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Abstract. In this paper, we discuss the existence and uniqueness of points of coincidence and
common fixed points for a pair of graph preserving mappings in parametric Nb-metric spaces.
As some consequences of this study, we obtain several important results in parametric b-metric
spaces, parametric S-metric spaces and parametric A-metric spaces. Finally, we provide some
illustrative examples to justify the validity of our main result.
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1. Introduction

Fixed point theory is an important branch of nonlinear analysis which can be applied
to many areas of mathematics and applied sciences such as variational and linear in-
equalities, control theory, convex optimization, linear algebra, differential equations and
mathematical economics. The most celebrated result in this field is the Banach contrac-
tion principle [6]. It becomes very famous due to its wide applications. In particular, it is
an important tool for solving existence and uniqueness problems in nonlinear functional
analysis. Several authors successfully generalized this result in many directions. In last
three decades, different types of generalized metric spaces have been developed by dif-
ferent mathematicians. One such generalized metric space is a parametric metric space
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introduced and studied by Hussain et al. [16]. Some other generalized metric spaces are
b-metric space [5], parametric b-metric space [16], parametric S-metric space [35] etc.

In 2012, Sedghi et al. [34] introduced the notion of S-metric space. Afterwards, the
definition of S-metric is generated by extending to n-tuple by Abbas et al. [1] and called it
A-metric. Recently, Priyobarta et al. [31] introduced the concept of parametric A-metric
space as a generalization of A-metric space. Very recently, Nihal et al. [36] extended the
concept of parametric A-metric space to parametric Nb-metric space and studied some
fixed point results. After examining the proofs of the results in [36], we noticed that
there is something wrong with the proof of the Cauchy sequence in Theorem 3.1 [36].
This leads to subsequent errors in Theorems 4.1 and 5.1 [36]. The detailed reasons are
as follows: On page number 950 in [36], the authors used

(n− 1)bak [1 + b2a+ b4a2 + · · · ]Nu0,u1,t ⩽ (n− 1)
bak

1− b2a
Nu0,u1,t.

This is incorrect unless b2a < 1. In this paper, we would like to modify the contractive
type condition to achieve their claim (see Corollary 3.4).

In recent investigations, the study of fixed point theory combining a graph is a new
development in the domain of contractive type single valued and multi valued theory. In
2005, Echenique [13] studied fixed point theory by using graphs. Later on, Espinola and
Kirk [14] applied fixed point results in graph theory. Afterwards, combining fixed point
theory and graph theory, a series of articles (see [3, 4, 8, 9, 18, 23–27] and references
therein) have been dedicated to the improvement of fixed point theory. Many important
results of [1, 11, 21, 22, 28–33, 36] have become the source of motivation for many
researchers that do research in fixed point theory. The main purpose of this article is
to investigate the existence and uniqueness of points of coincidence and common fixed
points for a pair of mappings under various contractive conditions in parametric Nb-
metric spaces. Further, we prove some fixed point theorems for expansive mappings in
parametric b-metric space and parametric S-metric space.

2. Some Basic Concepts

We begin with some basic notations, definitions and results which will be used in the
sequel.

Definition 2.1 [34] Let X be a nonempty set. An S-metric on X is a function S : X3 →
[0,∞) that satisfies the following conditions, for each x, y, z, a ∈ X,

(i) S(x, y, z) ⩾ 0,
(ii) S(x, y, z) = 0 if and only if x = y = z,
(iii) S(x, y, z) ⩽ S(x, x, a) + S(y, y, a) + S(z, z, a).

The pair (X,S) is called an S-metric space.

It is to be noted that an S-metric is not symmetric, in general. The following examples
illustrate the above fact.

Example 2.2 [34] Let X = Rn and ∥ · ∥ be a norm on X. Then

S(x, y, z) =∥ y + z − 2x ∥ + ∥ y − z ∥

is an S-metric on X.
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Example 2.3 [34] Let X be a nonempty set and d be an ordinary metric on X. Then
S(x, y, z) = d(x, z) + d(y, z) is an S-metric on X.

Definition 2.4 [16] Let X be a nonempty set and P : X ×X × (0,∞) → [0,∞) be a
function. Then P is called a parametric metric on X if

(i) P (x, y, t) = 0 if and only if x = y,
(ii) P (x, y, t) = P (y, x, t),
(iii) P (x, y, t) ⩽ P (x, z, t) + P (z, y, t)

for each x, y, z ∈ X and all t > 0. The pair (X,P ) is called a parametric metric space.

Example 2.5 [16] Let X denote the set of all functions f : (0,∞) → R. Define P :
X × X × (0,∞) → [0,∞) by P (f, g, t) =| f(t) − g(t) | for all f, g ∈ X and all t > 0.
Then (X,P ) is a parametric metric space.

Definition 2.6 [17] Let X be a nonempty set, b ⩾ 1 be a real number, and P : X ×
X × (0,∞) → [0,∞) be a map satisfying the following conditions:

(i) P (x, y, t) = 0 if and only if x = y,
(ii) P (x, y, t) = P (y, x, t),
(iii) P (x, y, t) ⩽ b[P (x, z, t) + P (z, y, t)]

for each x, y, z ∈ X and all t > 0. Then P is called a parametric b-metric on X and the
pair (X,P ) is called a parametric b-metric space.

Definition 2.7 [35] Let X be a nonempty set and PS : X ×X ×X × (0,∞) → [0,∞)
be a function. PS is called a parametric S-metric on X if

(PS1) PS(x, y, z, t) = 0 if and only if x = y = z,
(PS2) PS(x, y, z, t) ⩽ PS(x, x, a, t) + PS(y, y, a, t) + PS(z, z, a, t)

for each x, y, z, a ∈ X and all t > 0. The pair (X,PS) is called a parametric S-metric
space.

Example 2.8 [35] Let X = {f | f : (0,∞) → R be a function} and the function
PS : X ×X ×X × (0,∞) → [0,∞) be defined by

PS(f, g, h, t) =| f(t)− h(t) | + | g(t)− h(t) |

for each f, g, h ∈ X and all t > 0. Then PS is a parametric S-metric and the pair (X,PS)
is a parametric S-metric space.

Lemma 2.9 [35] Let (X,PS) be a parametric S-metric space. Then we have

PS(x, x, y, t) = PS(y, y, x, t)

for each x, y ∈ X and all t > 0.

Definition 2.10 [1] Let X be a nonempty set. A function A : Xn → [0,∞) is called an
A-metric on X if for any xi, a ∈ X, i = 1, 2 · · · , n, the following conditions hold:

(A1) A(x1, x2, x3, · · · , xn−1, xn) ⩾ 0,
(A2) A(x1, x2, x3, · · · , xn−1, xn) = 0 if and only if x1 = x2 = x3 = · · · = xn,
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(A3) A(x1, x2, x3, · · · , xn−1, xn) ⩽


A(x1, x1, x1, · · · , (x1)n−1, a)

+A(x2, x2, x2, · · · , (x2)n−1, a)

+ · · ·+A(xn, xn, xn, · · · , (xn)n−1, a)

.

The pair (X,A) is called an A-metric space.

Definition 2.11 [31] Let X be a nonempty set and PA : Xn × (0,∞) → [0,∞) be a
function. PA is called a parametric A-metric on X if,

(PA1) PA(x1, x2, · · · , xn, t) = 0 if and only if x1 = x2 = · · · = xn,

(PA2) PA(x1, x2, · · · , xn, t) ⩽


PA(x1, x1, · · · , (x1)n−1, a, t)

+PA(x2, x2, · · · , (x2)n−1, a, t)

+ · · ·+ PA(xn, xn, · · · , (xn)n−1, a, t)


for each xi, a ∈ X, i = 1, 2, 3, · · · , n and all t > 0. The pair (X,PA) is called a para-
metric A-metric space.

Example 2.12 [31] Let X = R and let the function PA : Xn × (0,∞) → [0,∞) be
defined by

PA(x1, x2, · · · , xn, t) = g(t) (| x1 − x2 | + | x2 − x3 | + · · ·+ | xn − x1 |) ,

for each x1, x2, · · · , xn ∈ X and all t > 0, where g : (0,∞) → (0,∞) is a continuous
function. Then PA is a parametric A-metric and the pair (X,PA) is a parametric A-metric
space.

Lemma 2.13 [31] Let (X,PA) be a parametric A-metric space. Then we have

PA(x, x, · · · , x, y, t) = PA(y, y, · · · , y, x, t),

for each x, y ∈ X and all t > 0.

Definition 2.14 [36] LetX be a nonempty set, b ⩾ 1 be a given real number, n(⩾ 2) ∈ N
and N : Xn × (0,∞) → [0,∞) be a function. N is called a parametric Nb-metric on X
if,

(N1) N(x1, x2, · · · , xn, t) = 0 if and only if x1 = x2 = · · · = xn,

(N2) N(x1, x2, · · · , xn, t) ⩽ b


N(x1, x1, · · · , (x1)n−1, a, t)

+N(x2, x2, · · · , (x2)n−1, a, t)

+ · · ·+N(xn, xn, · · · , (xn)n−1, a, t)


for each xi, a ∈ X, i = 1, 2, 3, · · · , n and all t > 0. The pair (X,N) is called a parametric
Nb-metric space. If n = 3, then N is called a parametric Sb-metric on X and the pair
(X,N) is called a parametric Sb-metric space.

Throughout the paper, we will denote N(x, x, · · · , (x)n−1, y, t) by Nx,y,t.

Example 2.15 Let X = {f | f : (0,∞) → R be a function} and let the function
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N : X3 × (0,∞) → [0,∞) be defined by

N(f, g, h, t) = (| f(t)− g(t) | + | f(t)− h(t) | + | g(t)− h(t) |)2,

for each f, g, h ∈ X and all t > 0. Then (X,N) is a parametric Nb-metric space with
b = 3 and n = 3. Because,

N(f, g, h, t) = (| f(t)− g(t) | + | f(t)− h(t) | + | g(t)− h(t) |)2

⩽ 4 (| f(t)− α(t) | + | g(t)− α(t) | + | h(t)− α(t) |)2

⩽ 12 (| f(t)− α(t) |2 + | g(t)− α(t) |2 + | h(t)− α(t) |2)

= 3 (Nf,α,t +Ng,α,t +Nh,α,t)

for each f, g, h, α ∈ X and all t > 0. But it is not a parametric S-metric space. In fact,
(PS2) does not hold for f(t) = 4, g(t) = 6, h(t) = 8, α(t) = 5.

Lemma 2.16 [36] Let (X,N) be a parametric Nb-metric space. Then we have Nx,y,t ⩽
bNy,x,t and Ny,x,t ⩽ bNx,y,t for each x, y ∈ X and all t > 0.

Lemma 2.17 [36] Let (X,N) be a parametric Nb-metric space. Then we have

Nx,y,t ⩽ b [(n− 1)Nx,z,t +Ny,z,t] and Nx,y,t ⩽ b [(n− 1)Nx,z,t + bNz,y,t]

for each x, y, z ∈ X and all t > 0.

Definition 2.18 [36] Let (X,N) be a parametric Nb-metric space, x ∈ X and (xn) be
a sequence in X. Then

(i) (xn) converges to x if and only if for each ϵ > 0, there exists n0 ∈ N such that
Nxn,x,t < ϵ, for all n ⩾ n0 and all t > 0, that is, lim

n→∞
Nxn,x,t = 0. We denote this by

lim
n→∞

xn = x or xn → x(n → ∞).

(ii) (xn) is called a Cauchy sequence if and only if for each ϵ > 0, there exists n0 ∈ N such
that Nxn,xm,t < ϵ for all n,m ⩾ n0 and all t > 0, that is, lim

n,m→∞
Nxn,xm,t = 0.

(iii) (X,N) is called complete if and only if every Cauchy sequence in X is convergent.

Remark 1 [36] In a parametric Nb-metric space (X,N), the following assertions hold:

(i) A convergent sequence has a unique limit.
(ii) Each convergent sequence is Cauchy.

Lemma 2.19 [36] Let (X,N) be a parametric Nb-metric space and (uk), (vk) be two
sequences converge to u and v, respectively. Then we have

1

b2
Nu,v,t ⩽ lim inf

k→∞
Nuk,vk,t ⩽ lim sup

k→∞
Nuk,vk,t ⩽ b2Nu,v,t

for all t > 0. In particular, if (vk) is a constant sequence such that vk = v for all k, then
we get

1

b2
Nu,v,t ⩽ lim inf

k→∞
Nuk,v,t ⩽ lim sup

k→∞
Nuk,v,t ⩽ b2Nu,v,t
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for all t > 0. Also if u = v, then we have lim
k→∞

Nuk,v,t = 0 for all t > 0.

Definition 2.20 [2] Let T and S be self mappings of a set X. If y = Tx = Sx for
some x in X, then x is called a coincidence point of T and S and y is called a point of
coincidence of T and S.

Definition 2.21 [19] The mappings T, S : X → X are weakly compatible, if for every
x ∈ X, T (Sx) = S(Tx) whenever Sx = Tx.

Proposition 2.22 [2] Let S and T be weakly compatible selfmaps of a nonempty set
X. If S and T have a unique point of coincidence y = Sx = Tx, then y is the unique
common fixed point of S and T .

Definition 2.23 Let (X,N) be a parametric Nb-metric space. A mapping f : X → X
is called expansive if there exists a positive number k > b3 such that Nfx,fy,t ⩾ kNx,y,t

for all x, y ∈ X and all t > 0.

Let (X,N) be a parametric Nb-metric space and ρ be a binary relation over X. Denote
R = ρ ∪ ρ−1. Then xRy if and only if xρy or yρx for all x, y ∈ X.

Definition 2.24 We say that (X,N,R) is regular if the following condition holds:
If the sequence (xk) in X and the point x ∈ X are such that xkRxk+1 for all k ⩾ 1

and lim
k→∞

Nxk,x,t = 0, then there exists a subsequence (xki
) of (xk) such that xki

Rx for

all i ⩾ 1.

Definition 2.25 Let (X,N) be a parametric Nb-metric space and ρ be a binary relation
over X. Then the mapping T : X → X is called comparative if T maps comparable
elements into comparable elements, that is,

x, y ∈ X, xRy ⇒ TxRTy.

Similarly, for f, g : X → X, we call f is comparative w.r.t. g if

x, y ∈ X, gxRgy ⇒ fxR fy.

We next review some basic notions in graph theory.
Let (X,N) be a parametric Nb-metric space. We consider a directed graph G such that
the set of its vertices V (G) = X and the set of its edges E(G) contains all the loops, i.e.,
∆ ⊆ E(G) where ∆ = {(x, x) : x ∈ X}. We assume that G has no parallel edges. So we
can identify G with the pair (V (G), E(G)). By G−1 we denote the graph obtained from
G by reversing the direction of edges i.e., E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}.
Let G̃ denote the undirected graph obtained from G by ignoring the directions of the
edges of G. Therefore, we consider G as a directed graph which is symmetric. Thus,
E(G̃) = E(G)∪E(G−1). Our graph theory notations and terminology are standard and
can be found in all graph theory books, like [7, 12, 15].

Definition 2.26 Let (X,N) be a parametric Nb-metric space and G = (V (G), E(G))
be a graph. Then the mapping T : X → X is called edge preserving if

x, y ∈ X, (x, y) ∈ E(G) ⇒ (Tx, Ty) ∈ E(G).

Definition 2.27 Let (X,N) be a parametric Nb-metric space endowed with a digraph
G = (V (G), E(G)) and f, g : X → X be two mappings. Then f is called edge preserving
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w.r.t. g if , (gx, gy) ∈ E(G) implies that (fx, fy) ∈ E(G) for all x, y ∈ X.

Definition 2.28 Let (X,N) be a parametric Nb-metric space and f : X → X be a
mapping. Then f is called continuous if given x ∈ X and a sequence (xk)k∈N, xk → x
implies fxk → fx.

Definition 2.29 Let (X,N) be a parametric Nb-metric space and f, g : X → X be two
mappings. Then f is called continuous w.r.t. g if given x ∈ X and a sequence (gxk)k∈N,
gxk → gx implies fxk → fx.

Definition 2.30 Let (X,N) be a parametric Nb-metric space endowed with a graph
G = (V (G), E(G)). A mapping f : X → X is called G-continuous if given x ∈ X and a
sequence (xk)k∈N, xk → x and (xk, xk+1) ∈ E(G) for k ∈ N imply fxk → fx.

Definition 2.31 Let (X,N) be a parametric Nb-metric space endowed with a graph
G = (V (G), E(G)) and let f, g : X → X be two mappings. Then f is called G-continuous
w.r.t. g if given x ∈ X and a sequence (gxk)k∈N, gxk → gx and (gxk, gxk+1) ∈ E(G) for
k ∈ N imply fxk → fx.

3. Fixed Points in Parametric Nb-Metric Space

In this section, we assume that (X,N) is a parametric Nb-metric space and G is a
reflexive digraph such that V (G) = X and G has no parallel edges. Let the mappings
f, g : X → X be such that f(X) ⊆ g(X). Let x0 ∈ X be arbitrary. Since f(X) ⊆ g(X),
there exists an element x1 ∈ X such that gx1 = fx0. Continuing in this way, we can
construct a sequence (gxk) such that gxk = fxk−1, k = 1, 2, 3, · · ·.

Before presenting our main result, we state a property of the graph G, call it property
(∗).

Property (∗): If (gxk) is a sequence in X such that gxk → x and (gxk, gxk+1) ∈ E(G)
for all k ⩾ 1, then there exists a subsequence (gxki

) of (gxk) such that (gxki
, x) ∈ E(G)

for all i ⩾ 1.
Taking g = I, the above property reduces to property (∗)́:
Property (∗)́: If (xk) is a sequence in X such that xk → x and (xk, xk+1) ∈ E(G) for

all k ⩾ 1, then there exists a subsequence (xki
) of (xk) such that (xki

, x) ∈ E(G) for all
i ⩾ 1.

Theorem 3.1 Let (X,N) be a parametric Nb-metric space endowed with a digraph G
and let the mappings f, g : X → X be such that

Nfx,fy,t ⩽ hmax{Ngx,gy,t, Nfx,gx,t, Nfy,gy,t,
Ngx,fy,t +Ngy,fx,t

2(n− 1)b
} (1)

for all x, y ∈ X with (gx, gy) ∈ E(G̃), all t > 0 and some 0 ⩽ h < 1
b3 . Suppose that f is

edge preserving w.r.t. g, f(X) ⊆ g(X) and f(X) or g(X) is a complete subspace of X.
Assume that at least one of the following conditions holds:

(i) f is G-continuous w.r.t. g.
(ii) The graph G has the property (∗).

If there exists x0 ∈ X such that (gx0, fx0) ∈ E(G), then f and g have a point of
coincidence in g(X). Moreover, f and g have a unique point of coincidence in g(X) if the
graph G has the following property:
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(∗∗) If x, y are points of coincidence of f and g in g(X), then (x, y) ∈ E(G̃).
Furthermore, if f and g are weakly compatible, then f and g have a unique common
fixed point in g(X).

Proof. Suppose there exists x0 ∈ X such that (gx0, fx0) ∈ E(G). Since f(X) ⊆ g(X),
there exists x1 ∈ X such that gx1 = fx0. So, (gx0, gx1) ∈ E(G). As f is edge preserving
w.r.t. g, it follows that (fx0, fx1) ∈ E(G), that is, (gx1, fx1) ∈ E(G). Continuing this
process, we can construct a sequence (xk) in X such that gxk = fxk−1, for all k ⩾ 1 and
(gxk, gxk+1) ∈ E(G) for all k ∈ N ∪ {0}.

We assume that fxk ̸= fxk−1 for every k ∈ N. If fxk = fxk−1 for some k ∈ N, then
gxk = fxk−1 = fxk which shows that fxk−1 is a point of coincidence of f and g in g(X).
By using condition (1) and Lemmas 2.16 and 2.17, we have

Nfxk,fxk+1,t ⩽ hmax


Ngxk,gxk+1,t, Nfxk,gxk,t, Nfxk+1,gxk+1,t,

Ngxk,fxk+1,t+Ngxk+1,fxk,t

2(n−1)b


⩽ hmax


Nfxk−1,fxk,t, Nfxk,fxk−1,t, Nfxk+1,fxk,t,

bNfxk+1,fxk−1,t+Nfxk,fxk,t

2(n−1)b


⩽ hmax


Nfxk−1,fxk,t, bNfxk−1,fxk,t,

bNfxk,fxk+1,t,
Nfxk+1,fxk−1,t

2(n−1)


⩽ hmax


bNfxk−1,fxk,t, bNfxk,fxk+1,t,

(n−1)bNfxk+1,fxk,t+bNfxk−1,fxk,t

2(n−1)


⩽ hmax


bNfxk−1,fxk,t, b

2Nfxk,fxk+1,t,

(n−1)b2 Nfxk,fxk+1,t+b(n−1)Nfxk−1,fxk,t

2(n−1)


= hmax


bNfxk−1,fxk,t, b

2Nfxk,fxk+1,t,

b2 Nfxk,fxk+1,t+bNfxk−1,fxk,t

2


= hmax{bNfxk−1,fxk,t, b

2Nfxk,fxk+1,t}. (2)

If max{bNfxk−1,fxk,t, b
2Nfxk,fxk+1,t} = b2Nfxk,fxk+1,t, then condition (2) and 0 ⩽ h < 1

b3

assure that Nfxk,fxk+1,t ⩽ hb2Nfxk,fxk+1,t < Nfxk,fxk+1,t, which is a contradiction. Thus,
max{bNfxk−1,fxk,t, b

2Nfxk,fxk+1,t} = bNfxk−1,fxk,t. So, it follows from condition (2) that

Nfxk,fxk+1,t ⩽ hbNfxk−1,fxk,t for all k ∈ N. Put α = hb. Then, 0 ⩽ α < 1
b2 . Therefore,

Nfxk,fxk+1,t ⩽ αNfxk−1,fxk,t, for all k ∈ N. (3)

By repeated use of condition (3), we get

Nfxk,fxk+1,t ⩽ αk Nfx0,fx1,t, for all k ⩾ 0. (4)
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Therefore, lim
k→∞

Nfxk,fxk+1,t = 0. Now, we show that (fxk) is a Cauchy sequence in f(X).

For m, k ∈ N with m > k and using conditions (4), (N2), Lemmas 2.16, 2.17, we have

Nfxk,fxm,t ⩽ (n− 1)bNfxk,fxk+1,t + bNfxm,fxk+1,t

⩽ (n− 1)bNfxk,fxk+1,t + b2Nfxk+1,fxm,t

⩽ (n− 1)bNfxk,fxk+1,t + (n− 1)b3Nfxk+1,fxk+2,t + b3Nfxm,fxk+2,t

⩽ (n− 1)bNfxk,fxk+1,t + (n− 1)b3Nfxk+1,fxk+2,t + (n− 1)b5Nfxk+2,fxk+3,t

+ · · ·+ (n− 1)b2m−2k−3Nfxm−2,fxm−1,t + b2m−2k−2Nfxm−1,fxm,t

⩽ (n− 1)b[αk + b2αk+1 + b4αk+2 + · · ·+ b2(m−k−2)αm−2]Nfx0,fx1,t

+(n− 1)b b2(m−k−1)αm−1Nfx0,fx1,t

⩽ (n− 1)bαk[1 + (b2α) + (b2α)2 + · · · ]Nfx0,fx1,t

= (n− 1)
bαk

1− b2α
Nfx0,fx1,t → 0 as k → ∞, since b2α < 1

Thus, lim
k,m→∞

Nfxk,fxm,t = 0. This proves that (fxk) is a Cauchy sequence in f(X). Let

f(X) be a complete subspace of X. Then there exists u ∈ f(X) ⊆ g(X) so that fxk → u
and also gxk → u. In case, g(X) is complete, this holds also with u ∈ g(X). Let u = gs
for some s ∈ X. Now, we prove that u is a point of coincidence of f and g in g(X).

Suppose that condition (i) holds, that is, f is assumed to be G-continuous w.r.t. g.
Then, gxk → u = gs and (gxk, gxk+1) ∈ E(G) imply that fxk → fs. As the limit of a
convergent sequence is unique, it follows that u = fs = gs. Therefore, u is a point of
coincidence of f and g in g(X).

Now, suppose that condition (ii) holds, that is, we assume that the graph G has the
property (∗). As gxk → u and (gxk, gxk+1) ∈ E(G) for all k ⩾ 1, by property (∗), there
exists a subsequence (gxki

) of (gxk) such that (gxki
, u) ∈ E(G) for all i ⩾ 1.

By using condition (1), we obtain

Ngs,fs,t ⩽ b[(n− 1)Ngs,fxki
,t +Nfs,fxki

,t]

⩽ (n− 1)b2Nfxki
,gs,t + bNfs,fxki

,t

⩽ (n− 1)b2Nfxki
,gs,t + bhmax


Ngs,gxki

,t, Nfxki
,gxki

,t, Nfs,gs,t,

Ngs,fxki
,t+Ngxki

,fs,t

2(n−1)b


⩽ (n− 1)b2Nfxki

,gs,t + bhmax


bNgxki

,gs,t, (n− 1)bNfxki
,gs,t + bNgxki

,gs,t,

Nfs,gs,t,
bNfxki

,gs,t+(n−1)bNgxki
,gs,t+bNfs,gs,t

2b

 .

Taking the limit as i → ∞, we get

Ngs,fs,t ⩽ bhmax

{
Nfs,gs,t,

1

2
Nfs,gs,t

}
⩽ b2hNgs,fs,t,

which gives that Ngs,fs,t = 0, since 0 ⩽ hb2 < 1
b . Thus, gs = fs = u and so u is a point
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of coincidence of f and g in g(X). For uniqueness, let there exist another v ∈ g(X) such
that v = gx = fx for some x ∈ X. By property (∗∗), it follows that (u, v) ∈ E(G̃). Then,

Nu,v,t = Nfs,fx,t

⩽ hmax


Ngs,gx,t, Nfs,gs,t, Nfx,gx,t,

Ngs,fx,t+Ngx,fs,t

2(n−1)b


⩽ hmax


Nu,v,t, Nu,u,t, Nv,v,t,

Nu,v,t+Nv,u,t

2b


⩽ hmax

{
Nu,v,t,

bNu,v,t + bNu,v,t

2b

}
= hmax {Nu,v,t, Nu,v,t}

= hNu,v,t.

This gives that Nu,v,t = 0, since 0 ⩽ h < 1
b3 and hence u = v. Thus, f and g have a unique

point of coincidence in g(X). If f and g are weakly compatible, then by Proposition 2.22,
f and g have a unique common fixed point in g(X). ■

Corollary 3.2 Let (X,N) be a parametric Nb-metric space with the coefficient b ⩾ 1
and let the mappings f, g : X → X be such that f(X) ⊆ g(X) and f(X) or g(X) is a
complete subspace of X and satisfy the following condition:

Nfx,fy,t ⩽ hmax{Ngx,gy,t, Nfx,gx,t, Nfy,gy,t,
Ngx,fy,t +Ngy,fx,t

2(n− 1)b
}

for all x, y ∈ X, all t > 0 and some 0 ⩽ h < 1
b3 . Then f and g have a unique point of

coincidence in g(X). Moreover, if f and g are weakly compatible, then f and g have a
unique common fixed point in g(X).

Proof. The proof follows from Theorem 3.1 by taking G = G0, where G0 is the complete
graph (X,X ×X). ■

Corollary 3.3 Let (X,N) be a complete parametric Nb-metric space endowed with a
digraph G. Suppose that the mapping f : X → X is edge preserving and satisfies the
following condition

Nfx,fy,t ⩽ hmax{Nx,y,t, Nfx,x,t, Nfy,y,t,
Nx,fy,t +Ny,fx,t

2(n− 1)b
}

for all x, y ∈ X with (x, y) ∈ E(G̃), all t > 0 and some 0 ⩽ h < 1
b3 . Assume that at least

one of the following conditions holds:

(i) f is G-continuous.

(ii) The graph G has the property (∗)́.

If there exists x0 ∈ X such that (x0, fx0) ∈ E(G), then f has a fixed point in X.
Moreover, f has a unique fixed point in X if the graph G has the following property:

(∗ ∗ )́ If x, y are fixed points of f in X, then (x, y) ∈ E(G̃).
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Proof. The proof follows from Theorem 3.1 by taking g = I, the identity map on X. ■

Corollary 3.4 Let (X,N) be a complete parametric Nb-metric space with the coefficient
b ⩾ 1 and let f : X → X be such that

Nfx,fy,t ⩽ hmax{Nx,y,t, Nfx,x,t, Nfy,y,t,
Nx,fy,t +Ny,fx,t

2(n− 1)b
}

for all x, y ∈ X, all t > 0 and some 0 ⩽ h < 1
b3 . Then f has a unique fixed point in X.

Proof. The proof can be obtained from Theorem 3.1 by taking G = G0 and g = I. ■

Corollary 3.5 Let (X,N) be a complete parametric Nb-metric space with the coefficient
b ⩾ 1 and let g : X → X be an onto mapping satisfying

Nx,y,t ⩽ hmax{Ngx,gy,t, Nx,gx,t, Ny,gy,t,
Ngx,y,t +Ngy,x,t

2(n− 1)b
}

for all x, y ∈ X, all t > 0 and some 0 ⩽ h < 1
b3 . Then g has a unique fixed point in X.

Proof. The proof follows from Theorem 3.1 by taking G = G0 and f = I. ■

The following result generalizes Theorem 3.1[31] in parametric A-metric spaces to
parametric Nb-metric spaces.

Corollary 3.6 Let (X,N) be a complete parametric Nb-metric space with the coefficient
b ⩾ 1 and let g : X → X be an onto mapping satisfying

Ngx,gy,t ⩾ kNx,y,t (5)

for all x, y ∈ X, all t > 0 and some k > b3. Then g has a unique fixed point in X.

Proof. Taking h = 1
k and using condition (5), it follows that

Nx,y,t ⩽
1

k
Ngx,gy,t ⩽ hmax{Ngx,gy,t, Nx,gx,t, Ny,gy,t,

Ngx,y,t +Ngy,x,t

2(n− 1)b
}

for all x, y ∈ X, all t > 0 and some 0 ⩽ h < 1
b3 . Now the result follows from Corollary

3.5. ■

Remark 2 Corollary 3.6 ensures the existence of unique fixed point for expansive map-
pings in parametric Nb-metric spaces.

Corollary 3.7 Let (X,N) be a parametric Nb-metric space endowed with a binary
relation ρ over X and let the mappings f, g : X → X satisfy the following condition:

Nfx,fy,t ⩽ hmax{Ngx,gy,t, Nfx,gx,t, Nfy,gy,t,
Ngx,fy,t +Ngy,fx,t

2(n− 1)b
}

for all x, y ∈ X with gxRgy, where R = ρ∪ ρ−1, all t > 0 and some 0 ⩽ h < 1
b3 . Suppose

that f is comparative w.r.t. g, f(X) ⊆ g(X) and f(X) or g(X) is a complete subspace
of X. Suppose also that the following conditions hold:

(i) (X,N,R) is regular,
(ii) there exists x0 ∈ X such that gx0Rfx0.
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Then f and g have a point of coincidence in g(X). Moreover, f and g have a unique
point of coincidence in g(X) if the following property holds:

If x, y are points of coincidence of f and g in g(X), then xRy.
Furthermore, if f and g are weakly compatible, then f and g have a unique common
fixed point in g(X).

Proof. The proof follows from Theorem 3.1 by taking G = (V (G), E(G)) where V (G) =
X, E(G) = {(x, y) ∈ X ×X : xRy} ∪∆. ■

Corollary 3.8 Let (X,N) be a complete parametric Nb-metric space endowed with a
partial ordering ⪯. Suppose the mapping f : X → X maps comparable elements into
comparable elements and satisfies the following condition:

Nfx,fy,t ⩽ hmax{Nx,y,t, Nfx,x,t, Nfy,y,t,
Nx,fy,t +Ny,fx,t

2(n− 1)b
}

for all x, y ∈ X with x ⪯ y or, y ⪯ x, all t > 0 and some 0 ⩽ h < 1
b3 . Suppose the triple

(X,N,⪯) has the following property:
(†) If (xk) is a sequence in X such that xk → x and xk, xk+1 are comparable for all

k ⩾ 1, then there exists a subsequence (xki
) of (xk) such that xki

, x are comparable for
all i ⩾ 1.
If there exists x0 ∈ X such that x0, fx0 are comparable, then f has a fixed point in X.
Moreover, f has a unique fixed point in X if the following property holds:

(††) If x, y are fixed points of f in X, then x, y are comparable.

Proof. The proof can be obtained from Theorem 3.1 by taking g = I and G = G2,
where the graph G2 is defined by E(G2) = {(x, y) ∈ X ×X : x ⪯ y or y ⪯ x}. ■

Corollary 3.9 Let (X,N) be a complete parametric Nb-metric space with the coefficient
b ⩾ 1 and let f : X → X be such that

Nfx,fy,t ⩽ αNx,y,t + βNfx,x,t + γNfy,y,t + δ[Nx,fy,t +Ny,fx,t] (6)

for all x, y ∈ X, all t > 0 and α, β, γ, δ ⩾ 0 with α + β + γ + 2(n− 1)bδ < 1
b3 . Then f

has a unique fixed point in X.

Proof. Condition (6) gives that

Nfx,fy,t ⩽ (α+ β + γ + 2(n− 1)bδ)max


Nx,y,t, Nfx,x,t, Nfy,y,t,

Nx,fy,t+Ny,fx,t

2(n−1)b


for all x, y ∈ X, all t > 0. Taking h = α+ β + γ +2(n− 1)bδ, it follows that 0 ⩽ h < 1

b3 .
Now applying Corollary 3.4, we obtain the desired result. ■

Remark 3 We note that several important fixed point results including fixed points for
expansive mappings in parametric A-metric spaces can be obtained by putting b = 1 and
choosing different digraphs in Theorem 3.1.

Now we furnish some examples to justify the validity of our main result. The first
example shows that the existence and uniqueness of the common fixed point can not
follows easily by working in the setting of a usual metric space without any graph. It
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should be noticed that Theorem 3.3 [10] can not assure the existence of a common fixed
point in the following example.

Example 3.10 Let X = {1, 2, 3} ∪ [4,∞) and define N : X3 × (0,∞) → [0,∞) by

N(x, y, z, t) = t3(| x− y | + | x− z | + | y − z |)2

for all x, y, z ∈ X and all t > 0. Then (X,N) is a complete parametric Nb-metric space
with b = 3, n = 3. Let G be a digraph such that V (G) = X and E(G) = ∆ ∪ {(1, 3)}.
Let f, g : X → X be defined by

fx =


1, if x = 1, 3,

3, if x = 2,

x2, if x ⩾ 4

and gx =

x, if x = 1, 2, 3,

x+ 2, if x ⩾ 4.

Then, f(X) ⊆ g(X), g(X) is a complete subspace of X. Moreover, f and g are weakly
compatible. Obviously, f and g does not satisfy the contractive condition in Berinde’s
[10] meaning. In fact, in the setting of a usual metric space, for x = 1, y = 2, we have

d(fx, fy) = d(1, 3) = 2 > 1 = d(gx, gy).

So, Theorem 3.3 [10] can not assure the existence of a common fixed point of f and g.

On the other hand, f is edge preserving w.r.t. g with (gx0, fx0) ∈ E(G) for x0 = 1.
Furthermore, condition (1) holds trivially and it is easy to compute that properties (∗)
and (∗∗) hold true. Thus, we have all the conditions of Theorem 3.1 which ensures the
existence of a unique common fixed point 1 of f and g in g(X).

Remark 4 It is interesting to note that in Example 3.10, the condition

Nfx,fy,t ⩽ h max{Ngx,gy,t, Nfx,gx,t, Nfy,gy,t,
Ngx,fy,t +Ngy,fx,t

4b
}

does not hold for all x, y ∈ X, all t > 0 and some 0 ⩽ h < 1
b3 . In fact, for x = 1, y = 4,

we have fx = 1, fy = 16, gx = 1, gy = 6. Therefore, Nfx,fy,t = 4t3 | fx− fy |2= 900t3

and

max{Ngx,gy,t, Nfx,gx,t, Nfy,gy,t,
Ngx,fy,t +Ngy,fx,t

4b
} = 4t3max{25, 0, 100, 125

6
} = 400t3.

Now it follows that,

Nfx,fy,t = 900t3 =
9

4
.400t3

=
9

4
max{Ngx,gy,t, Nfx,gx,t, Nfy,gy,t,

Ngx,fy,t +Ngy,fx,t

4b
}

>
1

b3
max{Ngx,gy,t, Nfx,gx,t, Nfy,gy,t,

Ngx,fy,t +Ngy,fx,t

4b
}.
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Moreover, we find that for x = 1, y = 4, we have Nfx,fy,t = 900t3 = 225
9 Nx,y,t > Nx,y,t.

Example 3.11 Let X = {0, 2, 4} ∪ [5,∞) and define N : X3 × (0,∞) → [0,∞) by

N(x, y, z, t) = t3(| x− y | + | x− z | + | y − z |)2

for all x, y, z ∈ X and all t > 0. Then (X,N) is a complete parametric Nb-metric space
with b = 3, n = 3. Let G be a digraph such that V (G) = X and E(G) = ∆ ∪ {(2, 4)}.
Let f, g : X → X be defined by

fx =


0, if x = 0,

4, if x = 2, 4,

x2, if x ⩾ 5

and gx =

x, if x = 0, 2, 4,

x+ 1, if x ⩾ 5.

Then, f(X) ⊆ g(X), g(X) is a complete subspace of X. Moreover, f and g are weakly
compatible. Obviously, f and g does not satisfy the contractive condition in Berinde’s
[10] meaning. In fact, in the setting of a usual metric space, for x = 0, y = 2, we have

d(fx, fy) = d(0, 4) = 4 > 2 = d(gx, gy).

So, Theorem 3.3 [10] can not assure the existence of a common fixed point of f and g.

On the other hand, f is edge preserving w.r.t. g with (gx0, fx0) ∈ E(G) for x0 = 0.
Furthermore, condition (1) holds trivially and it is easy to verify that property (∗) holds
true. Thus, we have all the conditions of Theorem 3.1 except property (∗∗). We find that
0 and 4 are common fixed points of f and g in g(X) and hence they are also points of
coincidence of f and g in g(X), but (0, 4) ̸∈ E(G̃). Thus, we can not find unique common
fixed point of f and g without property (∗∗) although f and g are weakly compatible.

4. Fixed Points in Parametric b-Metric Space

In this section, we note that every parametric b-metric is a parametric Nb-metric with
n = 2.

Theorem 4.1 Let (X,P ) be a parametric b-metric space with the coefficient b ⩾ 1 and
let the mappings f, g : X → X be such that f(X) ⊆ g(X) and f(X) or g(X) is a
complete subspace of X and satisfy the following condition:

P (fx, fy, t) ⩽ hmax


P (gx, gy, t), P (fx, gx, t), P (fy, gy, t),

P (gx,fy,t)+P (gy,fx,t)
2b


for all x, y ∈ X, all t > 0 and some 0 ⩽ h < 1

b3 . Then f and g have a unique point of
coincidence in g(X). Moreover, if f and g are weakly compatible, then f and g have a
unique common fixed point in g(X).

Proof. The proof follows from Corollary 3.2 by taking n = 2. ■
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Corollary 4.2 Let (X,P ) be a complete parametric b-metric space with the coefficient
b ⩾ 1 and let f : X → X be such that

P (fx, fy, t) ⩽ hmax


P (x, y, t), P (fx, x, t), P (fy, y, t),

P (x,fy,t)+P (y,fx,t)
2b


for all x, y ∈ X, all t > 0 and some 0 ⩽ h < 1

b3 . Then f has a unique fixed point in X.

Proof. The proof can be obtained from Theorem 4.1 by taking g = I. ■

Corollary 4.3 Let (X,P ) be a complete parametric b-metric space with the coefficient
b ⩾ 1 and let g : X → X be an onto mapping satisfying

P (x, y, t) ⩽ hmax


P (gx, gy, t), P (x, gx, t), P (y, gy, t),

P (gx,y,t)+P (gy,x,t)
2b


for all x, y ∈ X, all t > 0 and some 0 ⩽ h < 1

b3 . Then g has a unique fixed point in X.

Proof. The proof follows from Theorem 4.1 by taking f = I. ■

Corollary 4.4 Let (X,P ) be a complete parametric b-metric space with the coefficient
b ⩾ 1 and let g : X → X be an onto mapping satisfying

P (gx, gy, t) ⩾ k P (x, y, t) (7)

for all x, y ∈ X, all t > 0 and some k > b3. Then g has a unique fixed point in X.

Proof. Taking h = 1
k and using condition (7), it follows that

P (x, y, t) ⩽ 1

k
P (gx, gy, t)

⩽ hmax{P (gx, gy, t), P (x, gx, t), P (y, gy, t),
P (gx, y, t) + P (gy, x, t)

2b
}

for all x, y ∈ X, all t > 0 and some 0 ⩽ h < 1
b3 . Now the result follows from Corollary

4.3. ■

Remark 5 Corollary 4.4 ensures the existence of unique fixed point for expansive map-
pings in parametric b-metric spaces.

The following result is the analogue of Banach contraction theorem in parametric
b-metric spaces.

Theorem 4.5 Let (X,P ) be a complete parametric b-metric space with the coefficient
b ⩾ 1 and let f : X → X be such that

P (fx, fy, t) ⩽ αP (x, y, t) (8)

for all x, y ∈ X, all t > 0 and some 0 ⩽ α < 1
b3 . Then f has a unique fixed point in X.
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Proof. By using condition (8), it follows that

P (fx, fy, t) ⩽ αP (x, y, t)

⩽ αmax{P (x, y, t), P (fx, x, t), P (fy, y, t),
P (x, fy, t) + P (y, fx, t)

2b
}

for all x, y ∈ X, all t > 0 and some 0 ⩽ α < 1
b3 . Now the result follows from Theorem

4.1 by taking g = I. ■

By an argument similar to that used in Theorem 4.5, we can obtain the following
results.

Theorem 4.6 Let (X,P ) be a complete parametric b-metric space with the coefficient
b ⩾ 1 and let f : X → X be such that

P (fx, fy, t) ⩽ αP (fx, x, t) + β P (fy, y, t)

for all x, y ∈ X, all t > 0 and α, β ⩾ 0 with α+β < 1
b3 . Then f has a unique fixed point

in X.

Theorem 4.7 Let (X,P ) be a complete parametric b-metric space with the coefficient
b ⩾ 1 and let f : X → X be such that

P (fx, fy, t) ⩽ α [P (x, fy, t) + P (y, fx, t)]

for all x, y ∈ X, all t > 0 and some 0 ⩽ 2α < 1
b4 . Then f has a unique fixed point in X.

The following theorem is a generalization of Theorem 3.3[20] which assures the exis-
tence of unique fixed point without continuity of the function.

Theorem 4.8 Let (X,P ) be a complete parametric metric space and let f : X → X be
a mapping satisfying the following condition:

P (fx, fy, t) ⩽ β [P (fx, x, t) + P (fy, y, t)] + δ [P (x, fy, t) + P (y, fx, t)]

for all x, y ∈ X, all t > 0 and β, δ ⩾ 0 with β + δ < 1
2 . Then f has a unique fixed point

in X.

Proof. The proof follows from Corollary 3.9 by taking n = 2, b = 1, α = 0, γ = β. ■

Remark 6 It is worth mentioning that several important fixed point results in parametric
metric spaces can be obtained by putting n = 2, b = 1 in Theorem 3.1.

5. Fixed Points in Parametric S-Metric Space

In this section, we note that every parametric S-metric is a parametric Nb-metric with
n = 3 and b = 1.

Theorem 5.1 Let (X,PS) be a parametric S-metric space and let the mappings f, g :
X → X be such that f(X) ⊆ g(X) and f(X) or g(X) is a complete subspace of X and
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satisfy the following condition:

PS(fx, fx, fy, t) ⩽ hmax


PS(gx, gx, gy, t), PS(fx, fx, gx, t),

PS(fy, fy, gy, t),
PS(gx,gx,fy,t)+PS(gy,gy,fx,t)

4


for all x, y ∈ X, all t > 0 and some 0 ⩽ h < 1. Then f and g have a unique point of
coincidence in g(X). Moreover, if f and g are weakly compatible, then f and g have a
unique common fixed point in g(X).

Proof. The proof follows from Corollary 3.2 by taking n = 3 and b = 1. ■

Corollary 5.2 Let (X,PS) be a complete parametric S-metric space and let g : X → X
be an onto mapping satisfying

PS(x, x, y, t) ⩽ hmax


PS(gx, gx, gy, t), PS(x, x, gx, t), PS(y, y, gy, t),

PS(gx,gx,y,t)+PS(gy,gy,x,t)
4


for all x, y ∈ X, all t > 0 and some 0 ⩽ h < 1. Then g has a unique fixed point in X.

Proof. The proof follows from Theorem 5.1 by taking f = I. ■

The following result gives fixed point for expansive mappings in a parametric S-metric
space. In fact, this is a generalization of Theorem 21[35].

Corollary 5.3 Let (X,PS) be a complete parametric S-metric space and let g : X → X
be an onto mapping satisfying

PS(gx, gx, gy, t) ⩾ k PS(x, x, y, t) (9)

for all x, y ∈ X, all t > 0 and some k > 1. Then g has a unique fixed point in X.

Proof. Taking h = 1
k and using condition (9), it follows that

PS(x, x, y, t) ⩽
1

k
PS(gx, gx, gy, t)

⩽ hmax


PS(gx, gx, gy, t), PS(x, x, gx, t), PS(y, y, gy, t),

PS(gx,gx,y,t)+PS(gy,gy,x,t)
4


for all x, y ∈ X, all t > 0 and some 0 ⩽ h < 1. Now the result follows from Corollary 5.2.
■

Corollary 5.4 Let (X,PS) be a complete parametric S-metric space and let f : X → X
be such that

PS(fx, fx, fy, t) ⩽ hmax


PS(x, x, y, t), PS(fx, fx, x, t),

PS(fy, fy, y, t),
PS(x,x,fy,t)+PS(y,y,fx,t)

4


for all x, y ∈ X, all t > 0 and some 0 ⩽ h < 1. Then f has a unique fixed point in X.

Proof. The proof can be obtained from Theorem 5.1 by taking g = I. ■
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Corollary 5.5 Let (X,PS) be a complete parametric S-metric space and let f : X → X
be such that

PS(fx, fx, fy, t) ⩽ αPS(x, x, y, t) + βPS(fx, fx, x, t) + γPS(fy, fy, y, t)

+δ[PS(x, x, fy, t) + PS(y, y, fx, t)] (10)

for all x, y ∈ X, all t > 0 and α, β, γ, δ ⩾ 0 with α + β + γ + 4δ < 1. Then f has a
unique fixed point in X.

Proof. It follows from condition (10) that

PS(fx, fx, fy, t) ⩽ (α+ β + γ + 4δ)max


PS(x, x, y, t), PS(fx, fx, x, t),

PS(fy, fy, y, t),
PS(x,x,fy,t)+PS(y,y,fx,t)

4


for all x, y ∈ X, all t > 0. Taking h = α + β + γ + 4δ, it follows that 0 ⩽ h < 1. Now
applying Corollary 5.4, we obtain the desired result. ■

Theorem 5.6 Let (X,PS) be a complete parametric S-metric space endowed with a
binary relation ρ over X. Assume that f : X → X is a comparative map which satisfies
the following condition:

PS(fx, fx, fy, t) ⩽ hmax


PS(x, x, y, t), PS(fx, fx, x, t),

PS(fy, fy, y, t),
PS(x,x,fy,t)+PS(y,y,fx,t)

4


for all x, y ∈ X with xRy, where R = ρ ∪ ρ−1, all t > 0 and some 0 ⩽ h < 1. Suppose
also that the following conditions hold:

(i) (X,PS , R) is regular,
(ii) there exists x0 ∈ X such that x0Rfx0.

Then f has a fixed point in X. Moreover, f has a unique fixed point in X if the following
property holds:

If x, y are fixed points of f in X, then xRy.

Proof. The proof follows from Corollary 3.7 by taking n = 3, b = 1 and g = I. ■

Remark 7 It is valuable to note that several important fixed point results in parametric
Sb-metric spaces can be obtained by putting n = 3 and choosing different digraphs G in
Theorem 3.1.
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