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Abstract. In this manuscript, the concept of generalized (η, χ, p) contractive mapping for
two maps in the framework of w-distance is introduced and some fixed point results are
established, which extend recent results of Lakzian and Rhoades [5] and many existing results
in the literature. In addition, to validate the novelty of our findings, we give an illustrative
example, which yields the main result. Moreover, as an application, we employ the achieved
result to earn the existence criteria of the solution of a type of non-linear Fredholm integral
equation.
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1. Introduction and preliminaries

Fixed point theory is an entrancing subject with tremendous number of utilizations in
different field of mathematics and may be perceived as one of thrust areas of investigation
in non linear analysis. One of the earliest and most important results in fixed point
theory is Banach contraction principle, which states that every contraction mapping
defined on a complete metric space possesses a unique fixed point. This principle has
many applications in different domains, such as functional equations, medical science,
economics, wild life and several others. Due to its applications in many disciplines within
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mathematics and outside it, several authors have improved, generalized and extended
this principle in non-linear analysis (see [6]).

In 2012, Shahi et al. [8] introduced the perception of η−admissible with respect to
S2 function. Afterwards, Samet et al. [7] established some fixed point results for a new
category of (α−ψ)-contractive functions. In 2015, Lakzian [4] established some reults for
(α− ψ)-contractive functions in the frame of w-distance. In 2019, Lakzian and Rhoades
[5] established few results for w-distance map with the aid of Meir-Keeler mapping in the
framework of complete metric space. Very recently, Barootkoob et al. [1] investigated fixed
point results involving generalized Meir-Keeler contractive function in the framework of
w-distance metric space.
Now, we recollect some elementary results which are used in sequel.

Definition 1.1 [7] Let Ω be a family of functions χ : [0,∞) → [0,∞) satisfying the
following properties:

(Ω1) χ is upper semi-continuous and strictly increasing;
(Ω2) {χn(t)}n∈N converges to 0 as n→ ∞ for all t > 0;
(Ω3) χ(t) < t, for every t > 0.

These functions are known as comparison functions.

Definition 1.2 [3] Let f : H → H and η : H × H → [0,+∞). Then, f is said to be
η−admissible if η(x, y) ⩾ 1 ⇒ η(fx, fy) ⩾ 1 for each x, y ∈ H.

Definition 1.3 [8] Let S1, S2 : H → H and η : H × H → [0,+∞). Then S1 is
η−admissible with respect to S2 if η(S2x, S2y) ⩾ 1 ⇒ η(S1x, S1y) ⩾ 1 for each x, y ∈ H.

Definition 1.4 [7] Let Q : H → H be a given self mapping in a metric space (H, σ).
Then, Q is termed as η − χ mapping of contraction if there occur two maps χ ∈ Ω and
η : H×H → [0,+∞) with the goal that

η(Ω, ℘)σ(QΩ,Q℘) ⩽ ψ(σ(Ω, ℘))

for all Ω, ℘ ∈ H.

Theorem 1.5 [7] Let S : H → H be (χ, β)-contractive mapping in (H, σ) which is
complete, one to one and onto. Also, S fulfils the accompanying conditions:

(i) S is continuous;
(ii) S is η-admissible;
(iii) There occur Ω0 ∈ H in a a manner that η(Ω0, SΩ0) ⩾ 1.

Then, S possess a fixed point in H.

Theorem 1.6 [7] Let S : H → H be (χ, β)-contractive mapping in (H, σ) which is
complete, one to one and onto. Also, S fulfils the accompanying conditions:

(i) If {Ωn} is an arrangement in H in a manner that η(Ωn,Ωn+1) ⩾ 1 and lim
n→∞

Ωn = Ω,

then β(Ωn,Ω) ⩾ 1;
(ii) S is β-admissible; (iii) There occur Ω0 ∈ H in a a manner that η(Ω0, SΩ0) ⩾ 1.

Then, S possess a fixed point in H.

In 1996, Kada et al. [2] introduced the perception of w distance on H as follows:

Definition 1.7 Let H be a metric space associated with the metric σ. A map p :
H × H → [0,∞) is named as w-distance on H if it fulfils the accompanying properties
for each ℓ, s, r ∈ H:

(1) p(ℓ, s) ⩽ p(ℓ, r) + p(r, s);
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(2) p is lower semi-continuous, that is, if ℓ ∈ X and rn → r, then p(ℓ, r) ⩽
lim inf p(ℓ, rn) when n→ ∞;

(3) For every γ > 0, we can find ρ > 0 in such a manner that p(s, ℓ) ⩽ ρ and p(s, r) ⩽
ρ implies that σ(ℓ, r) ⩽ γ.

For proving the main theorem in this paper, we need the following Lemma proved by
Kada et al. [2].

Lemma 1.8 Let (H, σ) be a metric space, p be a w-distance on H. Let {vn} and {wn}
be sequences in H, {cn} and {dn} be sequences in [0,∞) tending to 0, and y, z, t ∈ H.
Then, the accompanying assertions hold.

(1) If p(yn, z) ⩽ cn and p(yn, t) ⩽ dn for every n ∈ Z+, then z = t.
(2) If p(yn, zn) ⩽ cn and p(yn, z) ⩽ dn for every n ∈ Z+, then {zn} tends to z.
(3) If p(yn, yn1

) ⩽ cn for every n, n1 ∈ Z+ with n1 > n, then {yn} is a Cauchy
sequence.

In this paper, inspired by the concept of Lakzian and Rhoades [5], we introduce new
perception of generalized (η, χ, p) contractive mapping in the edge of w-distance and
establish some common fixed point results, which generalize many existing results in the
literature.

2. Main results

Let S1, S2 : H → H be two maps. We identify the set of coincidence and common fixed
points of S1 and S2 by C(S1, S2) and CF(S1, S2), where C(S1, S2) = {z ∈ H : S1z = S2z}
and CF(S1, S2) = {z ∈ H : S1z = S2z = z}.

Definition 2.1 Let (H, σ) be a metric space, p be a w-distance and S1, S2 be the self
maps. Then, (S1, S2) is generalized (η, χ, p) contractive map, if there exists two maps
η : H×H → [0,∞) and χ ∈ Ω such that

η(S2x, S2y)p(S1x, S1y) ⩽ χ(P (S2x, S2y), (1)

where

P (S2x, S2y) = max

{
p(S2x, S2y),

p(S2x, S1x) + p(S2y, S1y)

2
,
p(S2x, S1y) + p(S2y, S1x)

2

}
.

Theorem 2.2 Let (H, σ) be a complete metric space, p be a w-distance and S1, S2 be
the self maps such that S1H ⊆ S2H. Let (S1, S2) is generalized (η, χ, p) contractive map
which fulfils the following conditions:

(i) There exists y0 ∈ H such that η(S2y0, S1y0) ⩾ 1;
(ii) S1 is η−admissible with respect to S2;
(iii) If {S2yn} is a sequence in H such that η(S2yn, S2yn+1) ⩾ 1 for all n and S2yn →

S2u ∈ S2(H) as n→ ∞, then there exists a subsequence {S2yn(j)} of {S2yn} such
that η(S2yn(j), S2u) ⩾ 1 for all k.

(iv) p(x, x) = 0.

Then, S1 and S2 have a coincidence point.

Proof. Let y0 be any arbitrary point on H. Owing to first assumption, we have



326 S. Arora and M. Masta / J. Linear. Topological. Algebra. 10(04) (2021) 323-333.

η(S2y0, S1y0) ⩾ 1. Also, S1H ⊆ S2H. So, we can find a point y1 ∈ H so that S1y0 = S2y1
and y2 ∈ X so that S1y1 = S2y2. With the assistance of mathematical induction, we can
find a sequence zn ∈ H so that

zn = S1yn = S2yn+1. (2)

Owing to second assumption, we have η(S2y0, S1y0) = η(S2y0, S2y1) ⩾ 1, which implies
that η(S1y0, S1y1) = η(S2y1, S2y2) ⩾ 1. Again applying the process of induction, we
acquire

η(S2yn, S2yn+1) ⩾ 1. (3)

Therefore, η(zn−1, zn) ⩾ 1. If there exist n ∈ N such that zn−1 = zn, then (2) yields that
S2yn+1 = S1yn+1. Thus, S1 and S2 have a coincident point at yn+1, which completes the
proof.

Let zn−1 ̸= zn for every n ∈ N . On account of (1) and (3), we obtain

p(zn, zn+1) = p(S2yn+1, S2yn+2)

= p(S1yn, S1yn+1)

⩽ η(S2yn, S2yn+1)p(S1yn, S1yn+1)

⩽ χ(max

{
p(S2yn, S2yn+1),

p(S2yn, S1yn) + p(S2yn+1, S1yn+1)

2
,

p(S2yn, S1yn+1) + p(S2yn+1, S1yn)

2

}
)

= χ(max

{
p(zn−1, zn),

p(zn−1, zn) + p(zn, zn+1)

2
,

p(zn−1, zn+1) + p(zn, zn)

2

}
).

But,

p(zn−1, zn+1)

2
⩽ max{p(zn−1, zn), p(zn, zn+1)}.

Therefore,

p(zn, zn+1) ⩽ χ(max{p(zn−1, zn), p(zn, zn+1)}). (4)

If max{p(zn−1, zn), p(zn, zn+1)} = p(zn, zn+1), then p(zn−1, zn) ⩽ p(zn, zn+1). Us-
ing (4), we get p(zn, zn+1) ⩽ χ(p(zn, zn+1)). Using property of comparison function,
χ(p(zn, zn+1)) < p(zn, zn+1). So, p(zn, zn+1) < p(zn, zn+1), which is a contradiction. So,

max{p(zn−1, zn), p(zn, zn+1)} = p(zn−1, zn).

Thus,

p(zn, zn+1) < χ(p(zn−1, zn)). (5)
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Using property of comparison function, χ(p(zn−1, zn)) < p(zn−1, zn). Therefore,
p(zn, zn+1) < p(zn−1, zn). Hence, we conclude that the sequence {p(zn−1, zn)} is non-
decreasing and bounded from below by zero. Consequently, there exists r ⩾ 0 such that

lim
n→∞

p(zn−1, zn) = r ⩾ 0.

We claim that r = 0. Repeating the process inductively in (5), we acquire

p(zn, zn+1) < χn(p(z0, z1)) (6)

for each n ∈ N . Taking Ω2 into account, we obtain lim
n→∞

χn(p(z0, z1)) = 0. Therefore,

lim
n→∞

p(zn−1, zn) = r = 0. Next, we want to show that {zn} is a cauchy sequence. Let

n, q ∈ N such that q > n. With the assistance of (p1), we have

p(zn, zq) ⩽ p(zn, zn+1) + p(zn+1, zn+2) + . . .+ p(zq−1, zq)

⩽
q−1∑
p=n

χp(p(z0, z1))

⩽
∞∑
p=n

χp(p(z0, z1)).

Taking Ω2 into account, we obtain

lim
n→∞

∞∑
p=n

χp(p(z0, z1)) = 0. (7)

On account of Lemma 1.8, we get {zn} is a cauchy sequence in (X , σ). Due to complete-
ness of (H, σ), we can find a point ρ ∈ H such that lim

n→∞
S2yn = S2ρ. We assert that S1

and S2 have a coincident point. Now, from (i) of Theorem 2.2, we acquire

η(S2yn, S2ρ) ⩾ 1. (8)

Using Definition 1.7, we have

p(S2yn, S2ρ) ⩽ lim
r→∞

inf p(S2yn, S2yr) = κn.

With the assistance of (7), we have limr→∞ κn = 0. Thus,

lim
n→∞

p(S2yn, S2ρ) = 0. (9)

Using Definition 1.7, we get

p(S2yn+1, S1ρ) ⩽ lim inf p(S2yn+1, S1yn) < ε.

Thus, limn→∞(S2yn+1, S1ρ) = 0. On account of triangle inequality, we acquire

p(S2yn, S1ρ) ⩽ p(S2yn, S2yn+1) + p(S2yn+1, S1ρ) = p(zn−1, zn) + p(S2yn+1, S1ρ).
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On account of (5), we acquire

lim
n→∞

p(S2yn, S1ρ) = 0. (10)

On account of (9), (10) and Lemma 1.8, we have

S1ρ = S2ρ, (11)

which indicates that ρ ∈ C(S1, S2). ■

Example 2.3 Consider H = [0,+∞) associated with the metric

σ(Ω,℧) =

{
0, if Ω = ℧,
max{Ω,℧}, otherwise,

with p(Ω,℧) = ℧ for all Ω,℧ ∈ H. Define the self mappings S1 and S2 by S1(ℓ) = ℓ and
S2(ℓ) = 4ℓ for ℓ ∈ H with χ(t) = t

2 . Now, we formalize the mapping η : H×H → [0,∞)
as

η(Θ1,Θ2) =

{
1, if (Θ1,Θ2) ∈ [0, 1],

0, otherwise.

Now, we exhibit that (S1, S2) is generalized (η, χ, p) contractive mapping.
If Ω,℧ ∈ [0, 1], then we get

η(Ω,℧)p(S1Ω, S1℧) = p(S1Ω, S1℧) = S1℧ = ℧.

Now,

χ(P (S2Ω, S2℧)) =
P (S2Ω, S2℧)

2

=
1

2
max

{
p(S2Ω, S2℧),

p(S2Ω, S1Ω) + p(S2℧, S1℧)
2

,

p(S2Ω, S1℧) + p(S2℧, S1Ω)
2

}
=

1

2
max

{
S2℧,

S1Ω+ S1℧
2

,
S1℧+ S1Ω

2

}
=

1

2
max

{
4℧,

Ω+ ℧
2

}
= 2℧.

Thus,

η(S2Ω, S2℧)p(S1Ω, S1℧) ⩽ χ(P (S2Ω, S2℧).

If Ω /∈ [0, 1] or ℧ /∈ [0, 1], then η(Ω,℧) = 0. Consequently,

η(S2Ω, S2℧)p(S1Ω, S1℧) ⩽ χ(P (S2Ω, S2℧)
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holds trivially. Hence, (S1, S2) is generalized (η, χ, p) contractive mapping. All the asser-
tions of Theorem 2.2 are fulfilled. Also, 0 ∈ CF(S1, S2).

Theorem 2.4 In addition to first three assumptions of Theorem 2.2, imagine that
η(S2ρ, S2ρ) ⩾ 1 for every ρ ∈ C(S1, S2). Then, p(S2ρ, S2ρ) = 0.

Proof. Let us imagine that there exist ρ ∈ C(S1, S2) such that p(S2ρ, S2ρ) > 0. Also,

η(S2ρ, S2ρ) ⩾ 1. (12)

With the aid of (1), (11) and (12), we acquire

p(S2ρ, S2ρ) ⩽ η(S2ρ, S2ρ)p(S1ρ, S1ρ)

⩽ χ(max

{
p(S2ρ, S2ρ),

p(S2ρ, S1ρ) + p(S2ρ, S1ρ)

2
,

p(S2ρ, S1ρ) + p(S2ρ, S1ρ)

2

}
)

= χ(max{p(S2ρ, S2ρ), p(S2ρ, S1ρ)}

= χ(p(S2ρ, S2ρ)

< p(S2ρ, S2ρ),

which is a counterstatement. Consequently, p(S2ρ, S2ρ) = 0. ■

Theorem 2.5 Let (H, σ) be a metric space, p be a w-distance and S1, S2 be the self
maps such that S1H ⊆ S2H. Also, let (S1, S2) be generalized (η, χ, p) contractive map
which fulfils the following conditions:

(i) there exists x0 ∈ H such that α(S2x0, S1x0) ⩾ 1;
(ii) S1 is η−admissible with respect to S2;
(iii) S1 is continuous.

Then, S1 and S2 have a coincidence point.

Proof. Mimicking the steps of Theorem 2.2, we can find a point ρ ∈ X such that
lim
n→∞

S2yn = S2ρ. Since S1 is continuous, we acquire

S2ρ = lim
n→∞

S2yn+1 = lim
n→∞

S1yn = S1( lim
n→∞

yn) = S1ρ,

which indicates that ρ ∈ C(S1, S2). ■

Theorem 2.6 Let (H, σ) be a complete metric space, p be a w-distance and S1, S2 be
the self maps such that S1H ⊆ S2H. Also, let (S1, S2) be generalized (η, χ, p) contractive
map which fulfils the following conditions:

(i) There exists y0 ∈ H such that η(S2y0, S1y0) ⩾ 1;
(ii) S1 is η−admissible with respect to S2;
(iii) For all s, y ∈ H with s ̸= S1s, inf{p(y, s) + p(y, S1y)} > 0.

Then, S1 and S2 have a coincidence point. Further, if η(S2ρ, S2ρ) ⩾ 1 for every ρ ∈
C(S1, S2), then p(S2ρ, S2ρ) = 0.

Proof. In the light of Theorem 2.2, we get that {S2yn} is Cauchy sequence. But (H, σ)
is complete. Thus, we can find a point ρ ∈ H such that S2yn → S2ρ, when n → ∞. Let
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us imagine that S2ρ ̸= S1ρ. Now, utilizing the given assumption (iii), we acquire

0 ⩽ inf{p(S2y, S2ρ) + p(S2y, S1y)

⩽ inf{p(S2yn, S2ρ) + p(S2yn, S2yn+1)

= 0,

which is a counterstatement. Consequently, S2ρ = S1ρ. Proceeding with the same strat-
egy of Theorem 2.2, we confirm that p(S2ρ, S2ρ) = 0. ■

Theorem 2.7 In conjuction with the assumptions of Theorem 2.2, assume that
for all ρ1, ρ2 ∈ C(S1, S2), there occur ρ3 ∈ H in a manner that η(S2ρ1, S2ρ3) ⩾
1, η(S2ρ2, S2ρ3) ⩾ 1 and S1, S2 commute at ρ ∈ C(S1, S2). Then, there occur a unique
ρ ∈ H such that ρ ∈ CF(S1, S2).

Proof. We assert that if ρ1, ρ2 ∈ C(S1, S2), then S2ρ1 = S2ρ2.
With the assistance of given assumption, there occur ρ3 ∈ H such that

η(S2ρ3, S2ρ1) ⩾ 1, η(S2ρ3, S2ρ2) ⩾ 1. (13)

With the aid of η-admissibility of (S1, S2) and (13), we acquire

η(Sn1 ρ3, S2ρ1) ⩾ 1, η(Sn1 ρ3, S2ρ2) ⩾ 1. (14)

In the light of (1) and (14), we acquire

p(Sn+1
1 ρ3, S2ρ1) = p(S1(S

n
1 ρ3), S1ρ1)

⩽ η(S2(S
n
1 ρ3), S2ρ1)p(S1(S

n
1 ρ3), S1ρ1)

⩽ χmax{p(S2(Sn1 ρ3), S2ρ1),
p(S2(S

n
1 ρ3), S1(S

n
1 ρ3) + p(S2ρ1, S1ρ1)

2
,

p(S2(S
n
1 ρ3), S1ρ1) + p(S2ρ1, S1(S

n
1 ρ3)

2
},

for every n ∈ N . With the assistance of induction process, we have

p(Sn+1
1 ρ3, S2ρ1) ⩽ χn(p(S2(S1ρ3), S2ρ1)). (15)

Likewise, we confirm that

p(Sn+1
1 ρ3, S2ρ2) ⩽ χn(p(S2(S1ρ3), S2ρ2)). (16)

From Definition 1.1, we acquire

lim
n→∞

χn(p(S2(S1ρ3), S2ρ1)) = 0 (17)

and

lim
n→∞

χn(p(S2(S1ρ3), S2ρ2)) = 0. (18)
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With the aid of (15)-(18) and Lemma 1.8, we acquire S2ρ1 = S2ρ2. Now, we exhibit the
presence of a unique CF . Let ρ1 ∈ C(S1, S2), which indicates that S2ρ1 = S1ρ1. Due to
commutativity of S1 and S2 at ρ1 ∈ C(S1, S2), we acquire

S2
2ρ1 = S2S1ρ1 = S1S2ρ1. (19)

Let S2ρ1 = ρ. With the aid of (19), we acquire S2ρ = S1ρ. Consequently, ρ ∈ C(S2, S1).
Thus, S2ρ1 = S2ρ = ρ = S1ρ.Hence, ρ ∈ CF(S2, S1). Next, we exhibit that CF is unique.
Let us imagine that ρ∗ is another common fixed point of S1 and S2. Thus, ρ

∗ ∈ C(S1, S2).
Now, we conclude that ρ∗ = S2ρ

∗ = S2ρ = ρ, which indicates that CF is unique. ■

Corollary 2.8 [4] Let (H, σ) be a complete metric space associated with a w-distance
p. Let S1 : H → H, η : H×H → [0,∞) and χ ∈ Ω fulfils the following assertions:

(i) η(x, y)p(S1x, S1y) ⩽ χ(p(x, y);
(ii) There exists y0 ∈ H such that η(y0, S1y0) ⩾ 1;
(iii) S1 is η−admissible function;
(iv) If S1 is continuous or {yn} is a sequence in H such that η(yn, yn+1) ⩾ 1 for all n

and yn → u ∈ H as n→ ∞, then η(yn, u) ⩾ 1 for all n.

Then, there exist u ∈ H such that S1u = u.

Proof. Result follows from Theorem 2.2 by inserting S2 as identity map. ■

Corollary 2.9 Let (H, σ) be a complete metric space. S1andS2 be the self maps such
that S1H ⊆ S2H, η : H×H → [0,∞) and χ ∈ Ω. Let (S1, S2) is contractive map, which
fulfils the following condition:

η(S2x, S2y)d(S1x, S1y) ⩽ χ(M(S2x, S2y),

where

M(S2x, S2y) = max

{
d(S2x, S2y),

d(S2x, S1x) + d(S2y, S1y)

2
,
d(S2x, S1y) + d(S2y, S1x)

2

}
.

Suppose that

(i) There exists y0 ∈ H such that η(S2y0, S1y0) ⩾ 1;
(ii) S1 is η−admissible with respect to S2;
(iii) If {S2yn} is a sequence in H such that η(S2yn, S2yn+1) ⩾ 1 for all n and S2yn →

S2u ∈ S2(H) as n→ ∞, then there exists a subsequence {S2yn(j)} of {S2yn}such
that η(S2yn(j), S2u) ⩾ 1 for all k.

Then, S1 and S2 have a coincidence point.

Proof. Result follows from Theorem 2.2 by inserting p = d. ■

3. Application to the integral equation

In this section, we give an application of the integral equation. Let

C[a, b] = {f |f : [a, b] → R is a continuous function}.
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Theorem 3.1 Let us consider the non-linear Fredholm integral equation

S1x(t) = S2(t) +

∫ b

a
F (t, s, x(s))ds, (20)

for some a, b ∈ R with a < b, S2 : [a, b] → R and H : [a, b]2 × R → R be two continuous
maps. Also, imagine that the subsequent properties hold:

(i) S1 : C[a, b] → C[a, b] is a continuous mapping;
(ii) There exists χ ∈ Ω satisfying

| F (t, s, x(s)) | + | F (t, s, y(s)) | ⩽ 1

b− a
χ(max

{
| S2x(t) | + | S2y(t) |,

(| S2x(t) | + | S1x(t) |) + (| S2y(t) | + | S1y(t) |)
2

,

(| S2x(t) | + | S1y(t) |) + (| S2y(t) | + | S1x(t) |)
2

}
− 2 | S2(t) |

for all t, s ∈ [a, b].
Then, the non-linear Fredholm integral equation (20) owns a unique solution in C[a, b].

Proof. We know that C[a, b] is complete with respect to the metric σ : C[a, b] ×
C[a, b] −→ R+ defined as σ(x, y) = sup

t∈[a,b]
| x(t) − y(t) |, where x, y ∈ C[a, b]. Let

p : C[a, b] × C[a, b] −→ R+ be defined by p(x, y) = sup
t∈[a,b]

| x(t) | + sup
t∈[a,b]

| y(t) |, where

x, y ∈ C[a, b]. Clearly, p is a w-distance on C[a, b]. Now,

| S1x(t) | + | S1y(t) | =| S2(t) +

∫ b

a

F (t, s, x(s))ds | + | S2(t) +

∫ b

a

F (t, s, y(s))ds |

⩽| S2(t) | + |
∫ b

a

F (t, s, x(s))ds | + | S2(t) | + |
∫ b

a

F (t, s, y(s))ds |

⩽ 2 | S2(t) | + |
∫ b

a

F (t, s, x(s))ds | + |
∫ b

a

F (t, s, y(s))ds |

⩽ 2 | S2(t) | +
∫ b

a

| F (t, s, x(s)) | ds+
∫ b

a

| F (t, s, y(s)) | ds

⩽ 2 | S2(t) | +
∫ b

a

(| F (t, s, x(s)) | + | F (t, s, y(s)) |)ds

⩽ 2 | S2(t) | +
∫ b

a

(
1

b− a
χ(max

{
| S2x(t) | + | S2y(t) |,

(| S2x(t) | + | S1x(t) |) + (| S2y(t) | + | S1y(t) |)
2

,

(| S2x(t) | + | S1y(t) |) + (| S2y(t) | + | S1x(t) |)
2

}
− 2 | S2(t) |

)
ds

= 2 | S2(t) | +
(

1

b− a
χ(max

{
| S2x(t) | + | S2y(t) |,
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(| S2x(t) | + | S1x(t) |) + (| S2y(t) | + | S1y(t) |)
2

,

(| S2x(t) | + | S1y(t) |) + (| S2y(t) | + | S1x(t) |)
2

}
− 2 | S2(t) |

)∫ b

a

ds

= χ

(
max

{
| S2x(t) | + | S2y(t) |,

(| S2x(t) | + | S1x(t) |) + (| S2y(t) | + | S1y(t) |)
2

,

(| S2x(t) | + | S1y(t) |) + (| S2y(t) | + | S1x(t) |)
2

})
⩽ χ

(
max

{
p(S2x, S2y),

p(S2x, S1x) + p(S2y, S1y)

2
,

p(S2x, S1y) + p(S2y, S1x)

2

})
= χ(P (S2x, S2y))

for all x, y ∈ C[a, b] and t ∈ [0,∞]. Consequently,

sup
t∈[a,b]

| S1x(t) | + sup
t∈[a,b]

| S1y(t) |⩽ χ(P (S2x, S2y)),

which indicates that p(S1x, S1y) ⩽ χ(P (S2x, S2y)). Now, we formalize the mapping
η : H×H → [0,∞) as

η(Θ1,Θ2) =

{
1, if (Θ1,Θ2) ∈ [0, 1],

0, otherwise.

Thus, (S1, S2) is generalized (η, χ, p) contractive map. Therefore, by Theorem 2.1, the
non-linear Fredholm integral equation (20) owns a solution. ■
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