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Abstract. Let G = (V,E) be a simple graph. A subset S ⊆ V (G) is a dominating set of G
if every vertex in V (G) \ S is adjacent to at least one vertex in S. The domination number
of graph G, denoted by γ(G), is the minimum size of a dominating set of vertices V (G).
Let G1 and G2 be two disjoint copies of graph G and f : V (G1) → V (G2) be a function.
Then a functigraph G with function f is denoted by C(G, f), its vertices and edges are
V (C(G, f)) = V (G1) ∪ V (G2) and E(C(G, f)) = E(G1) ∪ E(G2) ∪ {vu|v ∈ V (G1), u ∈
V (G2), f(v) = u}, respectively. In this paper, we investigate domination number of comple-

ments of functigraphs. We show that for any connected graph G, γ(C(G, f)) ⩽ 3. Also we

provide conditions for the function f in some graphs such that γ(C(G, f)) = 3. Finally, we
prove if G is a bipartite graph or a connected k− regular graph of order n ⩾ 4 for k ∈ {2, 3, 4}
and G /∈ {K3,K4,K5, H1, H2}, then γ(C(G, f)) = 2.
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1. Introduction

All graphs throughout this paper considered simple, finite and undirected. The open
neighborhood of a vertex v ∈ V (G), denoted by NG(v), is the set of vertices adjacent to
v in G. The closed neighborhood of a vertex v in graph G is NG[v] = NG(v) ∪ {v}. The
degree of a vertex v ∈ V (G) is degG(v) =| NG(v) | . We denote the maximum degree of
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G with ∆(G) and its minimum degree with δ(G). A vertex is called a universal vertex if
it is adjacent to all of the vertices of the graph.

The complement of graph G is denoted by G and defined as a graph with vertex set
V (G) which e ∈ E(G) if and only if e /∈ E(G). For any S ⊆ V (G), the induced subgraph
on S is denoted by G[S].

A subset S ⊆ V (G) is a dominating set of G if every vertex in V (G) \S is adjacent to
at least one vertex in S. The domination number of a graph G, denoted by γ(G), is the
minimum size of a dominating set of G.

The notations Pn, Cn, Kn, K1,n, Wn and Kn
3 are used for path, cycle, complete graph,

star, wheel and friendship graph, respectively.
Let G1 and G2 be two disjoint copies of graph G and f : V (G1) → V (G2) be a function,

where V (G1) = {v1, v2, ..., vn} and V (G2) = {u1, u2, ..., un}. Then a functigraph G with
function f is denoted by C(G, f), its vertices and edges are V (C(G, f)) = V (G1)∪V (G2)
and E(C(G, f)) = E(G1) ∪ E(G2) ∪ {vu|v ∈ V (G1), u ∈ V (G2), f(v) = u}, respectively.
For u ∈ V (G2), f

−1(u) = {v ∈ V (G1) : f(v) = u} and R(f) = {f(v)|v ∈ V (G1)}. Also
for each 0 ⩽ ℓ ⩽ n we define Bℓ = {u ∈ V (G2) | |f−1(u)| = ℓ}, where n = |V (G)|.

In recent years much attention drawn to the domination theory which is very in-
teresting branch in graph theory. Recently, the concept of domination expanded to
other parameters of domination such as 2−rainbow domination, total domination, signed
domination and Roman domination. For more details we refer reader to [1, 3, 4]. In
2012, Erol et al. studied the domination in functigraphs, see [2]. They proved that
γ(G) ⩽ γ(C(G, f)) ⩽ 2γ(G) and studied the domination number of C(Cn, f).
In this paper, we study domination number of complements of functigraphs. We show
that for any connected graph G, γ(C(G, f)) ⩽ 3 and provide conditions for the function

f such that γ(C(G, f)) = 3. Finally, we prove if G is a bipartite graph or a connected
k− regular graph of order n ⩾ 4 for k ∈ {2, 3, 4} and G /∈ {K3,K4,K5,H1,H2}, then
γ(C(G, f)) = 2.
The main results are the following.
Theorem A. Let graph G has a universal vertex. Then γ(C(G, f)) = 3 if and only if:

(1) δ(G) ̸= 1,
(2) B1 = ∅,
(3) For any i ⩾ 2 and any u ∈ Bi, δ(G1[f

−1(u)]) ⩾ 1,
(4) Every vertex in B0 is adjacent to all of the vertices of Bi, for any i ⩾ 2,
(5) If {u, u′} ⊆ ∪i⩾2Bi and u is not adjacent to u

′
, then all of the vertices of f−1(u)

are adjacent to each vertex of f−1(u
′
).

Theorem B. Let n ⩾ 6 and G be a (n−2)-regular graph of order n. Then γ(C(G, f)) = 3
if and only if:

1) B1 = ∅.
2) If u ∈ B0 and u

′
/∈ NG2

(u), then u
′ ∈ B0.

3) For each x ∈ ∪i⩾2Bi; δ(G1[f
−1(x)]) ⩾ 1.

Theorem C. Let G be a connected k-regular graph of order n ⩾ 4, which is not isomor-
phic to K3, K4, K5, H1 and H2. If k ∈ {2, 3, 4}, then γ(C(G, f)) = 2.

2. Preliminary

For investigating the domination number of complements of functigraphs, the following
Lemmas are useful.
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Lemma 2.1 For any connected graph G, γ(C(G, f)) ⩽ 3.

Proof. Let vi ∈ V (G1) and uj ∈ V (G2) \ {f(vi)}. Then vi dominates all of the vertices
V (G2) \ {f(vi)}, uj dominates all of the vertices V (G1) \ Sj and f(vi) dominates all

of the vertices V (G1) \ Si in C(G, f), where Sj = f−1(uj) and Si = f−1(f(vi)). Since

Si ∩ Sj = ∅, so {vi, f(vi), uj} is a dominating set of C(G, f). Hence γ(C(G, f)) ⩽ 3. ■

Lemma 2.2 Let G be a graph of order n. Then γ(C(G, f)) = 1 if and only if there is
an isolated vertex x in G such that x /∈ R(f).

Proof. If x ∈ V (G) is an isolated vertex and x /∈ R(f), then x is an isolated vertex in

C(G, f). So x is a universal vertex in C(G, f). Thus {x} is a dominating set of C(G, f)

and γ(C(G, f)) = 1.

Conversely, let γ(C(G, f)) = 1 and {x} be a dominating set of C(G, f). Then x is an
isolated vertex in C(G, f). Hence x is an isolated vertex in G and x /∈ R(f). ■

Lemma 2.3 Let G be a graph of order n with δ(G) ⩾ 1. If B0 = ∅ or B1 ̸= ∅, then
γ(C(G, f)) = 2.

Proof. If B0 = ∅, then B1 = {u1, u2, ..., un}. It is easy to see that for every 1 ⩽ i ⩽ n,

{vi, f(vi)} is a dominating set of C(G, f). So γ(C(G, f)) ⩽ 2. Since G does not have any

isolated vertex, by Lemma 2.2, we have γ(C(G, f)) = 2.

If B1 ̸= ∅ and u ∈ B1, then we can see that {u, f−1(u)} is a dominating set of C(G, f).

Hence γ(C(G, f)) ⩽ 2. Since G does not have any isolated vertex, by Lemma 2.2, we

have γ(C(G, f)) = 2. ■

By Lemma 2.3, if f is a bijective function, then γ(C(G, f)) = 2. So, in the following
lemmas and theorems, f is not a bijective function.

Lemma 2.4 Let G be a graph and {ui, uj} ⊆ V (G2). Then

1) if ui is not adjacent to uj , ui ∈ R(f) and uj /∈ R(f), then γ(C(G, f)) ⩽ 2.

2) if NG2
(ui) ∩NG2

(uj) = ∅, then γ(C(G, f)) ⩽ 2.

Proof.

1) Let vℓ ∈ V (G1) and f(vℓ) = ui. Then vℓ dominates all of the vertices V (G2)\{ui}
and uj dominates all of the vertices V (G1) ∪ {ui} in C(G, f). So {vℓ, uj} is a

dominating set of C(G, f). Thus γ(C(G, f)) ⩽ 2.
2) Let NG2

(ui) = Ni, NG2
(uj) = Nj , f

−1(ui) = Si and f−1(uj) = Sj . Then ui
dominates all of the vertices (V (G1) \ Si) ∪ (V (G2) \ Ni) and uj dominates all
of the vertices (V (G1) \ Sj) ∪ (V (G2) \ Nj). So {ui, uj} is a dominating set of

C(G, f). Therefore γ(C(G, f)) ⩽ 2.

■

Lemma 2.5 Let G ∼= H1 and R(f) = {x2, x4, x5}. If δ(G1[f
−1(xi)]) ⩾ 1, for i ∈ {2, 4, 5},

then γ(C(G, f)) = 3.

Proof. Let {a, b} be a dominating set of C(G, f). Since H1 is a disconnected graph with
two component of C4 and K3, so {a, b} ⊈ V (Gi), i ∈ {1, 2}. Hence we may assume that

a ∈ V (G1) and b ∈ V (G2). We know that f(a) is not dominated by a in C(G, f). So
b ∈ {x2, x4, x5}. Since δ(G1[f

−1(xi)]) ⩾ 1, there is at least one vertex in f−1(b) that is

not dominated by a and b, which is a contradiction. So γ(C(G, f)) = 3.
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Figure 1: H1 ■

Lemma 2.6 Let G be a graph with δ(G) ⩾ 1 and x a vertex of G such that the induced

subgraph on NG(x) has at least an isolated vertex. Then γ(C(G, f)) = 2.

Proof. Let ui ∈ V (G2) be corresponding to vertex x ∈ V (G). Then all of the vertices
(V (G2) \Ni)∪ (V (G1) \Si) are dominated by ui, where Si = f−1(ui) and Ni = NG2

(ui).
Let uj be an isolated vertex in G2[NG2

(ui)]. Then all of the vertices Ni and Si are

dominated by uj . So {ui, uj} is a dominating set of C(G, f) and γ(C(G, f)) ⩽ 2. By

Lemma 2.2, γ(C(G, f)) = 2. ■

3. The proof of our main results

The main results are proven in this section.

Theorem 3.1 Let G be a bipartite graph and δ(G) ⩾ 1. Then γ(C(G, f)) = 2.

Proof. Let V (G2) = X ∪Y . If B0 = ∅, then by Lemma 2.3, γ(C(G, f)) = 2. Let B0 ̸= ∅
and u ∈ B0. If u ∈ X, then u dominates all of the vertices V (G1)∪X and a vertex ui ∈ Y

dominates all of the vertices Y in C(G, f). So {u, ui} is a dominating set of C(G, f). By

Lemmas 2.2 and 2.4, γ(C(G, f)) = 2. ■

Corollary 3.2 If G is a tree, then γ(C(G, f)) = 2.

Proof. By Theorem 3.1, γ(C(G, f)) = 2. ■

Theorem 3.3 Let graph G has a universal vertex. Then γ(C(G, f)) = 3 if and only if:

(1) δ(G) ̸= 1,
(2) B1 = ∅,
(3) For any i ⩾ 2 and any u ∈ Bi, δ(G1[f

−1(u)]) ⩾ 1,
(4) Every vertex in B0 is adjacent to all of the vertices of Bi, for any i ⩾ 2,
(5) If {u, u′} ⊆ ∪i⩾2Bi and u is not adjacent to u

′
, then all of the vertices of f−1(u)

are adjacent to each vertex of f−1(u
′
).

Proof. Let γ(C(G, f)) = 3 and w be a universal vertex of G2.
1) Let δ(G) = 1, ui ∈ V (G2) and degG2

(ui) = 1. Then ui dominates all of the vertices
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(V (G2)\{w})∪(V (G1)\f−1(ui)) and w dominates all of the vertices V (G1)\f−1(w). So

{ui, w} is a dominating set of C(G, f). Hence γ(C(G, f)) ⩽ 2, which is a contradiction.

2) Let B1 ̸= ∅. Then by Lemma 2.3, we have γ(C(G, f)) = 2, which is a contradiction.
3) If there exists an i ⩾ 2 and a u ∈ Bi such that G1[f

−1(u)] has an isolated vertex
v, Then v dominates all of the vertices (V (G2) \ {u}) ∪ f−1(u) and u dominates all

of the vertices V (G1) \ f−1(u). Hence {v, u} is a dominating set of C(G, f). Hence,

γ(C(G, f)) ⩽ 2, which is not true.
4) If there exists a u0 ∈ B0 that is not adjacent to u ∈ Bi for some i ⩾ 2, then u0
dominates all of the vertices V (G1)∪{u} and vk dominates all of the vertices V (G2)\{u},
where f(vk) = u. Hence {u0, vk} is a dominating set of C(G, f). Therefore γ(C(G, f)) ⩽
2, which is a contradiction to the fact γ(C(G, f)) = 3.
5) If {u, u′} ⊆ ∪i⩾2Bi, u is not adjacent to u

′
and choose v ∈ f−1(u) such that v is not

adjacent to any vertex of f−1(u
′
), then v dominates all of the vertices (V (G2) \ {u}) ∪

f−1(u
′
). Also all of the vertices (V (G1) \ f−1(u

′
)) ∪ {u} are dominated by u

′
. Hence

{v, u′} is a dominating set of C(G, f) and so γ(C(G, f)) ⩽ 2, which is impossible.

Conversely, on the contrary let γ(C(G, f)) = 2 and D = {a, b} be a dominating set of

C(G, f). We need only consider 3 cases:
Case 1: Let D = {a, b} ⊆ V (G1). If a and b are universal vertices of G, then by (1),
G ≇ P2 and so there is a vk ∈ V (G1) \ {a, b} such that it is not dominated by D in

C(G, f). If a is a universal vertex and b is not a universal vertex, then by (1), there
is a vk ̸= a such that it is adjacent to b. So D does not dominate vk. If a and b are
not universal vertices, then universal vertices of G1 are not dominated by D in C(G, f),
which is a contradiction.
Case 2: LetD = {a, b} ⊆ V (G2). Similarly,D = {a, b} ⊆ V (G2) leads to a contradiction.
Case 3: Now let a ∈ V (G1) and b ∈ V (G2). Then all of the vertices V (G2) \ f(a) are

dominated by a in C(G, f). If f(a) = b, then since {a, b} is a dominating set of C(G, f),
so all of the vertices f−1(b) are dominated by a. By (2), |f−1(b)| ⩾ 2 and a must be
an isolated vertex of G1[f

−1(b)], which contradicts to (3). Let f(a) ̸= b. Since {a, b}
is a dominating set of C(G, f), b is not adjacent to f(a) in G2. Since B1 = ∅, by (4),
b /∈ B0. Hence, |f−1(b)| ⩾ 2. Therefore, a is not adjacent to any vertices of f−1(b), which
contradicts to (5). This completes the proof. ■

Corollary 3.4 Let n ⩾ 3 and G ∼= Kn. Then γ(C(G, f)) = 3 if and only if B1 = ∅

Corollary 3.5 Let n ⩾ 5 and G ∼= Wn. Then γ(C(G, f)) = 3 if and only if R(f) = {w},
where w is a universal vertex of Wn.

Proof. Let γ(C(G, f)) = 3. Then by Theorem 3.3, B1 = ∅ and so B0 ̸= ∅. Assume
that ui ∈ B0. By (4) in Theorem 3.3, R(f) ⊆ {w, ui−1, ui+1}. Hence, {ui−2, ui+2} ⊆ B0

and by (4) in Theorem 3.3, R(f) ⊆ {w, ui+1, ui+3} and R(f) ⊆ {w, ui−1, ui−3}. Thus
R(f) = {w}. Conversely, let R(f) = {w}. Then, by Theorem 3.3, γ(C(G, f)) = 3. ■

Corollary 3.6 Letm ⩾ 2 and G ∼= Km
3 . Then γ(C(G, f)) = 3 if and only if R(f) = {w},

where w is a universal vertex of Km
3 .

Proof. Let vertices of i−th triangle of G be {w, ui1, ui2} and γ(C(G, f)) = 3. Then
by Theorem 3.3, B1 = ∅ and so B0 ̸= ∅. Suppose ui1 ∈ B0. By (4) in Theorem 3.3,
R(f) ⊆ {w, ui2}. So for every j ̸= i, uj1 ∈ B0 and by (4) in Theorem 3.3, R(f) ⊆ {w, uj2}.
Therefore R(f) = {w}. Conversely, let R(f) = {w}. By Theorem 3.3, γ(C(G, f)) = 3. ■
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Theorem 3.7 Let n ⩾ 6 and G be an (n − 2)-regular graph of order n. Then

γ(C(G, f)) = 3 if and only if:

1) B1 = ∅.
2) If u ∈ B0 and u

′
/∈ NG2

(u), then u
′ ∈ B0.

3) For each x ∈ ∪i⩾2Bi; δ(G1[f
−1(x)]) ⩾ 1.

Proof. Let γ(C(G, f)) = 2 and D = {a, b} be a dominating set of C(G, f). Since
G ∼=

∪
P2, so {a, b} ⊈ Gi for i ∈ {1, 2}. Without loss of generality, let a ∈ V (G1)

and b ∈ V (G2). If f(a) = b, then vertex a dominates all of the vertices V (G2) \ {b}
and vertex b dominates all of the vertices V (G1) \ f−1(b) in C(G, f). Since {a, b} is a

dominating set of C(G, f), so vertex a dominates f−1(b). Thus a is an isolated vertex
of G1[f

−1(b)], which is a contradiction. Let f(a) ̸= b. Since f(a) is not dominated by

a in C(G, f), So f(a) is dominated by b. Hence b /∈ NG2
(f(a)). If b /∈ B0, then since

B1 = ∅, so |f−1(b)| ⩾ 2. It is clear that the vertices of f−1(b) are not dominated by b.
Thus the vertices of f−1(b) are dominated by a and so they are not adjacent to a. This

is impossible. So b ∈ B0, this is contradicts to (2). Therefore γ(C(G, f) = 3.

Conversely, on the contrary if B1 ̸= ∅, then by Lemma 2.3, γ(C(G, f)) = 2. This is a

contradiction to the fact that γ(C(G, f) = 3.
Assume that there are u and u

′
, u

′
/∈ NG2

(u), u ∈ B0 and u
′
/∈ B0. If vk ∈ V (G1) and

f(vk) = u
′
, then {vk, u} is a dominating set of C(G, f). Hence γ(C(G, f)) ⩽ 2, which is

impossible.
Finally, let ui ∈ V (G2) such that G1[f

−1(ui)] has an isolated vertex vk. Then {vk, ui} is

a dominating set of C(G, f) and so γ(C(G, f)) ⩽ 2, which is impossible. This completes
the proof. ■

Lemma 3.8 Let G ∼= H2. Then γ(C(G, f)) = 3 if and only if |R(f)| = 2, G2[R(f)] = ∅
and δ(G1[f

−1(x)] ⩾ 1 for every x ∈ R(f).

Proof. If |R(f)| = 2, G2[R(f)] = ∅ and δ(G1[f
−1(x)] ⩾ 1 for every x ∈ R(f), then by

Theorem 3.7, γ(C(G, f)) = 3. Conversely, let γ(C(G, f)) = 3. Then by Theorem 3.7 (1),
B1 = ∅. So |R(f)| ̸= 4. If |R(f)| ∈ {1, 3}, then there is an uj ∈ R(f) such that uj is
not adjacent to ui, where ui /∈ R(f). By Theorem 3.7 (2), uj ∈ B0 that is not true. So
|R(f)| = 2. Let R(f) = {a, b} and x ∈ B0. Then by Theorem 3.7 (2), {a, b} ⊆ NG2

(x).
Since degG2

(a) = degG2
(b) = 4, so a is not adjacent to b. Thus G2[R(f)] = ∅. By (3) in

Theorem 3.7, δ(G1[f
−1(a)]) ⩾ 1 and δ(G1[f

−1(b)]) ⩾ 1. This completes the proof.
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Figure 2: H2 ■
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Theorem 3.9 Let G be a connected k-regular graph of order n ⩾ 4, which is not
isomorphic to K3, K4, K5, H1 and H2. If k ∈ {2, 3, 4}, then γ(C(G, f)) = 2.

Proof. Let k = 2 and v ∈ V (G). Then since n ⩾ 4, induced subgraph on NG(v) has an

isolated vertex. By Lemma 2.6, γ(C(G, f)) = 2.
Let k = 3, a ∈ V (G) and NG(a) = {x, y, z}. If G[NG(a)] has an isolated vertex, then

by Lemma 2.6, γ(C(G, f)) = 2.
If G[NG(a)] has no isolated vertex, then since G ≇ K4, we have G[NG(a)] ∼= P3.
(See F igure 3) Since G is a 3−regular graph, there is a t ∈ V (G) \ {x, y} such that
t ∈ NG(z). It is easy to see that z is an isolated vertex of G[NG(t)]. By Lemma 2.6,

γ(C(G, f)) = 2.

Let k = 4. If B0 = ∅ or B1 ̸= ∅, then by Lemma 2.3, γ(C(G, f)) = 2. Let B0 ̸= ∅,
u ∈ B0 and NG2

(u) = {u1, u2, u3, u4}. If R(f) ⊈ NG2
(u) and B1 = ∅, then there is

an ui ∈ V (G2) such that ui /∈ NG2
(u) and |f−1(ui)| ⩾ 2. Suppose, vk ∈ V (G1) and

f(vk) = ui. Then all of the vertices V (G1) ∪ (V (G2) \ {u1, u2, u3, u4}) are dominated by

vertex u and the vertices u1, u2, u3 and u4 are dominated by vk in C(G, f). So {u, vk} is

a dominating set of C(G, f). Thus γ(C(G, f)) ⩽ 2. Therefore γ(C(G, f)) = 2 by Lemma
2.2.
If R(f) ⊆ NG2

(u), we have three following cases:
Case 1: Let induced subgraph on NG2

[u] = {u, u1, u2, u3, u4} has a vertex of degree 1.

Then by Lemma 2.6, γ(C(G, f)) = 2.
Case 2: Let δ(G2[NG2

[u]]) ⩾ 2 and G2[NG2
[u]] has a vertex of degree 2. Without loss of

generality, let degG2[NG2 [u]]
(u4) = 2 and u4 is adjacent to u3. Also let u4 be adjacent to u5

and u6. (See F igure 4) If NG2
(u) = NG2

(u5) = NG2
(u6), then since δ(G2[NG2

[u]]) ⩾ 2,
u1 is adjacent to u2 and G ∼= H1. (See F igure 1) u5 or u6 is not adjacent to at least one
of the vertices NG2

(u) \ {u4}.
If |R(f)| = 4, then by Lemmas 2.2 and 2.4, γ(C(G, f)) = 2.
Let |R(f)| = 3. If u4 /∈ R(f), then ui ∈ R(f), for i ∈ {1, 2}. Since u1 and u2 are not

adjacent to u4, by Lemmas 2.2 and 2.4, γ(C(G, f)) = 2. Assume that u4 ∈ R(f). If
u1 /∈ R(f) or u2 /∈ R(f), then since u4 is not adjacent to u1 and u2, by Lemmas 2.2 and

2.4, γ(C(G, f)) = 2.
Let {u1, u2, u4} = R(f). If u3 /∈ NG2

(u1) or u3 /∈ NG2
(u2), then by Lemmas 2.2 and 2.4,

γ(C(G, f)) = 2. Let u3 ∈ NG2
(u1) ∩NG2

(u2). Since G ≇ H1, (See F igure 1) so there is
a vertex x ∈ V (G2) \ R(f) such that x is not adjacent to u4. Therefore by Lemmas 2.2

and 2.4, γ(C(G, f)) = 2.
Let |R(f)| = 2. If u4 ∈ R(f), then u1 or u2 is not in R(f). If u4 /∈ R(f), then u1 or u2 is

in R(f). However, by Lemmas 2.2 and 2.4, γ(C(G, f)) = 2.
Finally, let |R(f)| = 1. If R(f) ⊆ {u1, u2, u4}, then by Lemmas 2.2 and 2.4,

γ(C(G, f)) = 2. Let R(f) = {u3}. If u1 and u2 are adjacent to u3, then u5 is not

adjacent to u3. So by Lemmas 2.2 and 2.4, γ(C(G, f)) = 2. If u1 or u2 is not adjacent

to u3, then by Lemmas 2.2 and 2.4, γ(C(G, f)) = 2.
Case 3: Let δ(G2[NG2

[u]]) ⩾ 3. Since G ≇ K5, we may assume that there is a vertex
u5 ∈ V (G2) such that u5 /∈ NG2

(u) and u5 ∈ NG2
(u4). This involves no loss of generality

(See F igure 5). If NG2
(u5) = NG2

(u), then G ∼= H2 (See F igure 2), which is impossible.
So u5 is adjacent to vertex u6, where u6 ∈ V (G2) \ {u, u1, u2, u3, u4}. Since G is a
4-regular graph and R(f) ⊆ NG2

(u), for each y ∈ R(f) if y ∈ NG2
(u5), then y /∈ NG2

(u6)

or if y ∈ NG2
(u6), then y /∈ NG2

(u5). By Lemmas 2.2 and 2.4, γ(C(G, f)) = 2.
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