adjacent to b. So D does not dominate v_{k}. If a and b are not universal vertices, then universal vertices of G_{1} are not dominated by D in $\overline{C(G, f)}$, which is a contradiction.
Case 2: Let $D=\{a, b\} \subseteq V\left(G_{2}\right)$. Similarly, $D=\{a, b\} \subseteq V\left(G_{2}\right)$ leads to a contradiction. Case 3: Now let $a \in V\left(G_{1}\right)$ and $b \in V\left(G_{2}\right)$. Then all of the vertices $V\left(G_{2}\right) \backslash f(a)$ are dominated by a in $\overline{C(G, f)}$. If $f(a)=b$, then since $\{a, b\}$ is a dominating set of $\overline{C(G, f)}$, so all of the vertices $f^{-1}(b)$ are dominated by a. By $(2),\left|f^{-1}(b)\right| \geqslant 2$ and a must be an isolated vertex of $G_{1}\left[f^{-1}(b)\right]$, which contradicts to (3). Let $f(a) \neq b$. Since $\{a, b\}$ is a dominating set of $\overline{C(G, f)}, b$ is not adjacent to $f(a)$ in G_{2}. Since $B_{1}=\emptyset$, by (4), $b \notin B_{0}$. Hence, $\left|f^{-1}(b)\right| \geqslant 2$. Therefore, a is not adjacent to any vertices of $f^{-1}(b)$, which contradicts to (5). This completes the proof.

Corollary 3.4 Let $n \geqslant 3$ and $G \cong K_{n}$. Then $\gamma(\overline{C(G, f)})=3$ if and only if $B_{1}=\emptyset$
Corollary 3.5 Let $n \geqslant 5$ and $G \cong W_{n}$. Then $\gamma(\overline{C(G, f)})=3$ if and only if $R(f)=\{w\}$, where w is a universal vertex of W_{n}.

Proof. Let $\gamma(\overline{C(G, f)})=3$. Then by Theorem $3.3, B_{1}=\emptyset$ and so $B_{0} \neq \emptyset$. Assume that $u_{i} \in B_{0}$. By (4) in Theorem 3.3, $R(f) \subseteq\left\{w, u_{i-1}, u_{i+1}\right\}$. Hence, $\left\{u_{i-2}, u_{i+2}\right\} \subseteq B_{0}$ and by (4) in Theorem 3.3, $R(f) \subseteq\left\{w, u_{i+1}, u_{i+3}\right\}$ and $R(f) \subseteq\left\{w, u_{i-1}, u_{i-3}\right\}$. Thus $R(f)=\{w\}$. Conversely, let $R(f)=\{w\}$. Then, by Theorem 3.3, $\gamma(\overline{C(G, f)})=3$.

Corollary 3.6 Let $m \geqslant 2$ and $G \cong K_{3}^{m}$. Then $\gamma(\overline{C(G, f)})=3$ if and only if $R(f)=\{w\}$, where w is a universal vertex of K_{3}^{m}.

Proof. Let vertices of i-th triangle of G be $\left\{w, u_{i 1}, u_{i 2}\right\}$ and $\gamma(\overline{C(G, f)})=3$. Then by Theorem 3.3, $B_{1}=\emptyset$ and so $B_{0} \neq \emptyset$. Suppose $u_{i 1} \in B_{0}$. By (4) in Theorem 3.3, $R(f) \subseteq\left\{w, u_{i 2}\right\}$. So for every $j \neq i, u_{j 1} \in B_{0}$ and by (4) in Theorem $3.3, R(f) \subseteq\left\{w, u_{j 2}\right\}$. Therefore $R(f)=\{w\}$. Conversely, let $R(f)=\{w\}$. By Theorem 3.3, $\gamma(\overline{C(G, f)})=3$.

Theorem 3.7 Let $n \geqslant 6$ and G be an ($n-2$)-regular graph of order n. Then $\gamma(\overline{C(G, f)})=3$ if and only if:

1) $B_{1}=\emptyset$.
2) If $u \in B_{0}$ and $u^{\prime} \notin N_{G_{2}}(u)$, then $u^{\prime} \in B_{0}$.
3) For each $x \in \cup_{i \geqslant 2} B_{i} ; \delta\left(G_{1}\left[f^{-1}(x)\right]\right) \geqslant 1$.

Proof. Let $\gamma(\overline{C(G, f)})=2$ and $D=\{a, b\}$ be a dominating set of $\overline{C(G, f)}$. Since $\bar{G} \cong \bigcup P_{2}$, so $\{a, b\} \nsubseteq G_{i}$ for $i \in\{1,2\}$. Without loss of generality, let $a \in V\left(G_{1}\right)$ and $b \in V\left(G_{2}\right)$. If $f(a)=b$, then vertex a dominates all of the vertices $V\left(G_{2}\right) \backslash\{b\}$ and vertex b dominates all of the vertices $V\left(G_{1}\right) \backslash f^{-1}(b)$ in $\overline{C(G, f)}$. Since $\{a, b\}$ is a dominating set of $\overline{C(G, f)}$, so vertex a dominates $f^{-1}(b)$. Thus a is an isolated vertex of $G_{1}\left[f^{-1}(b)\right]$, which is a contradiction. Let $f(a) \neq b$. Since $f(a)$ is not dominated by a in $\overline{C(G, f)}$, So $f(a)$ is dominated by b. Hence $b \notin N_{G_{2}}(f(a))$. If $b \notin B_{0}$, then since $B_{1}=\emptyset$, so $\left|f^{-1}(b)\right| \geqslant 2$. It is clear that the vertices of $f^{-1}(b)$ are not dominated by b. Thus the vertices of $f^{-1}(b)$ are dominated by a and so they are not adjacent to a. This is impossible. So $b \in B_{0}$, this is contradicts to (2). Therefore $\gamma(\overline{C(G, f)}=3$.
Conversely, on the contrary if $B_{1} \neq \emptyset$, then by Lemma 2.3, $\gamma(\overline{C(G, f)})=2$. This is a contradiction to the fact that $\gamma \overline{(\overline{C(G, f)}}=3$.
Assume that there are u and $u^{\prime}, u^{\prime} \notin N_{G_{2}}(u), u \in B_{0}$ and $u^{\prime} \notin B_{0}$. If $v_{k} \in V\left(G_{1}\right)$ and $f\left(v_{k}\right)=u^{\prime}$, then $\left\{v_{k}, u\right\}$ is a dominating set of $\overline{C(G, f)}$. Hence $\gamma(\overline{C(G, f)}) \leqslant 2$, which is impossible.
Finally, let $u_{i} \in V\left(G_{2}\right)$ such that $G_{1}\left[f^{-1}\left(u_{i}\right)\right]$ has an isolated vertex v_{k}. Then $\left\{v_{k}, u_{i}\right\}$ is a dominating set of $\overline{C(G, f)}$ and so $\gamma(\overline{C(G, f)}) \leqslant 2$, which is impossible. This completes the proof.

Lemma 3.8 Let $G \cong H_{2}$. Then $\gamma(\overline{C(G, f)})=3$ if and only if $|R(f)|=2, G_{2}[R(f)]=\emptyset$ and $\delta\left(G_{1}\left[f^{-1}(x)\right] \geqslant 1\right.$ for every $x \in R(f)$.
Proof. If $|R(f)|=2, G_{2}[R(f)]=\emptyset$ and $\delta\left(G_{1}\left[f^{-1}(x)\right] \geqslant 1\right.$ for every $x \in R(f)$, then by Theorem 3.7, $\gamma(\overline{C(G, f)})=3$. Conversely, let $\gamma(\overline{C(G, f)})=3$. Then by Theorem 3.7 (1), $B_{1}=\emptyset$. So $|R(f)| \neq 4$. If $|R(f)| \in\{1,3\}$, then there is an $u_{j} \in R(f)$ such that u_{j} is not adjacent to u_{i}, where $u_{i} \notin R(f)$. By Theorem 3.7 (2), $u_{j} \in B_{0}$ that is not true. So $|R(f)|=2$. Let $R(f)=\{a, b\}$ and $x \in B_{0}$. Then by Theorem $3.7(2),\{a, b\} \subseteq N_{G_{2}}(x)$. Since $\operatorname{deg}_{G_{2}}(a)=\operatorname{deg}_{G_{2}}(b)=4$, so a is not adjacent to b. Thus $G_{2}[R(f)]=\emptyset$. By (3) in Theorem 3.7, $\delta\left(G_{1}\left[f^{-1}(a)\right]\right) \geqslant 1$ and $\delta\left(G_{1}\left[f^{-1}(b)\right]\right) \geqslant 1$. This completes the proof.

Figure 2: H_{2}

Theorem 3.9 Let G be a connected k-regular graph of order $n \geqslant 4$, which is not isomorphic to $K_{3}, K_{4}, K_{5}, H_{1}$ and H_{2}. If $k \in\{2,3,4\}$, then $\gamma(\overline{C(G, f)})=2$.

Proof. Let $k=2$ and $v \in V(G)$. Then since $n \geqslant 4$, induced subgraph on $N_{G}(v)$ has an isolated vertex. By Lemma 2.6, $\gamma(\overline{C(G, f)})=2$.

Let $k=3, a \in V(G)$ and $N_{G}(a)=\{x, y, z\}$. If $G\left[N_{G}(a)\right]$ has an isolated vertex, then by Lemma 2.6, $\gamma(\overline{C(G, f)})=2$.
If $G\left[N_{G}(a)\right]$ has no isolated vertex, then since $G \nsubseteq K_{4}$, we have $G\left[N_{G}(a)\right] \cong P_{3}$. (See Figure 3) Since G is a 3 -regular graph, there is a $t \in V(G) \backslash\{x, y\}$ such that $t \in N_{G}(z)$. It is easy to see that z is an isolated vertex of $G\left[N_{G}(t)\right]$. By Lemma 2.6, $\gamma(\overline{C(G, f)})=2$.

Let $k=4$. If $B_{0}=\emptyset$ or $B_{1} \neq \emptyset$, then by Lemma 2.3, $\gamma(\overline{C(G, f)})=2$. Let $B_{0} \neq \emptyset$, $u \in B_{0}$ and $N_{G_{2}}(u)=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. If $R(f) \nsubseteq N_{G_{2}}(u)$ and $B_{1}=\emptyset$, then there is an $u_{i} \in V\left(G_{2}\right)$ such that $u_{i} \notin N_{G_{2}}(u)$ and $\left|f^{-1}\left(u_{i}\right)\right| \geqslant 2$. Suppose, $v_{k} \in V\left(G_{1}\right)$ and $f\left(v_{k}\right)=u_{i}$. Then all of the vertices $V\left(G_{1}\right) \cup\left(V\left(G_{2}\right) \backslash\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right)$ are dominated by vertex u and the vertices u_{1}, u_{2}, u_{3} and u_{4} are dominated by v_{k} in $\overline{C(G, f)}$. So $\left\{u, v_{k}\right\}$ is a dominating set of $\overline{C(G, f)}$. Thus $\gamma(\overline{C(G, f)}) \leqslant 2$. Therefore $\gamma(\overline{C(G, f)})=2$ by Lemma 2.2.

If $R(f) \subseteq N_{G_{2}}(u)$, we have three following cases:
Case 1: Let induced subgraph on $N_{G_{2}}[u]=\left\{u, u_{1}, u_{2}, u_{3}, u_{4}\right\}$ has a vertex of degree 1. Then by Lemma 2.6, $\gamma(\overline{C(G, f)})=2$.
Case 2: Let $\delta\left(G_{2}\left[N_{G_{2}}[u]\right]\right) \geqslant 2$ and $G_{2}\left[N_{G_{2}}[u]\right]$ has a vertex of degree 2. Without loss of generality, let $\operatorname{deg}_{G_{2}\left[N_{G_{2}}[u]\right]}\left(u_{4}\right)=2$ and u_{4} is adjacent to u_{3}. Also let u_{4} be adjacent to u_{5} and u_{6}. (See Figure 4) If $N_{G_{2}}(u)=N_{G_{2}}\left(u_{5}\right)=N_{G_{2}}\left(u_{6}\right)$, then since $\delta\left(G_{2}\left[N_{G_{2}}[u]\right]\right) \geqslant 2$, u_{1} is adjacent to u_{2} and $G \cong H_{1}$. (See Figure 1) u_{5} or u_{6} is not adjacent to at least one of the vertices $N_{G_{2}}(u) \backslash\left\{u_{4}\right\}$.
If $|R(f)|=4$, then by Lemmas 2.2 and $2.4, \gamma(\overline{C(G, f)})=2$.
Let $|R(f)|=3$. If $u_{4} \notin R(f)$, then $u_{i} \in R(f)$, for $i \in\{1,2\}$. Since u_{1} and u_{2} are not adjacent to u_{4}, by Lemmas 2.2 and 2.4, $\gamma(\overline{C(G, f)})=2$. Assume that $u_{4} \in R(f)$. If $u_{1} \notin R(f)$ or $u_{2} \notin R(f)$, then since u_{4} is not adjacent to u_{1} and u_{2}, by Lemmas 2.2 and 2.4, $\gamma(\overline{C(G, f)})=2$.

Let $\left\{u_{1}, u_{2}, u_{4}\right\}=R(f)$. If $u_{3} \notin N_{G_{2}}\left(u_{1}\right)$ or $u_{3} \notin N_{G_{2}}\left(u_{2}\right)$, then by Lemmas 2.2 and 2.4, $\gamma(\overline{C(G, f)})=2$. Let $u_{3} \in N_{G_{2}}\left(u_{1}\right) \cap N_{G_{2}}\left(u_{2}\right)$. Since $G \nsubseteq H_{1}$, (See Figure 1) so there is a vertex $x \in V\left(G_{2}\right) \backslash R(f)$ such that x is not adjacent to u_{4}. Therefore by Lemmas 2.2 and 2.4, $\gamma(\overline{C(G, f)})=2$.
Let $|R(f)|=2$. If $u_{4} \in R(f)$, then u_{1} or u_{2} is not in $R(f)$. If $u_{4} \notin R(f)$, then u_{1} or u_{2} is in $R(f)$. However, by Lemmas 2.2 and $2.4, \gamma(\overline{C(G, f)})=2$.
Finally, let $|R(f)|=1$. If $R(f) \subseteq\left\{u_{1}, u_{2}, u_{4}\right\}$, then by Lemmas 2.2 and 2.4, $\gamma(\overline{C(G, f)})=2$. Let $R(f)=\left\{u_{3}\right\}$. If u_{1} and u_{2} are adjacent to u_{3}, then u_{5} is not adjacent to u_{3}. So by Lemmas 2.2 and $2.4, \gamma(\overline{C(G, f)})=2$. If u_{1} or u_{2} is not adjacent to u_{3}, then by Lemmas 2.2 and 2.4, $\gamma(\overline{C(G, f)})=2$.
Case 3: Let $\delta\left(G_{2}\left[N_{G_{2}}[u]\right]\right) \geqslant 3$. Since $G \nsubseteq K_{5}$, we may assume that there is a vertex $u_{5} \in V\left(G_{2}\right)$ such that $u_{5} \notin N_{G_{2}}(u)$ and $u_{5} \in N_{G_{2}}\left(u_{4}\right)$. This involves no loss of generality (See Figure 5). If $N_{G_{2}}\left(u_{5}\right)=N_{G_{2}}(u)$, then $G \cong H_{2}$ (See Figure 2), which is impossible. So u_{5} is adjacent to vertex u_{6}, where $u_{6} \in V\left(G_{2}\right) \backslash\left\{u, u_{1}, u_{2}, u_{3}, u_{4}\right\}$. Since G is a 4-regular graph and $R(f) \subseteq N_{G_{2}}(u)$, for each $y \in R(f)$ if $y \in N_{G_{2}}\left(u_{5}\right)$, then $y \notin N_{G_{2}}\left(u_{6}\right)$ or if $y \in N_{G_{2}}\left(u_{6}\right)$, then $y \notin N_{G_{2}}\left(u_{5}\right)$. By Lemmas 2.2 and $2.4, \gamma(\overline{C(G, f)})=2$.

Figure 3

Figure 4

Figure 5

Acknowledgments

The authors are very grateful to the referee for his/her useful comments.

References

[1] J. Amjadi, S. Nazari-Moghaddam, S. M. Sheikholeslami, L. Volkmann, Total roman domination number of trees, Australasian. J. Combinatorics. 69 (2) (2017), 271-285.
[2] L. Eroh, R. Gera, C. X. Kang, C. Larson, E. Yi, Domination in functigraphs, Discuss. Math. Graph. Theory. 32 (2) (2012), 299-319.
[3] F. Ramezani, E. D. Rodriguez-Bazan, J. A. Rodriguez-Velazquez, On the roman domination number of generalized Sierpinski graphs, Filomat. 31 (20) (2017), 6515-6528.
[4] E. Vatandoost, F. Ramezani, On the domination and signed domination numbers of zero-divisor graph, Electronic. J. Graph. Theory. Appl. 4 (2) (2016), 148-156.

[^0]: *Corresponding author.
 E-mail address: athenashaminejad@edu.ikiu.ac.ir (A. Shaminezhad); Vatandoost@sci.ikiu.ac.ir (E. Vatandoost).

