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analogues of fixed point theorems in metric spaces for S-metric spaces.
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1. Introduction

This article presents some new fixed point results for mappings. In section 2, we present
an implicit relation and some examples for this relation. In section 3, some fixed point
theorem for maps are proved using the implicit relation. In section 4, we give an appli-
cation of the integral equation result.

In [12], Sedghi et al. have introduced the notion of an S-metric space as follows.

Definition 1.1 [12, Definition 2.1] Let X be a nonempty set. An S-metric on X is a
function S : X3 −→ [0,∞) that satisfies the following conditions for all x, y, z, a ∈ X.

(1) S(x, y, z) = 0 if and only if x = y = z,
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(2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

The pair (X,S) is called an S-metric space.

Immediate examples of such a S −metric space are:

(a) If X = Rn, then we define S(x, y, z) = ||y + z − 2x||+ ||y − z||.
(b) If X = Rn, then we define S(x, y, z) = ||x− z||+ ||y − z||.
(c) If d is the ordinary metric on X, then we define S(x, y, z) = d(x, z) + d(y, z).

This notion is a generalization of a G-metric space [8] and a D∗-metric space [13]. For
the fixed point problem in generalized metric spaces, many results have been proved,
see [1, 5–7] for example. In [12], the authors have proved some properties of S-metric
spaces. Also, they have been proved some fixed point theorems for a self-map on an
S-metric space.

In this paper, we prove a general fixed point theorem in S-metric spaces which is a
generalization of [12, Theorem 3.1]. As applications, we get many analogues of fixed point
theorems in metric spaces for S-metric spaces.

Now we recall some notions and lemmas which will be useful later.

Definition 1.2 [12] Let (X,S) be an S-metric space. For r > 0 and x ∈ X, we define
the open ball BS(x, r) and the closed ball BS [x, r] with center x and radius r as follows.

BS(x, r) = {y ∈ X : S(y, y, x) < r} and BS [x, r] = {y ∈ X : S(y, y, x) ≤ r}.

The topology induced by the S-metric is the topology generated by the base of all open
balls in X.

Definition 1.3 [12] Let (X,S) be an S-metric space.

(1) A sequence {xn} ⊂ X converges to x ∈ X if S(xn, xn, x) → 0 as n → ∞.
That is, for each ε > 0, there exists n0 ∈ N such that for all n ≥ n0 we have
S(xn, xn, x) < ε. We write xn → x for brevity.

(2) A sequence {xn} ⊂ X is a Cauchy sequence if S(xn, xn, xm) → 0 as n,m → ∞.
That is, for each ε > 0, there exists n0 ∈ N such that for all n,m ≥ n0 we have
S(xn, xn, xm) < ε.

(3) The S-metric space (X,S) is complete if every Cauchy sequence is a convergent
sequence.

Lemma 1.4 [12, Lemma 2.5] In an S-metric space, we have

(1) S(x, x, y) = S(y, y, x) for all x, y ∈ X,
(2) S(x, y, y) ⩽ 2S(y, y, x) for all x, y ∈ X.

Lemma 1.5 [12, Lemma 2.12] Let (X,S) be an S-metric space. If xn → x and yn → y
then S(xn, xn, yn) → S(x, x, y).

As a special case of [12, Examples in page 260] we have the following.

Example 1.6 Let C[a, b] = {f |f : [a, b] −→ R is a continuous function}. If set ||f ||∞ =
sup

x∈[a,b]
{|f(x)|}. Then S(f, g, h) = ||f−h||∞+||g−h||∞ for all f, g, h ∈ C[a, b] is an S-metric

on C[a, b] and (C[a, b], S) is an complete metric space.

Lemma 1.7 Let (X,S) be a S- metric space. If there exist sequences {xn} and {yn}
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such that lim
n→∞

xn = x and lim
n→∞

yn = y, then

lim sup
n−→∞

S(a, xn, yn) ⩽ S(a, a, x) + S(x, x, y)

for every a ∈ X. In particular, if lim
n→∞

xn = lim
n→∞

yn = x, then

lim sup
n−→∞

S(a, xn, yn) ⩽ S(a, a, x).

Proof. Since lim
n→∞

xn = x and lim
n→∞

yn = y, then for each ε > 0 there exist n1, n2 ∈ N
such that

∀ n ⩾ n1 ⇒ S(xn, xn, x) <
ε

2
and ∀ n ⩾ n2 ⇒ S(yn, yn, y) <

ε

4
.

If set n0 = max{n1, n2}, then for every n ⩾ n0 by second condition S-metric we have:

S(a, xn, yn) ⩽ S(a, a, x) + S(xn, xn, x) + S(yn, yn, x)

⩽ S(a, a, x) + S(xn, xn, x) + 2S(yn, yn, y) + S(x, x, y).

Taking the upper limit as n → ∞, we obtain

lim sup
n−→∞

S(a, xn, yn) ⩽ S(a, a, x) +
ε

2
+

ε

2
+ S(x, x, y)

= S(a, a, x) + S(x, x, y) + ε.

Taking ε −→ 0, we have

lim sup
n−→∞

S(a, xn, yn) ⩽ S(a, a, x) + S(x, x, y).

■

2. Implicit relations

Implicit relations on metric spaces have been used in many articles. For examples, see
[2–4, 9–11]. Let R+ be the set of nonnegative real numbers and let F be the set of all
functions F : R7

+ → R satisfying the following conditions:

F0 F ( lim
n→∞

pn) = lim
n→∞

F (pn) for any pn ∈ R7
+, where lim

n→∞
pn means component-wise lim.

F1 F (t1, ..., t7) is nonincreasing in t2, ..., t7.
F2 there exists a h with 0 < h < 1 such that the inequality F (u, v, v, v, v, 2u, 2u) ⩽ 0

implies u ⩽ hv.

Example 2.1 F (t1, ..., t7) = t1 − hmax{t2, t3, t4, t5, 12 t6,
1
2 t7}, where 0 < h < 1.

F0 and F1 : Obviously.
F2 : Let u, v > 0 and F (u, v, v, v, v, 2u, 2u) = u−hmax{u, v} ⩽ 0. If u ⩾ v, then u ⩽ hu,
a contradiction. Thus u < v and u ⩽ hv. If u = 0, then u ⩽ hv. Thus F2 is satisfied.

Example 2.2 F (t1, ..., t7) = t1 − amax{t2, t3, t4, t5} − b(t6 + t7), where a, b > 0 and
0 < a

1−4b < 1.
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F0 and F1 : Obviously.
F2 : Let u, v > 0 and F (u, v, v, v, v, 2u, 2u) = u − av − 4bu ⩽ 0. Then u ⩽ a

1−4bv = hv.
Thus F2 is satisfied.

Example 2.3 F (t1, ..., t7) = t21 − hmax{t1t2, t2t3, t3t4, t4t5}, where 0 < h < 1.
F0 and F1 : Obviously.
F2 : Let u, v > 0 and F (u, v, v, v, v, 2u, 2u) = u2 − hmax{uv, v2} ⩽ 0. If u ⩾ v, then
u2 ⩽ huv, a contradiction. Thus u < v and u ⩽

√
hv. If u = 0, then u ⩽

√
hv. Thus F2

is satisfied.

Example 2.4 F (t1, ..., t7) = t1 − ht2, where 0 < h < 1.
F0 and F1 : Obviously.
F2 : Let u, v > 0 and F (u, v, v, v, v, 2u, 2u) = u− hv ⩽ 0. Thus F2 is satisfied.

3. Fixed point theory

Theorem 3.1 Let (X,S) be a complete S-metric space and Tn : X −→ X be a self
map, for every n ∈ N. Suppose, for all x, y, z ∈ X

F

(
S(Tix, Tjy, Tkz), S(x, y, z), S(Tix, Tjy, x), S(Tix, Tjy, y),
S(Tix, Tjy, z), S(Tix, z, Tkz), S(Tjy, z, Tkz)

)
⩽ 0

for every i, j, k ∈ N and F ∈ F. Then there exists unique x ∈ X with Tnx = x, for every
n ∈ N.

Proof. Let x0 ∈ X, then we can choose xn ∈ X with Tn+1xn = xn+1.

F

S(Tnxn−1, Tnxn−1, Tn+1xn), S(xn−1, xn−1, xn), S(Tnxn−1, Tnxn−1, xn−1),
S(Tnxn−1, Tnxn−1, xn−1), S(Tnxn−1, Tnxn−1, xn), S(Tnxn−1, xn, Tn+1xn),
S(Tnxn−1, xn, Tn+1xn)

 ⩽ 0.

Hence

F

(
S(xn, xn, xn+1), S(xn−1, xn−1, xn), S(xn, xn, xn−1), S(xn, xn, xn−1),
S(xn, xn, xn), S(xn, xn, xn+1), S(xn, xn, xn+1)

)
= F

(
S(xn, xn, xn+1), S(xn−1, xn−1, xn), S(xn−1, xn−1, xn), S(xn−1, xn−1, xn),
S(xn, xn, xn), S(xn, xn, xn+1), S(xn, xn, xn+1)

)
⩽ 0.

Since F is nonincreasing in t2, ..., t7, therefore

F (u, v, v, v, v, 2u, 2u) ⩽ F (u, v, v, v, 0, u, u) ⩽ 0,

and by property F2, exist 0 < h < 1 so that

u = S(xn, xn, xn+1) < hv = hS(xn−1, xn−1, xn).

In the other hand, for n ∈ N, we have

S(xn, xn, xn+1) ⩽ hnS(x0, x0, x1).
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Thus we have

S(xn, xn, xm) ⩽ 2

m∑
i=n

S(xi, xi, xi+1)

⩽ 2

m∑
i=n

hiS(x0, x0, x1)

= 2
(hn − hm)

1− h
S(x0, x0, x1) ⩽ 2

hn

1− h
S(x0, x0, x1) −→ 0.

Therefore {xn} is a Cauchy sequence. Thus there exists u ∈ X with xn → u. It remains
to show Tnu = u. For every n ∈ N, we have

F

(
S(Tnu, Tnu, Tmxm−1), S(u, u, xm−1), S(Tnu, Tnu, u), S(Tnu, Tnu, u),
S(Tnu, Tnu, xm−1), S(Tnu, xm−1, Tmxm−1), S(Tnu, xm−1, Tmxm−1)

)
= F

(
S(Tnu, Tnu, xm), S(u, u, xm−1), S(Tnu, Tnu, u), S(Tnu, Tnu, u),
S(Tnu, Tnu, xm−1), S(Tnu, xm−1, xm), S(Tnu, xm−1, xm)

)
⩽ 0.

Taking the upper limit as m → ∞ we obtain

lim sup
m−→∞

F

(
S(Tnu, Tnu, xm), S(u, u, xm−1), S(Tnu, Tnu, u), S(Tnu, Tnu, u),
S(Tnu, Tnu, xm−1), S(Tnu, xm−1, xm), S(Tnu, Tnu, xm)

)

= F

(
S(Tnu, Tnu, u), S(u, u, u), S(Tnu, Tnu, u), S(Tnu, Tnu, u),
S(Tnu, Tnu, u), lim sup

m−→∞
S(Tnu, xm−1, xm), lim sup

m−→∞
S(Tnu, xm−1, xm)

)
⩽ 0.

By Lemma 1.7, we have:

F

(
S(Tnu, Tnu, u), S(u, u, u), S(Tnu, Tnu, u), S(Tnu, Tnu, u),
S(Tnu, Tnu, u), S(Tnu, Tnu, u), S(Tnu, Tnu, u)

)

⩽ F

(
S(Tnu, Tnu, u), S(u, u, u), S(Tnu, Tnu, u), S(Tnu, Tnu, u),
S(Tnu, Tnu, u), lim sup

m−→∞
S(Tnu, xm−1, xm), lim sup

m−→∞
S(Tnu, xm−1, xm)

)
⩽ 0.

Since F is nonincreasing in t2, ..., t7, therefore

F (t, t, t, t, t, 2t, 2t) ⩽ F (t, 0, t, t, t, t, t) ⩽ 0.

So, from F2, we have

t = S(Tnu, Tnu, u) ⩽ hS(Tnu, Tnu, u) = ht,

therefore, Tnu = u.
To prove the uniqueness, let v ∈ X with v ̸= u such that v = Tnv. Then

F

(
S(Tiu, Tju, Tkv), S(u, u, v), S(Tiu, Tju, u), S(Tiu, Tju, u),
S(Tiu, Tju, v), S(Tiu, v, Tkv), S(Tiu, v, Tkv)

)
⩽ 0
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Hence

F

(
S(u, u, v), S(u, u, v), S(u, u, u), S(u, u, u),
S(u, u, v), S(u, v, v), S(u, v, v)

)
⩽ 0.

Since F is nonincreasing in t2, ..., t7, and by Lemma 1.4, we have

F

(
S(u, u, v), S(u, u, v), S(u, u, v), S(u, u, v),
S(u, u, v), 2S(u, u, v), 2S(u, u, v)

)
⩽ F

(
S(u, u, v), S(u, u, v), 0, 0,
S(u, u, v), S(u, v, v), S(u, v, v)

)
⩽ 0.

So, from F2, we have t = S(u, u, v) < hv = hS(u, u, v), that is u = v. ■

Corollary 3.2 Let T be a self-map on a complete S-metric space (X,S) and

F

(
S(Tx, Ty, Tz), S(x, y, z), S(Tx, Ty, x), S(Tx, Ty, y),
S(Tx, Ty, z), S(Tx, z, Tz), S(Ty, z, Tz)

)
⩽ 0

for all x, y, z ∈ X and F ∈ F. Then there exists unique x ∈ X with Tx = x.

Proof. The assertion follows from using Theorem 3.1 with Tn = T for some n ∈ N. ■

Corollary 3.3 Let (X,S) be a complete S-metric space and Tn : X −→ X be a self
map, for every n ∈ N. Suppose, for all x, y, z ∈ X

S(Tix, Tjy, Tkz) ⩽ h

{
max{S(x, y, z), S(Tix, Tjy, x), S(Tix, Tjy, y),
S(Tix, Tjy, z),

1
2S(Tix, z, Tkz),

1
2S(Tjy, z, Tkz)

}
for every i, j, k ∈ N. Then there exists unique x ∈ X with Tnx = x, for every n ∈ N.

Proof. The assertion follows from using Theorem 3.1 with

F (t1, · · · , t7) = t1 − hmax{t2, · · · , t5,
1

2
t6,

1

2
t7}.

■

Corollary 3.4 Let (X,S) be a complete S-metric space and T : X −→ X be a self map.
Suppose, for all x, y, z ∈ X, we have

S(Tx, Ty, Tz) ⩽ h

{
max{S(x, y, z), S(Tx, Ty, x), S(Tx, Ty, y),
S(Tx, Ty, z), 12S(Tx, z, Tz),

1
2S(Ty, z, Tz)

}
.

Then there exists unique x ∈ X with Tx = x.

Proof. The assertion follows from using Corrollary 3.4 with Tn = T for some n ∈ N. ■

Example 3.5 Let X = [0, π2 ] and

S(x, y, z) =

{
0 if x = y = z
max{x, y, z} otherwise .
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Then, it is easy to see that (X,S) is a complete S-metric space. Let Tnx = sin(hnx), for
x ∈ X and 0 < h < 1. For all x, y, z ∈ [0, π2 ] we have

S(Tix, Tjy, Tkz) = max{sin(hix), sin(hjy), sin(hkz)}

⩽ max{hix, hjy, hkz}

⩽ hmax{x, y, z}

= hS(x, y, z)

⩽ h

{
max{S(x, y, z), S(Tix, Tjy, x), S(Tix, Tjy, y),
S(Tix, Tjy, z),

1
2S(Tix, z, Tkz),

1
2S(Tjy, z, Tkz)

}
.

Thus, by Corrollary 3.3, it is clear that x = 0 is the unique fixed point of Tn for every
n ∈ N.

4. An application to the integral equation

In this section, we give an application of the integral equation. Let

C[a, b] = {f |f : [a, b] −→ R is a continuous function}.

If set

f(x) = g(x) +

∫ 1

0
k(x, t)f(t)dt,

where f, g ∈ C([0, 1]) and k(x, t) which is continuous on the squared region [0, 1]× [0, 1]
with |k(x, t)| < h(h < 1). Then there exists a unique f0 ∈ C([0, 1]) such that

f0(x)− g(x) =

∫ 1

0
k(x, t)f0(t)dt.

Since, for every f ∈ C([0, 1]) if we define T : C([0, 1]) −→ C([0, 1]) by T (f) = Tf such
that for every x ∈ [0, 1], we have

Tf (x) = g(x) +

∫ 1

0
k(x, t)f(t)dt.

As in Example 1.6, let

S(f, g, h) = ||f − g||∞ + ||g − h||∞

for every f, g, h ∈ C([0, 1]). Similarly, now we define the function S : C[0, 1] × C[0, 1] ×
C[0, 1] −→ [0,∞) by

S(Tf , Tg, Th) = sup
x∈[0,1]

|Tf (x)− Th(x)|+ sup
x∈[0,1]

|Tg(x)− Th(x)|
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for all f, g, h ∈ C[0, 1]. Then,

S(Tf , Tg, Th) = sup
x∈[0,1]

|Tf (x)− Th(x)|+ sup
x∈[0,1]

|Tg(x)− Th(x)|

⩽ sup
x∈[0,1]

∫ 1

0
|k(x, t)|(|f(t)− h(t)|)dt+ sup

x∈[0,1]

∫ 1

0
|k(x, t)|(|g(t)− h(t)|)dt

⩽ h

∫ 1

0
|f(t)− h(t)|dt+ h

∫ 1

0
|g(t)− h(t)|dt

⩽ h sup
x∈[0,1]

|f(x)− h(x)|
∫ 1

0
dt+ h sup

x∈[0,1]
|g(x)− h(x)|

∫ 1

0
dt

⩽ h||f − h||∞ + h||g − h||∞
= hS(f, g, h)

⩽ h

{
S(f, g, h), S(Tf , Tg, f), S(Tf , Tg, g),
S(Tf , Tg, h),

1
2S(Tf , h, Th),

1
2S(Tg, h, Th)

}
.

Hence, the assertion follows from using Corollary 3.4, there exists a unique f0 ∈ C([0, 1])
such that T (f0) = Tf0 = f0; that is

f0(x)− g(x) =

∫ 1

0
k(x, t)f0(t)dt

for every x ∈ [0, 1].
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