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Abstract. Any notion of purity is normally defined in terms of solvability of some set of
equations. To study mathematical notions, such as injectivity, tensor products, flatness, one
needs to have some categorical and algebraic information about the pair (A,M), for a cat-
egory A and a class M of monomorphisms in a category A. In this paper we take A to
be the category Act-S of S-acts, for a semigroup S, and Msp to be the class of Csp

I -pure
monomorphisms and study some categorical and algebraic properties of this class concerning
the closure operator Csp

I .
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1. Introduction and preliminaries

One usually takes a subclass M of monomorphisms in a category A, members of which
may be called M-morphisms.

In this paper we take A to be the category Act-S of S-acts and homomorphism
between them, for a semigroup S, and introduce a new class, denoted by Msp, to be
the class of Csp

I -pure monomorphisms and study some algebraic properties of them. In
section 2 we introduce a new closure operator, denoted by Csp, which has a closely related
by purity.

Let us first recall the definition and some ingredients of the category Act-S needed in
the sequel. For more information and other related notions, see [2, 4, 11].
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Recall that, for a semigroup S, a set A is an S-act (or an S-set) if there is a, so called,
action µ : A× S → A such that µ(a, s) := as, a(st) = (as)t and if S is a monoid with 1,
a1 = a.

Each semigroup S can be considered as an S-act with the action given by its multi-
plication. Notice that adjoining an external left identity 1 to a semigroup S an S-act
S1 := S ∪ {1} is obtained.

Also, recall that an element a ∈ A is said to be fixed (or a zero) if as = a for all s ∈ S.
The S-act A ∪ {0} with a zero adjoined to A is denoted by A0. A fixed element of the
semigroup S as an S-act is called a left zero of the semigroup.

The definitions of a homomorphism of S-acts or S-maps, subact A of B, written as
A ⩽ B, an extension of A, a congruence ρ on A, a quotient A/ρ of A, and a homomorphism
(S-maps) between S-acts are all clear.

Since the class of S-acts is an equational class, the category Act-S is complete
and cocomplete (has all products, equalizers, pullbacks, coproducts, coequalizers, and
pushouts). In fact, these are calculated in the category Set of sets and are equipped with
a natural action.

In particular, the terminal object of Act-S is the singleton {0} with the obvious S-
action. Also, for S-acts A,B, their cartesian product A × B with the S-action defined
by (a, b)s = (as, bs) is the product of A and B in Act-S.

All colimits in Act-S exist and are calculated as in Set with the natural action of S
on them. In particular, ∅ with the empty action of S on it, is the initial object of Act-S.
Also, the coproduct of S-acts A,B is their disjoint union A ⊔B = (A× {1}) ∪ (B × {2})
with the obvious action, and coproduct injections are defined naturally.

Recall that for a family {Ai : i ∈ I} of S-acts, each with a unique fixed element 0, the
direct sum

⊕
i∈I Ai is defined to be the subact of the product

∏
i∈I Ai consisting of all

(ai)i∈I such that ai = 0 for all i ∈ I except a finite number of indices.

2. Csp-purity

In this section we introduce a closure operator which is closely related to one kind
of purity (see [12]). First recall the following definition of a categorical closure operator
from [6] (also, see [5, 10]). Denoting the lattice of all subacts of an S-act B by Sub(B),
we have:

Definition 2.1 The family C = (CB)B∈Act−S with CB : Sub(B) → Sub(B), taking any
subact A ⩽ B to a subact CB(A) (or C(A), if no confusion arises) is called a closure
operator on Act-S if it satisfies the followings:

(c1) (Extension) A ⩽ C(A),
(c2) (Monotonicity) A1 ⩽ A2 ⩽ B implies C(A1) ⩽ C(A2),
(c3) (Continuity) f(CB(A)) ⩽ CC(f(A)) for all morphisms f : B → C.

Now, one has the usual two classes of monomorphisms related to any closure operator
as follows (also, see [3]).

Definition 2.2 Let A ⩽ B be in Act-S. We say that A is C-closed in B if C(A) = A,
and it is C-dense in B if C(A) = B. Also, an S-map f : A → B is said to be C-dense
(C-closed) if f(A) is a C-dense (C-closed) subact of B.

Dikranjan and Tholen in [6] state some properties of a closure operator in general.
Here we investigate those for the closure operator C satisfy or not.

Definition 2.3 The closure operator C is said to be:
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(1) idempotent, if for A ⊆ B, CB(A) = CB(CB(A)).
(2) hereditary, if for A1 ⊆ A2 ⊆ B, CA2

(A1) = CB(A1) ∩A2.
(3) weakly hereditary, if for every A ⊆ B, CCB(A)(A) = CB(A).
(4) grounded, if CB(∅) = ∅.
(5) additive, if for subacts A,C of B, CB(A

∪
C) = CB(A)

∪
CB(C).

(6) productive, if for every family of subacts Ai of Bi, taking A =
∏

iAi and B =
∏

iBi,
CB(A) =

∏
iCBi

(Ai).
(7) fully additive, if for Ai ⊆ B, Csd

B (
∪

i∈I Ai) =
∪

i∈I C
sd
B (Ai).

(8) discrete, if CB(A) = A for every S-act B and A ⊆ B.
(9) trivial, if CB(A) = B for every B and A ⊆ B.
(10) minimal, if for C ⊆ A ⊆ B one has CB(A) = A ∪ CB(C).

Now, we recall the following closure operator needed in the sequel and has been studied
in [1, 7] to study a kind of injectivity. The references [8, 9] can be also used to study a
specific case of projectivity.

Definition 2.4 For any ideal I of S and subact A of an S-act B, define a closure
operator Cd

I by

Cd
I (A) = {b ∈ B : bI ⊆ A}.

Now, note that A is Cd
I -dense (or simply s-dense) in an extension B of A if Cd

I (A) = B,
that is, for every b ∈ B, bI ⊆ A.

We now introduce another closure operator on Act-S, denoted by Csp
I -clsure operator,

and study some algebraic and categorical properties of them.

Definition 2.5 For any ideal I of S and subact A of an S-act B, the Csp
I closure operator

on Act-S is defined as

Csp
I (A) = {b ∈ B : ∃a ∈ A, λI

b = λI
a},

where λI
x : I → A is defined by λI

x(s) = xs.

Now, note that A is Csp
I -dense in an extension B of A if Csp

I (A) = B (this means that
for every b ∈ B there is an a ∈ A with λI

b = λI
a; that is, bs = as for every s ∈ I). Also

A is Csp
I -closed in B if Csp

I (A) = A; that is, for every b ∈ B − A and a ∈ A there is an
s ∈ I with bs ̸= as.

Lemma 2.6 Csp
I -closedness is preserved by inverse image of S-maps and Csp

I -denseness
is preserved by images of onto S-maps.

Proof. let f : B → D be a homomorphism and X be a Csp
I -closed subact of D. By

definition f−1(X) ⊆ Csp
I f−1(X). Consider b ∈ Csp

I f−1(X), so there exists a ∈ f−1(X)
such that λI

a = λI
b . Thus λI

f(a) = λI
f(b). Since X is a Csp

I -closed subact of D, f(b) ∈ X,

which implies b ∈ f−1(X) and hence f−1(X) is a Csp
I -closed subact of B.

For the second part, let f : B → D be an epimorphism and A be a Csp
I -dense subact

of B. Let d ∈ D. Since f is onto and A is Csp
I -dense subact of B, there exists b ∈ B

and a ∈ A such that d = f(b) and λI
a = λI

b . So λI
f(a) = λI

d and hence f(A) is Csp
I -dense

subact of D. ■

Lemma 2.7 If A1 ⊆ A2 ⊆ B, then (CA2
)spI (A1) ⊆ (CB)

sp
I (A1).

Some easily proved properties of this last closure operator is stated in the following:
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Lemma 2.8 Csp
I is: (1) a closure operator, (2) idempotent, (3) hereditary, (4) weakly

hereditary, (5) grounded, (6) additive, (7) fully additive, (8) productive.

Also, some of the properties that Csp
I does not satisfy in general are:

Example 2.9 For any semigroup S,Csp
I is not: (1) discrete, (2) trivial, (3) minimal.

Proof. Let 0 ∈ A be a fixed element of A, and adjoin two elements θ, ω to A with actions
ωs = ω and θs = 0. Then (CB)

sp
I (A) = A ∪ {θ} where B = A ∪ {θ, ω}. Hence Csp

I is
neither discrete nor trivial. Also, it is not minimal. Because, adjoining two elements θ, ω
to an S-act C with actions ωs = θ and θs = θ, and taking A = C ∪ {θ}, B = C ∪ {θ, ω},
we get C ⊂ A ⊂ B, and (CB)

sp
I (A) = B while (CB)

sp
I (C) = C. ■

Another monomorphism which corresponds to this closure operator, and is the main
interest of this paper, is defined as follows:

Definition 2.10 An S-act A is said to be Csp
I -pure in an extension B of A if Csp

I (A) =
Cd
I (A).

Definition 2.11 A monomorphism f : A → B is called a Csp
I -pure if f(A) is a Csp

I -pure
subact of B.

Proposition 2.12 Let Ai be a family of subacts of A,
(i) (CA)

sp
I (

∩
Ai) ⊆

∩
(CA)

sp
I (Ai).

(ii) If
∩

Ai is (CA)
sp
I -pure in A, then (CA)

sp
I (

∩
Ai) =

∩
(CA)

sp
I (Ai).

(iii) If each Ai is (CA)
sp
I -pure in A and (CA)

sp
I (

∩
Ai) =

∩
(CA)

sp
I (Ai), then

∩
Ai is

(CA)
sp
I -pure in A.

Proof. (i) This is trivial.
(ii) Let b ∈

∩
(CA)

sp
I (Ai). Then for each Ai ∈ I, there exists ai ∈ Ai such that λI

b = λI
ai

and hence bI ⊆
∩

Ai. Now, since
∩

Ai is (CA)
sp
I -pure in A, there exists a ∈

∩
Ai that

λI
b = λI

ai
, which deduces that b ∈ (CA)

sp
I (

∩
Ai).

(iii) Let bI ⊆
∩

Ai. So for each Ai, since
∩

Ai is (CA)
sp
I -pure in A, b ∈ (CA)

sp
I (Ai).

Now, by hypothesis, b ∈ (CA)
sp
I (

∩
Ai). ■

Remark 1 For A ⩽ B, we have A ⩽ Csp
I (A) ⩽ Cd

I (A) ⩽ B. So, if A is Csp
I -dense in

B, then Csp
I (A) = Cd

I (A) = B and so A is Cd
I -dense as well as Csp

I -pure. Similarly, if
A is Cd

I -closed in B, then A = Csp
I (A) = Cd

I (A) and hence A is Csp
I -closed as well as

Csp
I -pure.

Proposition 2.13 (1) Any retraction is (CA)
sp
I -pure.

(2) Any Csp
S -dense monomorphism is a retraction.

Proof. : (1) Let A ↪→ B
π→ A = idA be a retraction, I a right ideal of S and bI ⊆ A

for some b ∈ B. It is clear that for each s ∈ I, bs = π(bs) = π(b)s.
(2) Let A ↪→ B be a Csp

S -dense subact. Then it is Csp
S -pure as well as Cd

S-dense subact.
So, for every b ∈ B there exists ab ∈ A such that λb = λab

. Now, for every b ∈ B − A
choose and fix such an ab ∈ A. Define π : B → A by

π(x) =

{
x, if x ∈ A
ax, if x ̸∈ A

Then, clearly π is a retraction. It is a homomorphism because it is a homomorphism on
A, and for x ∈ B −A and s ∈ S, we have xs ∈ A and so π(xs) = xs = axs = π(x)s. ■
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