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Abstract. Let G = (V, E) be a simple graph. A subset S C V(G) is a dominating set of G
if every vertex in V(G) \ S is adjacent to at least one vertex in S. The domination number
of graph G, denoted by (@), is the minimum size of a dominating set of vertices V(G).
Let G and G2 be two disjoint copies of graph G and f : V(G1) — V(G2) be a function.
Then a functigraph G with function f is denoted by C(G, f), its vertices and edges are
V(C(G, f)) = V(G1) UV(G2) and E(C(G, f)) = E(G1) U E(G2) U {vulv € V(G1),u €
V(G2), f(v) = u}, respectively. In this paper, we investigate domination number of comple-

ments of functigraphs. We show that for any connected graph G, v(C(G, f)) < 3. Also we

provide conditions for the function f in some graphs such that v(C(G, f)) = 3. Finally, we
prove if G is a bipartite graph or a connected k— regular graph of order n > 4 for k € {2, 3,4}

and G ¢ {Ks, Ka, K5, Hi, Ha}, then v(C(G, f)) = 2.
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1. Introduction

All graphs throughout this paper considered simple, finite and undirected. The open
neighborhood of a vertex v € V(G), denoted by N¢(v), is the set of vertices adjacent to
v in G. The closed neighborhood of a vertex v in graph G is Ng[v] = Ng(v) U {v}. The
degree of a vertex v € V(G) is degg(v) =| Ng(v) | . We denote the mazimum degree of
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G with A(G) and its minimum degree with §(G). A vertex is called a universal vertex if
it is adjacent to all of the vertices of the graph.

The complement of graph G is denoted by G and defined as a graph with vertex set
V(G) which e € E(G) if and only if e ¢ E(G). For any S C V(G), the induced subgraph
on S is denoted by G[S].

A subset S C V(G) is a dominating set of G if every vertex in V(G) \ S is adjacent to
at least one vertex in S. The domination number of a graph G, denoted by (G), is the
minimum size of a dominating set of G.

The notations P,, Cy, K, K1, Wy, and K3 are used for path, cycle, complete graph,
star, wheel and friendship graph, respectively.

Let G and G2 be two disjoint copies of graph G and f : V(G1) — V(G2) be a function,
where V(G1) = {v1,v2,...,v,} and V(G2) = {u1,ug, ..., un}. Then a functigraph G with
function f is denoted by C(G, f), its vertices and edges are V(C(G, f)) = V(G1)UV(G2)
and E(C(G, f)) = E(G1) U E(G2) U{vu|v € V(G1),u € V(G2), f(v) = u}, respectively.
For uw € V(Ga), f~H(u) = {v € V(Gy) : f(v) = u} and R(f) = {f(v)|v € V(G1)}. Also
for each 0 < £ < n we define By = {u € V(G2) | |f~ (u)| = £}, where n = |V(G)|.

In recent years much attention drawn to the domination theory which is very in-
teresting branch in graph theory. Recently, the concept of domination expanded to
other parameters of domination such as 2—rainbow domination, total domination, signed
domination and Roman domination. For more details we refer reader to [1, 3, 4]. In
2012, Erol et al. studied the domination in functigraphs, see [2]. They proved that
7(G) < v(C(G, f)) < 29(G) and studied the domination number of C(Cy, f).

In this paper, we study domination number of complements of functigraphs. We show
that for any connected graph G, v(C(G, f)) < 3 and provide conditions for the function
f such that v(C(G, f)) = 3. Finally, we prove if G is a bipartite graph or a connected
k— regular graph of order n > 4 for k € {2,3,4} and G ¢ {K3, K4, K5, H1, H2}, then
V(C(G, f)) = 2.

The main results are the following.

Theorem A. Let graph G has a universal vertex. Then v(C(G, f)) = 3 if and only if:

(1) o(G) # 1,

2) Bl - @7

3) For any i > 2 and any u € B;, §(G1[f~1(u)]) > 1,

4) Every vertex in By is adjacent to all of the vertices of B;, for any ¢ > 2,

5) If {u,u'} C U;j>9B; and u is not adjacent to u’, then all of the vertices of f~!(u)
are adjacent to each vertex of f~(u').

Theorem B. Let n > 6 and G be a (n—2)-regular graph of order n. Then v(C(G, f)) = 3
if and only if:

1) By =0.

2) If u € By and v’ ¢ Ng,(u), then u' € By.

3) For each = € U;>2B;; 6(G1[f1(x)]) > 1.

Theorem C. Let GG be a connected k-regular graph of order n > 4, which is not isomor-
phic to K3, K4, K5, H; and Hsy. If k € {2,3,4}, then v(C(G, f)) = 2.
2. Preliminary

For investigating the domination number of complements of functigraphs, the following
Lemmas are useful.
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Lemma 2.1 For any connected graph G, v(C(G, f)) < 3

Proof. Let v; € V(G1) and uj € V(G2) \ {f(vi)}. Then v; dominates all of the vertices
V(G2) \ {f(v)}, u; dominates all of the vertices V(G1) \ S; and f(v;) dominates all

of the vertices V(G1) \ S; in C(G, f), where S; = f~(u;) and S; = f~(f(v;)). Since
SinS; =0, so {v;, f(vi),u;} is a dominating set of C(G, f). Hence v(C(G, f)) <3. 1

Lemma 2.2 Let G be a graph of order n. Then v(C(G, f)) = 1 if and only if there is
an isolated vertex x in G such that = ¢ R(f).

Proof. If x € V(G) is an isolated vertex and = ¢ R(f), then x is an isolated vertex in
C(G, f). So z is a universal vertex in C(G, f). Thus {z} is a dominating set of C(G, f)

and v(C(G, f)) =
Conversely, let v(C(G, f)) = 1 and {z} be a dominating set of C(G, f). Then z is an
isolated vertex in C'(G, f). Hence x is an isolated vertex in G and x ¢ R(f). [ |

Lemma 2.3 Let G be a graph of order n with 6(G) > 1. If By = () or By # (), then
(C(G, f)) =2

Proof. If By =0, then By = {uy,uz,...,uy}. It is easy to see that for every 1 < i < n,
{vi, f(vi)} is a dominating set of C(G, f). So v(C(G, f)) < 2. Since G does not have any
isolated vertex, by Lemma 2.2, we have v(C(G, f)) = 2

If By # 0 and u € By, then we can see that {u, f~!(u)} is a dominating set of C(G, f).

Hence v(C(G, f)) < 2. Since G does not have any isolated vertex, by Lemma 2.2, we
have v(C(G, f)) = 2. [ |

By Lemma 2.3, if f is a bijective function, then v(C(G, f)) = 2. So, in the following
lemmas and theorems, f is not a bijective function.

Lemma 2.4 Let G be a graph and {u;, u;} C V(G2). Then

1) if u; is not adjacent to u;, u; € R(f) and u; ¢ R(f), then v(C(G, f)) <2
2) if Ng,(u;) N Ng, (u;) = 0, then v(C(G, f)) < 2.
Proof.

1) Let v, € V(Gy) and f(vg) = u;. Then vy dominates all of the vertices V(G2)\ {u;}
and u; dominates all of the vertices V(Gy) U {ul} in C(G, f). So {vg,u;} is a
dominating set of C(G, f). Thus 'y( (G,f)) <

2) Let Ng,(u;) = N;, Ng,(uj) = Nj, f~1(u;) = S and f~'(u;) = S;. Then w;
dominates all of the vertices (V/ ( ) \ Si) U (V(G2) \ N;) and u; dominates all
of the vertices (V(G1) \ Sj) U (V(G2) \ Nj). So {u;,u;} is a dominating set of
C(G, f). Therefore v(C(G, f)) < 2.

Lemma 2.5 Let G = Hy and R(f) = {x2, 74, 75}. If 6(G1[f 1 (;)]) > 1, fori € {2,4,5},
then 7(C(G, f)) =

Proof. Let {a,b} be a dominating set of C(G f) Since H; is a disconnected graph with
two component of Cy and K3, so {a,b} € V(G;), i € {1,2}. Hence we may assume that
a € V(Gy) and b € V(G3z). We know that f(a ) is not dominated by a in C(G, f). S
b € {xa, 24, 75}. Since 6(G1[f(x;)]) = 1, there is at least one vertex in f~!(b) that is
not dominated by a and b, which is a contradiction. So v(C(G, f)) =
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Lemma 2.6 Let G be a graph with §(G) > 1 and z a vertex of G such that the induced
subgraph on Ng(x) has at least an isolated vertex. Then v(C(G, f)) = 2

Proof. Let u; € V(G3) be corresponding to vertex € V(G). Then all of the vertices
(V(G2)\ N;) U (V(G1)\ S;) are dominated by u;, where S; = f~!(u;) and N; = Ng, (u;).
Let u; be an isolated vertex in Ga[Ng,(u;)]. Then all of the vertices N; and S; are
dominated by u;. So {u;,u;} is a dominating set of C(G, f) and v(C(G, f)) < 2. By
Lemma 2.2, v(C(G, f)) = 2. [ |

3. The proof of our main results

The main results are proven in this section.
Theorem 3.1 Let G be a bipartite graph and 6(G) > 1. Then v(C(G, f)) =

Proof. Let V(G2) = X UY. If By = (), then by Lemma 2.3, v(C(G, f)) = 2. Let By # 0
and u € By. If u € X, then u dominates all of the vertices V(G1)UX and a vertex u; € Y
dominates all of the vertices Y in C(G, f). So {u, u;} is a dominating set of C(G, f). By
Lemmas 2.2 and 2.4, v(C(G, f)) = 2. |

Corollary 3.2 If G is a tree, then v(C(G, f)) =
Proof. By Theorem 3.1, v(C(G, f)) = 2. [ |
Theorem 3.3 Let graph G has a universal vertex. Then v(C(G, f)) = 3 if and only if:

(1) ()751,

(2) B

(3) For any i > 2 and any u € B;, §(G1[f L (u)]) > 1,

(4) Every vertex in By is adjacent to all of the vertices of B;, for any ¢ > 2,

(5) If {u,u'} C U;j>2B; and u is not adjacent to u’, then all of the vertices of fH(u)
are adjacent to each vertex of f~1(u').

Proof. Let v(C(G, f)) = 3 and w be a universal vertex of Gs.
1) Let 6(G) = 1, u; € V(G2) and degg,(u;) = 1. Then w; dominates all of the vertices
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(V(G2)\{w})U(V(G1)\ f~1(u;)) and w dominates all of the vertices V(G1)\ f~(w). So
{u;,w} is a dominating set of C'(G, f). Hence v(C(G, f)) < 2, which is a contradiction.
2) Let By # (). Then by Lemma 2.3, we have v(C(G, f)) = 2, which is a contradiction.
3) If there exists an 4 > 2 and a u € B; such that G{[f~!(u)] has an isolated vertex
v, Then v dominates all of the vertices (V(G2) \ {u}) U f~!(u) and u dominates all
of the vertices V(G1) \ f~!(u). Hence {v,u} is a dominating set of C(G, f). Hence,
v(C(G, f)) < 2, which is not true.

4) If there exists a ug € By that is not adjacent to u € B; for some i > 2, then ug
dominates all of the vertices V(G1)U{u} and vy dominates all of the vertices V (G2)\ {u},
where f(vg) = u. Hence {ug, vx} is a dominating set of C(G, f). Therefore v(C(G, f)) <
2, which is a contradiction to the fact v(C(G, f)) =

5) If {u,u'} C U9 By, u is not adjacent to u" and choose v € f~1(u) such that v is not
adjacent to any vertex of f~!(u), then v dominates all of the vertices (V(G2) \ {u}) U
f~H(u). Also all of the vertices (V(G1) \ f~'(u')) U {u} are dominated by u'. Hence
{v,u’'} is a dominating set of C(G, f) and so v(C(G, f)) < 2, which is impossible.
Conversely, on the contrary let v(C(G, f)) = 2 and D = {a, b} be a dominating set of

C(G, f). We need only consider 3 cases:

Case 1: Let D = {a,b} C V(Gy). If a and b are universal vertices of G, then by (1),
G 2 P, and so there is a v € V(G1) \ {a,b} such that it is not dominated by D in
C(G, f). If a is a universal vertex and b is not a universal vertex, then by (1), there
is a v # a such that it is adjacent to b. So D does not dominate vg. If @ and b are
not universal vertices, then universal vertices of G are not dominated by D in C(G, f),
which is a contradiction.

Case 2: Let D = {a,b} C V(G2). Similarly, D = {a,b} C V(G3) leads to a contradiction.
Case 3: Now let a € V(G1) and b € V(G2). Then all of the vertices V(G2) \ f(a) are
dominated by a in C(G, f). If f(a) = b, then since {a, b} is a dominating set of C(G, f),
so all of the vertices f~1(b ) are dominated by a. By (2), |f~1(b)| = 2 and a must be
an isolated vertex of G1[f~1(b)], which contradicts to (3). Let f(a) # b. Since {a,b}
is a dominating set of C(G, f), b is not adjacent to f(a) in Go. Since By = (), by (4),
b ¢ Bo. Hence, |f~1(b)| > 2. Therefore, a is not adjacent to any vertices of f~1(b), which
contradicts to (5). This completes the proof. [ |

Corollary 3.4 Let n >3 and G = K,,. Then v(C(G, f)) = 3 if and only if B; = ()

Corollary 3.5 Let n > 5 and G = W,,. Then v(C(G, f)) = 3 if and only if R(f) = {w},

where w is a universal vertex of W,.

Proof. Let v(C(G, f)) = 3. Then by Theorem 3.3, B; = () and so By # (). Assume
that u; € By. By (4) in Theorem 3.3, R(f) C {w, u;—1,u;+1}. Hence, {u;—2,ui1+2} C By
and by (4) in Theorem 3.3, R(f) C {w, uit1,ui+3} and R(f) C {w,u;—1,u;—3}. Thus
R(f) = {w}. Conversely, let R(f) = {w}. Then, by Theorem 3.3, v(C(G, f)) = 3. [ |

Corollary 3.6 Let m > 2 and G = K3". Then v(C(G, f)) = 3 if and only if R(f) = {w},
where w is a universal vertex of K3".

Proof. Let vertices of i—th triangle of G be {w,u;1,u;2} and v(C(G, f)) = 3. Then
by Theorem 3.3, By = () and so By # (. Suppose u;1 € Bp. By (4) in Theorem 3.3,
R(f) C {w,ui2}. So for every j # i, uj1 € By and by (4) in Theorem 3.3, R(f) C {w, uj2}.
Therefore R(f) = {w}. Conversely, let R(f) = {w}. By Theorem 3.3, v(C(G, f)) =3. 1
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Theorem 3.7 Let n > 6 and G be an (n — 2)-regular graph of order n. Then
v(C(G, f)) = 3 if and only if:

1) By =0. /
2) If u € By and v’ ¢ Ng,(u), then v’ € By.
3) For each x € U;>9B;; §(G1[f~1(z)]) > 1.

Proof. Let v(C(G, f)) = 2 and D = {a,b} be a dominating set of C(G, f). Since
G = P, so {a,b} € G; for i € {1,2}. Without loss of generality, let a € V(G1)
and b € V(Ga). If f(a) = b, then vertex a dominates all of the vertices V(G2) \ {b}
and vertex b dominates all of the vertices V(G1) \ f~1(b) in C(G, f). Since {a,b} is a
dominating set of C(G, f), so vertex a dominates f~'(b). Thus a is an isolated vertex
of G1[f~1(b)], which is a contradiction. Let f(a) # b. Since f(a) is not dominated by
a in C(G, f), So f(a) is dominated by b. Hence b ¢ Ng,(f(a)). If b ¢ By, then since
B1 =0, s0 |f71(b)| > 2. It is clear that the vertices of f~1(b) are not dominated by b.
Thus the vertices of f~1(b) are dominated by a and so they are not adjacent to a. This
is impossible. So b € By, this is contradicts to (2). Therefore v(C(G, f) = 3.

Conversely, on the contrary if By # (), then by Lemma 2.3, v(C(G, f)) = 2. This is a
contradiction to the fact that v(C(G, f) = 3.

Assume that there are v and u', u' ¢ Ng,(u), u € By and u' ¢ By. If v, € V(G1) and
f(vg) =4, then {vg,u} is a dominating set of C(G, f). Hence v(C(G, f)) < 2, which is
impossible.

Finally, let u; € V(G2) such that G1[f " (u,)] has an isolated vertex vg. Then {vg,u;} is
a dominating set of C(G, f) and so v(C(G, f)) < 2, which is impossible. This completes
the proof. [ ]

Lemma 3.8 Let G = Hy. Then v(C(G, f)) = 3 if and only if |R(f)| =2, G2[R(f)] =0
and §(G1[f~Y(x)] = 1 for every = € R(f).

Proof. If |R(f)| = 2, G2[R(f)] = 0 and §(G1[f~!(x)] = 1 for every x € R(f), then by
Theorem 3.7, v(C(G, f)) = 3. Conversely, let v(C(G, f)) = 3. Then by Theorem 3.7 (1),
B = 0. So |R(f)| # 4. If |R(f)| € {1,3}, then there is an u; € R(f) such that w; is
not adjacent to w;, where u; ¢ R(f). By Theorem 3.7 (2), u; € By that is not true. So
|R(f)| = 2. Let R(f) = {a,b} and x € By. Then by Theorem 3.7 (2), {a,b} C Ng, ().
Since degg,(a) = dega,(b) = 4, so a is not adjacent to b. Thus Go[R(f)] = 0. By (3) in
Theorem 3.7, 6(G1[f~(a)]) = 1 and 6(G1[f~1(b)]) = 1. This completes the proof.
u

U1 Ug

U2 us

Us

Figure 2: Hy
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Theorem 3.9 Let G be a connected k-regular graph of order n > 4, which is not
isomorphic to K3, K4, K5, Hy and Hs. If k € {2,3,4}, then ~(C(G, f)) = 2.

Proof. Let k =2 and v € V(G). Then since n > 4, induced subgraph on Ng(v) has an
isolated vertex. By Lemma 2.6, v(C(G, f)) = 2.

Let k =3, a € V(G) and Ng(a) = {z,y, z}. If G[Ng(a)] has an isolated vertex, then
by Lemma 2.6, v(C(G, f)) = 2.
If G[Ng(a)] has no isolated vertex, then since G 2 Kj, we have G[Ng(a)] = Ps.
(See Figure 3) Since G is a 3—regular graph, there is a t € V(G) \ {z,y} such that

t € Ng(z). It is easy to see that z is an isolated vertex of G[Ng(t)]. By Lemma 2.6,

1(C(G, f)) =2.

Let k = 4. If By = () or By # 0, then by Lemma 2.3, v(C(G, f)) = 2. Let By # 0,
u € By and Ng,(u) = {u1,u2,us,us}. If R(f) € Ng,(u) and By = 0, then there is
an u; € V(Gs) such that u; ¢ Ng,(u) and |f~!(u;)| > 2. Suppose, vy € V(G1) and
f(vg) = u;. Then all of the vertices V(G1) U (V(G2) \ {u1,u2,us,us}) are dominated by
vertex u and the vertices ui, ug, ug and uy are dominated by vy in C(G, f). So {u, v} is

a dominating set of C(G, f). Thus v(C(G, f)) < 2. Therefore v(C(G, f)) = 2 by Lemma
2.2.

If R(f) € Ng,(u), we have three following cases:

Case 1: Let induced subgraph on Ng,[u] = {u,u1, ua, us, us} has a vertex of degree 1.
Then by Lemma 2.6, v(C(G, f)) = 2.

Case 2: Let 6(G2[Ng,[u]]) = 2 and G2[Ng,[u]] has a vertex of degree 2. Without loss of
generality, let degg, N, [u]](U4) = 2 and uy4 is adjacent to usg. Also let uq be adjacent to us
and ug. (See Figure 43 If Ng,(u) = Ng,(us) = Ng,(ug), then since 6(Ga[Ng,[u]]) = 2,
w1 is adjacent to ug and G = Hy. (See Figure 1) us or ug is not adjacent to at least one
of the vertices Ng, (u) \ {ug}.

If |R(f)| = 4, then by Lemmas 2.2 and 2.4, v(C(G, f)) = 2.

Let |R(f)| = 3. If ua ¢ R(f), then u; € R(f), for i € {1,2}. Since u; and ug are not
adjacent to u4, by Lemmas 2.2 and 2.4, v(C(G, f)) = 2. Assume that uy € R(f). If
up ¢ R(f) or ug ¢ R(f), then since uy is not adjacent to u; and ug, by Lemmas 2.2 and
2.4, 4(C(G, ) = 2.

Let {ui,uo,us} = R(f). If us ¢ Ng,(u1) or ug ¢ Ng,(u2), then by Lemmas 2.2 and 2.4,
v(C(G, f)) = 2. Let uz € Ng,(u1) N Ng,(u2). Since G 2 Hy, (See Figure 1) so there is
a vertex x € V(Ga) \ R(f) such that z is not adjacent to us. Therefore by Lemmas 2.2
and 2.4, v(C(G, f)) = 2.

Let |R(f)| = 2. If ug € R(f), then u; or ug is not in R(f). If uy ¢ R(f), then uy or us is
in R(f). However, by Lemmas 2.2 and 2.4, v(C(G, f)) = 2.

Finally, let |R(f)] = 1. If R(f) C {wi,u2,us}, then by Lemmas 2.2 and 2.4,
v(C(G, f)) = 2. Let R(f) = {us}. If u; and uy are adjacent to ug, then wus is not
adjacent to us. So by Lemmas 2.2 and 2.4, v(C(G, f)) = 2. If u; or uy is not adjacent
to us, then by Lemmas 2.2 and 2.4, v(C(G, f)) = 2.

Case 3: Let §(G2[Ng,[u]]) = 3. Since G 2 K5, we may assume that there is a vertex
us € V(G2) such that us ¢ Ng,(u) and us € Ng,(uq). This involves no loss of generality
(See Figure 5). If Ng,(us) = Ng,(u), then G = Hy (See Figure 2), which is impossible.
So us is adjacent to vertex ug, where ug € V(Ga) \ {u,u1,uz,us,us}. Since G is a
4-regular graph and R(f) C Ng,(u), for each y € R(f) if y € Ng,(us), then y ¢ Ng, (ug)
or if y € Ng,(ug), then y ¢ Ng,(us). By Lemmas 2.2 and 2.4, v(C(G, f)) = 2.
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