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Abstract. In this paper, we discuss the existence and uniqueness of points of coincidence and
common fixed points for a pair of graph preserving mappings in parametric Np-metric spaces.
As some consequences of this study, we obtain several important results in parametric b-metric
spaces, parametric S-metric spaces and parametric A-metric spaces. Finally, we provide some
illustrative examples to justify the validity of our main result.
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1. Introduction

Fixed point theory is an important branch of nonlinear analysis which can be applied
to many areas of mathematics and applied sciences such as variational and linear in-
equalities, control theory, convex optimization, linear algebra, differential equations and
mathematical economics. The most celebrated result in this field is the Banach contrac-
tion principle [6]. It becomes very famous due to its wide applications. In particular, it is
an important tool for solving existence and uniqueness problems in nonlinear functional
analysis. Several authors successfully generalized this result in many directions. In last
three decades, different types of generalized metric spaces have been developed by dif-
ferent mathematicians. One such generalized metric space is a parametric metric space

*Corresponding author.
E-mail address: mohantawbsu@rediffmail.com (S. Kumar Mohanta); ratulkarl@gmail.com (R. Kar).

Print ISSN: 2252-0201 (© 2020 TAUCTB. All rights reserved.
Online ISSN: 2345-5934 http://jlta.iauctb.ac.ir



166 S. Kumar Mohanta and R. Kar / J. Linear. Topological. Algebra. 09(02) (2020) 165-183.

introduced and studied by Hussain et al. [16]. Some other generalized metric spaces are
b-metric space [5], parametric b-metric space [16], parametric S-metric space [35] etc.

In 2012, Sedghi et al. [34] introduced the notion of S-metric space. Afterwards, the
definition of S-metric is generated by extending to n-tuple by Abbas et al. [1] and called it
A-metric. Recently, Priyobarta et al. [31] introduced the concept of parametric A-metric
space as a generalization of A-metric space. Very recently, Nihal et al. [36] extended the
concept of parametric A-metric space to parametric Ny-metric space and studied some
fixed point results. After examining the proofs of the results in [36], we noticed that
there is something wrong with the proof of the Cauchy sequence in Theorem 3.1 [36].
This leads to subsequent errors in Theorems 4.1 and 5.1 [36]. The detailed reasons are
as follows: On page number 950 in [36], the authors used

k
(n— l)bak [1+b%a+b'a®+ -] Nuygurt < (n— 1)% ot -
This is incorrect unless b%a < 1. In this paper, we would like to modify the contractive
type condition to achieve their claim (see Corollary 3.4).

In recent investigations, the study of fixed point theory combining a graph is a new
development in the domain of contractive type single valued and multi valued theory. In
2005, Echenique [13] studied fixed point theory by using graphs. Later on, Espinola and
Kirk [14] applied fixed point results in graph theory. Afterwards, combining fixed point
theory and graph theory, a series of articles (see [3, 4, 8, 9, 18, 23-27] and references
therein) have been dedicated to the improvement of fixed point theory. Many important
results of [1, 11, 21, 22, 28-33, 36] have become the source of motivation for many
researchers that do research in fixed point theory. The main purpose of this article is
to investigate the existence and uniqueness of points of coincidence and common fixed
points for a pair of mappings under various contractive conditions in parametric Np-
metric spaces. Further, we prove some fixed point theorems for expansive mappings in
parametric b-metric space and parametric S-metric space.

2. Some Basic Concepts

We begin with some basic notations, definitions and results which will be used in the
sequel.

Definition 2.1 [34] Let X be a nonempty set. An S-metric on X is a function S : X3 —
[0,00) that satisfies the following conditions, for each z, y, z, a € X,

(i) S(z,y,2) >0,
(ii)) S(x,y,z) =0if and only if x =y = 2,
(i) S(xy.2) < S(,,a) + Sy, y,0) + S(z,7,a).

The pair (X, S) is called an S-metric space.

It is to be noted that an S-metric is not symmetric, in general. The following examples
illustrate the above fact.

Ezxzample 2.2 [34] Let X = R" and || - || be a norm on X. Then
Sy 2) =lly+z-2z|+|y—z|

is an S-metric on X.
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Ezxzample 2.3 [34] Let X be a nonempty set and d be an ordinary metric on X. Then
S(z,y,2) =d(x, z) + d(y, z) is an S-metric on X.

Definition 2.4 [16] Let X be a nonempty set and P : X x X x (0,00) — [0,00) be a
function. Then P is called a parametric metric on X if
(i) P(z,y,t) =0 if and only if z =y,
(ii)) P(z,y,t) = P(y,z,1),
(i) P(z,y,t) < P(z,z,t) 4+ P(z,y,t)

for each x, y, z € X and all £ > 0. The pair (X, P) is called a parametric metric space.
Ezxzample 2.5 [16] Let X denote the set of all functions f : (0,00) — R. Define P :

X x X x (0,00) — [0,00) by P(f,g,t) =| f(t) —g(t) | for all f, g € X and all ¢ > 0.
Then (X, P) is a parametric metric space.

Definition 2.6 [17] Let X be a nonempty set, b > 1 be a real number, and P : X X
X % (0,00) — [0,00) be a map satisfying the following conditions:

(i) P(z,y,t) =0 if and only if z =y,
(i) P(z,y,t) = P(y,,1),
(iii) P(x,y,t) <b[P(x,z,t)+ P(z,y,t)]

for each x, y, z € X and all ¢t > 0. Then P is called a parametric b-metric on X and the
pair (X, P) is called a parametric b-metric space.

Definition 2.7 [35] Let X be a nonempty set and Ps : X x X x X x (0,00) — [0, 00)
be a function. Py is called a parametric S-metric on X if

(PSl) Ps(ﬂf,y,z,t) == 0 lf and Only lf r=y =2z,
(PS2) Ps(x,y,z,t) < Ps(x,z,a,t) + Ps(y,y,a,t) + Ps(z, z,a,t)

for each z, y, z, a € X and all ¢ > 0. The pair (X, Ps) is called a parametric S-metric
space.

Exzample 2.8 [35] Let X = {f | f : (0,00) — R be a function} and the function
Ps: X x X x X x(0,00) = [0,00) be defined by

Ps(f,9,h,t) =| f(t) = h(t) | + | g(t) — h(?) |

for each f, g, h € X and all t > 0. Then Pgs is a parametric S-metric and the pair (X, Pg)
is a parametric S-metric space.

Lemma 2.9 [35] Let (X, Pg) be a parametric S-metric space. Then we have

Ps(z,z,y,t) = Ps(y,y,x,t)

for each z, y € X and all ¢t > 0.
Definition 2.10 [1] Let X be a nonempty set. A function A : X™ — [0, 00) is called an
A-metric on X if for any x;, a € X, ¢ =1, 2 --- ,n, the following conditions hold:

(Al) A(l‘17$27m37“' 7$n717$n) 2 07
(AQ) A($1,$2,1’37 o 755717171'71) =0ifandonly if 11 =29 =23 =+ -+ = Tp,
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A(zy,z1, 21, , (T1)n-1,0)
(A3) A(z1,22,23,  * ,Tn-1,2Tn) < +A(z2, 22,22, -, (T2)n—1,0Q)
4.+ A(wm N (wn)n_l, CL)
The pair (X, A) is called an A-metric space.

Definition 2.11 [31] Let X be a nonempty set and P4 : X™ x (0,00) — [0,00) be a
function. Py is called a parametric A-metric on X if,

(PA1) Pa(x1,22, - ,xn,t) =0if and only if x1 = z9 = -+ =z,
PA('TI)J:I’ e 7($1)n—1)a7t)

(PA2) PA(-%'L:UQ? e 7:Un7t) < +PA(.’L‘2,JZ‘2, R (‘r2)n—17 Cl,t)

+ .4 PA(xn,l‘n, Ty, (xn)n—la a7t)

for each x;, a € X, i =1,2,3,--- ,n and all t > 0. The pair (X, P4) is called a para-
metric A-metric space.

Ezxzample 2.12 [31] Let X = R and let the function P4 : X" x (0,00) — [0,00) be
defined by

Pa(z1,m2,- -+ on,t) = g(t) (|21 — 22 [+ |22 —23 |+ + [ 20 — 21 ),

for each x1, 9, -+, x, € X and all ¢ > 0, where g : (0,00) — (0,00) is a continuous
function. Then P4 is a parametric A-metric and the pair (X, P4) is a parametric A-metric
space.

Lemma 2.13 [31] Let (X, P4) be a parametric A-metric space. Then we have

PA(:L'7$7"' 7$7y>t) :PA(yayv"' ,y,:r:,t),

for each z, y € X and all ¢t > 0.

Definition 2.14 [36] Let X be a nonempty set, b > 1 be a given real number, n(> 2) € N
and N : X™ x (0,00) — [0,00) be a function. N is called a parametric Ny-metric on X
if,
(N1) N(xy,29, - ,xn,t) =0if and only if x1 =29 = -+ = x,,
N(x:b ml) Ty (ajl)n—:b a‘? t)

(N2) N(ﬂfl,l‘Q, te ,l’n,t) < b —i—N((EQ,.’I}Q, T 7(x2)n—17a7t)

+. .. _'_N(.rn’xn’. .. 7(1'”)“_1’@71:)

foreachx;, a € X, i=1,2,3,--- ,nandallt > 0. The pair (X, N) is called a parametric
Np-metric space. If n = 3, then N is called a parametric Sp-metric on X and the pair
(X, N) is called a parametric Sp,-metric space.

Throughout the paper, we will denote N (z,z,- -+, (2)n—1,y,t) by Nyy:.

Exzample 2.15 Let X = {f | f : (0,00) — R be a function} and let the function
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N : X3 x (0,00) — [0,00) be defined by
N(f.g.h,t) = (| £(t) = g(t) | + | f(t) = h(t) [ + | 9(t) = h(t) )?,

for each f, g, h € X and all t > 0. Then (X, N) is a parametric Ny-metric space with
b =3 and n = 3. Because,

| (&) = g(&) |+ £(t) = h(t) | + | g(t) = h(t) ])?

N(f,g,h,t) = (
A( f(t) —alt) [+ ] g(t) —alt) [+ | h(t) — a(t) )
1
3

<
<

|
2(1 f(t) = a(t) P+ | g(t) = a(t) [ + [ h(t) — a(t) [*)
(Nfat+N t+Nh,oc,t)

for each f, g, h, « € X and all t > 0. But it is not a parametric S-metric space. In fact,
(PS2) does not hold for f(t) =4, g(t) =6, h(t) =8, a(t) = 5.

Lemma 2.16 [36] Let (X, N) be a parametric Ny-metric space. Then we have Ny 4 ¢ <
bNy .zt and Ny 1 < bNg,y for each z, y € X and all ¢t > 0.

Lemma 2.17 [36] Let (X, N) be a parametric N,-metric space. Then we have
Neyt S O[(n=1)Ngzp + Nyzo] and Noy o <b[(n = 1)Ne 2y + 0N 4]

for each z, y, 2 € X and all t > 0.

Definition 2.18 [36] Let (X, N) be a parametric Ny-metric space, x € X and (z,) be
a sequence in X. Then

(i) (zn) converges to z if and only if for each ¢ > 0, there exists ng € N such that
Ny, zt <€, for all n > ng and all ¢t > 0, that is, lim N, ,; = 0. We denote this by
n—00

lim z, =z or x,, — z(n — ).
n—oo

(ii) (xy,) is called a Cauchy sequence if and only if for each € > 0, there exists ng € N such
that Ny, 4.+ <e€forallm,m > ng and all £ > 0, thatis, lim N, ., =0.

n,Mm—00
(iii) (X, N) is called complete if and only if every Cauchy sequence in X is convergent.

Remark 1 [36] In a parametric Ny-metric space (X, N), the following assertions hold:

(i) A convergent sequence has a unique limit.
(i) Each convergent sequence is Cauchy.

Lemma 2.19 [36] Let (X, N) be a parametric Np-metric space and (uy), (vi) be two
sequences converge to v and v, respectively. Then we have

1
— Nyt < liminf Ny, o, ¢+ < limsup Ny, v, ¢ < bQNU,Wg

b? k—oo k—oo

for all ¢ > 0. In particular, if (vg) is a constant sequence such that vy = v for all k, then
we get

1
—Nyp < liminf Ny, ¢ <limsup Ny, ¢ < < b2 Nyt

b2 k—o0 k—o00
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for all ¢ > 0. Also if u = v, then we have klim Ny,vt =0 forall ¢ > 0.
—00

Definition 2.20 [2] Let 7" and S be self mappings of a set X. If y = Tax = Sx for
some x in X, then z is called a coincidence point of T" and S and y is called a point of
coincidence of T and S.

Definition 2.21 [19] The mappings 7,5 : X — X are weakly compatible, if for every
x € X, T(Sz) = S(Txz) whenever Sx = Tx.

Proposition 2.22 [2] Let S and T be weakly compatible selfmaps of a nonempty set
X. If S and T have a unique point of coincidence y = Sx = Tz, then y is the unique
common fixed point of S and T.

Definition 2.23 Let (X, N) be a parametric Ny-metric space. A mapping f: X — X
is called expansive if there exists a positive number k£ > b3 such that N fofyt = K Ngyt
for all x,y € X and all t > 0.

Let (X, N) be a parametric Ny-metric space and p be a binary relation over X . Denote
R =pUp~!. Then xRy if and only if 2py or ypz for all 2,y € X.

Definition 2.24 We say that (X, N, R) is regular if the following condition holds:
If the sequence () in X and the point x € X are such that zy Rz for all k > 1
and klim Ny, 2t = 0, then there exists a subsequence (xy,) of (xf) such that zy, Rx for
%

o0
all 2 > 1.

Definition 2.25 Let (X, N) be a parametric Ny-metric space and p be a binary relation
over X. Then the mapping T : X — X is called comparative if T' maps comparable
elements into comparable elements, that is,

z,y € X, xRy=Tx RTy.
Similarly, for f, g: X — X, we call f is comparative w.r.t. g if
z,y € X, grRgy = fx R fy.

We next review some basic notions in graph theory.
Let (X, N) be a parametric Np-metric space. We consider a directed graph G such that
the set of its vertices V(G) = X and the set of its edges F(G) contains all the loops, i.e.,
A C E(G) where A = {(z,z) : x € X}. We assume that G has no parallel edges. So we
can identify G with the pair (V(G), E(G)). By G~! we denote the graph obtained from
G by reversing the direction of edges i.e., E(G™!) = {(z,y) € X x X : (y,2) € E(G)}.
Let G denote the undirected graph obtained from G by ignoring the directions of the
edges of G. Therefore, we consider G as a directed graph which is symmetric. Thus,
E(G) = E(G)U E(G™1). Our graph theory notations and terminology are standard and
can be found in all graph theory books, like [7, 12, 15].

Definition 2.26 Let (X, N) be a parametric Ny-metric space and G = (V(G), E(G))
be a graph. Then the mapping T': X — X is called edge preserving if

z,y € X, (z,y) € E(G) = (Tx,Ty) € E(G).

Definition 2.27 Let (X, N) be a parametric Np-metric space endowed with a digraph
G=(V(G),E(G)) and f, g : X — X be two mappings. Then f is called edge preserving
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w.r.t. g if |, (g9z, gy) € E(G) implies that (fz, fy) € E(G) for all z,y € X.

Definition 2.28 Let (X, N) be a parametric Ny-metric space and f : X — X be a
mapping. Then f is called continuous if given x € X and a sequence (zy)ken, Tk —
implies fxp — fx.

Definition 2.29 Let (X, N) be a parametric N,-metric space and f, g : X — X be two
mappings. Then f is called continuous w.r.t. g if given x € X and a sequence (gxg)ren,
gr — gx implies fxrp — fx.

Definition 2.30 Let (X, N) be a parametric Np-metric space endowed with a graph
G = (V(G),E(G)). A mapping f : X — X is called G-continuous if given € X and a
sequence (zg)ken, Tx — = and (vg, vx41) € E(G) for k € N imply fzp — fx.

Definition 2.31 Let (X, N) be a parametric Ny-metric space endowed with a graph
G = (V(G),E(G)) and let f, g : X — X be two mappings. Then f is called G-continuous
w.r.t. g if given z € X and a sequence (gxk)ken, 92r — gz and (gzg, grr+1) € E(G) for
k € Nimply fxr — fzx.

3. Fixed Points in Parametric IN,-Metric Space

In this section, we assume that (X, N) is a parametric Ny-metric space and G is a
reflexive digraph such that V(G) = X and G has no parallel edges. Let the mappings
fyg: X — X be such that f(X) C g(X). Let zyp € X be arbitrary. Since f(X) C g(X),
there exists an element 2y € X such that gry = fxg. Continuing in this way, we can
construct a sequence (gzxy) such that gry = for_1, k=1,2,3, - -

Before presenting our main result, we state a property of the graph G, call it property

Property (x): If (gxy) is a sequence in X such that gzy — = and (gxg, grry1) € E(G)
for all k& > 1, then there exists a subsequence (gxg,) of (gx) such that (gzy,,z) € E(G)
for all + > 1. )

Taking g = I, the above property reduces to property (x):

Property (*) If (x) is a sequence in X such that z; — x and (2, 2x11) € E(G) for
all £ > 1, then there exists a subsequence (zy,) of (xy) such that (z,,z) € E(G) for all
1> 1.

Theorem 3.1 Let (X, N) be a parametric Ny-metric space endowed with a digraph G
and let the mappings f, g : X — X be such that

N, + N,

fo’fy7t g h max{NgIhgyvt’ fozgx»t7 nymgy»t’ g$7fy7t gy"fx’t } (1)
2(n—1)b

for all z, y € X with (g9z, gy) € E(G), all t > 0 and some 0 < h < b%. Suppose that f is

edge preserving w.r.t. g, f(X) C ¢g(X) and f(X) or g(X) is a complete subspace of X.

Assume that at least one of the following conditions holds:

(i) f is G-continuous w.r.t. g.
(ii) The graph G has the property (x).

If there exists g € X such that (gzo, fro) € E(G), then f and g have a point of
coincidence in g(X). Moreover, f and g have a unique point of coincidence in g(X) if the
graph G has the following property:
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(%) If 2, y are points of coincidence of f and g in g(X), then (z,y) € B(G).
Furthermore, if f and g are weakly compatible, then f and g have a unique common
fixed point in g(X).

Proof. Suppose there exists zg € X such that (gzo, fzo) € E(G). Since f(X) C g(X),
there exists 1 € X such that gz1 = fxg. So, (gxo, gx1) € E(G). As f is edge preserving
w.r.t. g, it follows that (fzo, fz1) € E(G), that is, (gz1, fz1) € E(G). Continuing this
process, we can construct a sequence (xy) in X such that gzy = fzi_1, for all k > 1 and
(9K, 97141) € E(Q) for all k € NU{0}.

We assume that fxy # fzp_1 for every k € N. If fap, = frp_1 for some k € N, then
gri = fxg_1 = fxp which shows that fzj_; is a point of coincidence of f and g in g(X).
By using condition (1) and Lemmas 2.16 and 2.17, we have

Ngffk:gwwht? Nfl‘mgﬂ?k,t? fok+1791‘k+1»t7

mekafxlﬁ»lat < hmaz
Ngay fopiq, 6T Nooy g fop .t

2(n—1)b

Nf$k717f$k,t’ fok,fl‘k,ht’ Nf$k+1,f$k,t7

< hmax
bNf:l:k+1‘fmk71,t+Nf:nk,fmk,t

2(n—1)b

Nf$k717f$k,t’ b Nfack,l,f;vk,ta

< hmax
Nf1k+1’fzk—l=t

bexk,fmk+1,t7 2(n—1)

{ b fok—l7ka)t7 b wak,fl'k+1,t7

< hmax
(=10 Nyup syt TONpay o fay .t
2(n—1)

b Nfﬁkfl,ka,t7 b2 fok,ka+1,t7

< hmax )
(Tl*].)b wakafl’k+1,t+b(n71) Nfﬂvk_pfl'kyt
2(n—1)

b Nfiﬂk_l,f.’tk,tu b2 Nf(l)k,ffﬂk+1,t7
= hmax

b? Nyag fapypr 0 Nfaoy o fay .t
2

= hmal‘{bexk—l’ka;t?bQ fok,ka+1,t}' (2)

If maz{b Nyg, \ fanitsb? Nzy faneit} = 0% Niay fopir 0> then condition (2) and 0 < b < 2

assure that Ny, ¢, ., ¢ < hb? Nyzy ferint < Ny, fen,t» which is a contradiction. Thus,

maz{b Nz, . fonts0* Nfag farirt} = 0N, o fart- S0, it follows from condition (2) that
Nty oot < WO Npg, |zt for all k € N. Put o = hb. Then, 0 < a < . Therefore,

Nfzk,f:ckﬂ,t < Oszxkihtht, for all k € N. (3)

By repeated use of condition (3), we get

Niwy farit < o Ntao fait, for all k= 0. (4)
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Therefore, klim Nioy foesrt = 0. Now, we show that (fxzy) is a Cauchy sequence in f(X).
—00
For m, k € N with m > k and using conditions (4), (N2), Lemmas 2.16, 2.17, we have

Nyvy fomt < (0= 1)0Nge, fapont T ONfe, ot
< (0= 1)bNo, fort + U Niw o fnt
< (n = DbNfay gt + (0= DV Npw oy forint + 0 Nia, forinn
< (n—=1DbNfa, forsrt + (= DV’ Nyay, fanioe + (0= D Npay o fat
N ( 1)b2m_2k_3Nf$m,27fxm,l,t + b2m_2k_2Nf,1:m,1,fccm7t

n —1)blaf + b2t 4tk o PR N

—

+(n — 1)[) b2(m—k—1)am—lexo’tht

< (n—1Dba®[1 + (BPa) + (B®a)® + - - 1N fao, far

bak

= —17
(n )1—b2a

Nizo gt — 0 as k — oo, since 2o <1

Thus, lim Nyg, 4.+ = 0. This proves that (fxy) is a Cauchy sequence in f(X). Let

k,m—00
f(X) be a complete subspace of X. Then there exists u € f(X) C g(X) so that fzp — u
and also gxp — wu. In case, g(X) is complete, this holds also with u € g(X). Let u = gs
for some s € X. Now, we prove that u is a point of coincidence of f and g in g(X).

Suppose that condition (7) holds, that is, f is assumed to be G-continuous w.r.t. g.
Then, gz — u = gs and (gzg, grr+1) € E(G) imply that fzr, — fs. As the limit of a
convergent sequence is unique, it follows that u = fs = gs. Therefore, u is a point of
coincidence of f and g in g(X).

Now, suppose that condition (ii) holds, that is, we assume that the graph G has the
property (x). As gz — u and (gzg, 9zry1) € E(G) for all k > 1, by property (*), there
exists a subsequence (gzy,) of (gxy) such that (gzy,,u) € E(G) for all i > 1.

By using condition (1), we obtain

Nos,ps,t < O[(n = 1)Ngs oy 0+ Nis, a 1]

< (n— 1)b2foki,gs,t + ONys fay, t
Ngs,gmki,h foki 3Gk 5t Nis,gsit:
< (n— ]_)szfzki gst +bhmaz Noo o, i+ Nowy, ot

2(n—1)b

bNgxki,gs,ta ( )bexk ,gs,t +bN, gTr,;,gs,ts

< (n—1)0*Nyy, gst + bhmax
‘ bea:ki,gs,t+(n_1)bNgrki,gs,t+be3,gs,t
Nf57957t7 2b

Taking the limit as ¢ — oo, we get
1 2
Ngsvat bh max Nfs)gs)t’ QNfs)g'S’t g b hNgs,fs,t,

which gives that Ny, ¢s = 0, since 0 < hb? < %. Thus, gs = fs = u and so u is a point
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of coincidence of f and g in g(X). For uniqueness, let there exist another v € g(X) such
that v = gx = fa for some € X. By property (xx), it follows that (u,v) € E(G). Then,

Nu,v,t = Nfs,fr,t

Ngs,gw,ty Nfs,gs,ta fo,gx,h
< hmazx
Ngs. fo,t+Ngz, fs.t
2(n—1)b
Nu,v,t7 Nu,u,t7 Nv,v,ta
< hmax
Nuw i+ Ny ue
2b
bNyvt+bNyyt
< hmax {Nu,v,ta &Y, 5 LILE

= h max {Nu,v,tv Nu,v,t}
= h Nu,’v,t'

This gives that Ny, = 0, since 0 < h < b% and hence v = v. Thus, f and g have a unique
point of coincidence in g(X). If f and g are weakly compatible, then by Proposition 2.22,
f and g have a unique common fixed point in g(X). [ |

Corollary 3.2 Let (X, N) be a parametric Ny-metric space with the coefficient b > 1
and let the mappings f, g : X — X be such that f(X) C ¢(X) and f(X) or g(X) is a
complete subspace of X and satisfy the following condition:

Nngfyvt + Ng’y,fﬁ,t }
2(n—1)b

Nz fyt < hmax{Ngagyt, Nz guot: Nfy.gyts

forall z, y € X, all t > 0 and some 0 < h < b%. Then f and g have a unique point of
coincidence in g(X). Moreover, if f and g are weakly compatible, then f and g have a
unique common fixed point in g(X).

Proof. The proof follows from Theorem 3.1 by taking G = Gy, where G is the complete
graph (X, X x X). [ |

Corollary 3.3 Let (X, N) be a complete parametric Ny-metric space endowed with a
digraph G. Suppose that the mapping f : X — X is edge preserving and satisfies the
following condition

Na:,fy,t + Ny,fx,t
2(n—1)b

Nf:vfyt hmax{nyt,fozt,nyyt, }

for all z, y € X with (z,y) € E(G), all t > 0 and some 0 < h < 5. Assume that at least
one of the following conditions holds:

(i) f is G-continuous.
(ii) The graph G has the property (x).

If there exists g € X such that (zg, frg) € E(G), then f has a fixed point in X.
Moreover, f has a unique fixed point in X if the graph G has the following property:
(x %) If z, y are fixed points of f in X, then (z,y) € E(G).
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Proof. The proof follows from Theorem 3.1 by taking g = I, the identity map on X. R

Corollary 3.4 Let (X, N) be a complete parametric Np-metric space with the coefficient
b>1andlet f: X — X be such that

Nx,fy,t + Ny,fac,t}
2(n—1)b

fo7fy7t < h max{NﬂU,%“ Nf:C,I,t? ny7yvt7

forall x, y € X, all £ > 0 and some 0 < h < b%. Then f has a unique fixed point in X.
Proof. The proof can be obtained from Theorem 3.1 by taking G=Gpandg=1. R

Corollary 3.5 Let (X, N) be a complete parametric Ny-metric space with the coefficient
b>1and let g: X — X be an onto mapping satisfying

Ngzvy»t + Ngy,il?,t}
2(n—1)b

Nagyt < h maﬂ?{Ngw,gy,ta Nz gat: Ny,gy.t,

forall z, y € X, all t > 0 and some 0 < h < b%. Then ¢ has a unique fixed point in X.
Proof. The proof follows from Theorem 3.1 by taking G = Gg and f = I. [ |

The following result generalizes Theorem 3.1[31] in parametric A-metric spaces to
parametric Ny-metric spaces.

Corollary 3.6 Let (X, N) be a complete parametric Ny-metric space with the coefficient
b>1andlet g: X — X be an onto mapping satisfying

Ngw,gy,t > kNx,y,t (5)

for all z, y € X, all t > 0 and some k > b>. Then ¢ has a unique fixed point in X.
Proof. Taking h = } and using condition (5), it follows that

1 Nozaut+ Noyot
N, < =N, < hmax{N, N, N, 9Ty, 9Y.%,
z,y,t X L gz,9y,t X { gz,9y,ty L Vx,gz,ts L Vy,qy,ts 2(n 1)b

}

forall z, y € X, all t > 0 and some 0 < h < b%. Now the result follows from Corollary
3.5. ]

Remark 2 Corollary 3.6 ensures the existence of unique fixed point for expansive map-
pings in parametric Np-metric spaces.

Corollary 3.7 Let (X,N) be a parametric Ny-metric space endowed with a binary
relation p over X and let the mappings f, g : X — X satisfy the following condition:

Ngxufy:t + Ngyvfxat }

Nya,yt < hmax{Ngzgyt: Nfa,gzts Nfy,gy,ts 2(n — 1)b

for all z, y € X with grRgy, where R = pUp~!, allt > 0 and some 0 < h < b%. Suppose

that f is comparative w.r.t. g, f(X) C ¢g(X) and f(X) or g(X) is a complete subspace
of X. Suppose also that the following conditions hold:

(i) (X, N, R) is regular,
(ii) there exists zp € X such that gzoRfxg.
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Then f and g have a point of coincidence in g(X). Moreover, f and g have a unique
point of coincidence in g(X) if the following property holds:

If x, y are points of coincidence of f and g in g(X), then zRy.
Furthermore, if f and g are weakly compatible, then f and g have a unique common
fixed point in g(X).

Proof. The proof follows from Theorem 3.1 by taking G = (V(G), E(G)) where V(G) =
X, E(G)={(z,y) e X x X : 2Ry} U A. [ |

Corollary 3.8 Let (X, N) be a complete parametric Np-metric space endowed with a
partial ordering <. Suppose the mapping f : X — X maps comparable elements into
comparable elements and satisfies the following condition:

Na,fyt + Ny, fat
2(n—1)b

}

Nz fyt < hmax{Ngy s, Nto ot Npyy.t,

for all z,y € X with x <y or, y <z, all £ > 0 and some 0 < h < b%. Suppose the triple
(X, N, <) has the following property:

(t) If (zx) is a sequence in X such that x; — = and zj, xp4+1 are comparable for all
k > 1, then there exists a subsequence (zy,) of (zj) such that zy,, x are comparable for
all 7 > 1.
If there exists xg € X such that xg, fxo are comparable, then f has a fixed point in X.
Moreover, f has a unique fixed point in X if the following property holds:

(t1) If x, y are fixed points of f in X, then z,y are comparable.

Proof. The proof can be obtained from Theorem 3.1 by taking g = I and G = Go,
where the graph G is defined by E(G2) = {(z,y) e X x X :z <y or y < z}. [ |

Corollary 3.9 Let (X, N) be a complete parametric Ny-metric space with the coefficient
b>1andlet f: X — X be such that

Nyg,fyt < @Ngyt + BNpz g1+ YNpy i + 5[Nw,fy,t + Ny,fm,t] (6)

forall z, y € X, allt >0and o, B, 7,0 > 0 with a+ 3 +~v+2(n—1)bd < b%' Then f
has a unique fixed point in X.

Proof. Condition (6) gives that

Nz,y,ta waﬁ,t» nyyyvt’
N < 2(n — 1)bo
fofyt < (@4 B 47+ 2(n — 1)bd) max N N
2(n—1)b

for all x, y € X, all t > 0. Taking h = a+ + v+ 2(n — 1)bd, it follows that 0 < h < b%.
Now applying Corollary 3.4, we obtain the desired result. [ |

Remark 3 We note that several important fized point results including fized points for
expansive mappings in parametric A-metric spaces can be obtained by putting b =1 and
choosing different digraphs in Theorem 3.1.

Now we furnish some examples to justify the validity of our main result. The first
example shows that the existence and uniqueness of the common fixed point can not
follows easily by working in the setting of a usual metric space without any graph. It
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should be noticed that Theorem 3.3 [10] can not assure the existence of a common fixed
point in the following example.

Ezxzample 3.10 Let X = {1, 2, 3} U[4,00) and define N : X3 x (0,00) — [0,00) by
N(y,z )=tz —yl+]z—2|+]y—=z]|)?

for all z, y, z € X and all t > 0. Then (X, N) is a complete parametric Ny-metric space
with b = 3, n = 3. Let G be a digraph such that V(G) = X and E(G) = AU{(1,3)}.
Let f, g : X — X be defined by

1, if =1, 3,
z, ifx=1,2, 3,
fr=<3, if x=2, and gxr =
r+2, if v>4.
22, if v >4

Then, f(X) C g(X), g(X) is a complete subspace of X. Moreover, f and g are weakly
compatible. Obviously, f and g does not satisfy the contractive condition in Berinde’s
[10] meaning. In fact, in the setting of a usual metric space, for x = 1, y = 2, we have

d(fz, fy) = d(1,3) =2 > 1 = d(gz, gy).
So, Theorem 3.3 [10] can not assure the existence of a common fixed point of f and g.

On the other hand, f is edge preserving w.r.t. g with (gzo, fzo) € E(G) for o = 1.
Furthermore, condition (1) holds trivially and it is easy to compute that properties (k)
and (xx) hold true. Thus, we have all the conditions of Theorem 3.1 which ensures the
existence of a unique common fixed point 1 of f and g in g(X).

Remark 4 It is interesting to note that in Example 3.10, the condition

Ng:v,fy,t + Ngy,fﬂﬁvt }

4b

Niz gyt < h maz{Ngz gyt Nfzgets Npy.gyts

does not hold for all x, y € X, allt > 0 and some 0 < h < b%. In fact, forx =1, y =4,
we have fx =1, fy =16, gv = 1, gy = 6. Therefore, Nty 4+ = 4> | fo — fy |*= 900t3
and

a2 { Ny gy Nporgots Ny 2200 ;,Ngy’fx’t} = 43 max{25, 0, 100, %} — 400¢%.
Now it follows that,
Nia pyt = 900t° = 2.4()0#”’
= Zmagu{Nggc’gyﬂt7 Niogots Niygyis Ngl'yfy,ti;)Ngyvfl',t}
> bigmcwr:{]\/’www7 Niogots Niy.gyis Ng:cﬂfy,t;)Ngy,fz,t b
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Moreover, we find that for x = 1, y = 4, we have Ny y ¢ = 900t3 = % Nyyt > Ngyit.
Ezxzample 3.11 Let X = {0, 2, 4} U [5,0) and define N : X3 x (0,00) — [0,00) by

Ny, 2,t) =tz —y|+ ]z -z ]+ |y -z’

for all z, y, z € X and all t > 0. Then (X, N) is a complete parametric Ny-metric space
with b = 3, n = 3. Let G be a digraph such that V(G) = X and E(G) = AU{(2,4)}.
Let f, g : X — X be defined by

0, if x=0,
z, if £=0, 2,4,
fr=1<4, ifx=2,4, and gr =
x+1, if x>=5.
x2, if =5

Then, f(X) C g(X), g(X) is a complete subspace of X. Moreover, f and g are weakly
compatible. Obviously, f and g does not satisfy the contractive condition in Berinde’s
[10] meaning. In fact, in the setting of a usual metric space, for z = 0, y = 2, we have

d(fz, fy) = d(0,4) = 4 > 2 = d(g, gy).
So, Theorem 3.3 [10] can not assure the existence of a common fixed point of f and g.

On the other hand, f is edge preserving w.r.t. g with (gxo, fzo) € E(G) for xg = 0.
Furthermore, condition (1) holds trivially and it is easy to verify that property (x) holds
true. Thus, we have all the conditions of Theorem 3.1 except property (#*). We find that
0 and 4 are common fixed points of f and g in g(X) and hence they are also points of
coincidence of f and g in g(X), but (0,4) € E(G). Thus, we can not find unique common
fixed point of f and g without property (xx) although f and g are weakly compatible.

4. Fixed Points in Parametric b-Metric Space

In this section, we note that every parametric b-metric is a parametric Ny-metric with
n = 2.

Theorem 4.1 Let (X, P) be a parametric b-metric space with the coefficient b > 1 and
let the mappings f, g : X — X be such that f(X) C ¢g(X) and f(X) or g(X) is a
complete subspace of X and satisfy the following condition:

P(gx,gy,t), P(fx, gz, t), P(fy, 9y,t),

P(gz,fy,t)+P(gy,fz,t)
25

P(fx, fy,t) < hmax

for all z, y € X, all t > 0 and some 0 < h < b—lg Then f and g have a unique point of
coincidence in g(X). Moreover, if f and g are weakly compatible, then f and g have a
unique common fixed point in g(X).

Proof. The proof follows from Corollary 3.2 by taking n = 2. [ |
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Corollary 4.2 Let (X, P) be a complete parametric b-metric space with the coefficient
b>1andlet f: X — X be such that

P(z,y,t), P(fz,z,t), P(fy,y,1),

P(fx, fy,t) < hmax
2

forall z, y € X, all £ > 0 and some 0 < h < b%' Then f has a unique fixed point in X.
Proof. The proof can be obtained from Theorem 4.1 by taking g = I. [ |

Corollary 4.3 Let (X, P) be a complete parametric b-metric space with the coefficient
b>1andlet g: X — X be an onto mapping satisfying

P(gz,gy,t), P(x,gx,t), P(y, gy, t),
P(z,y,t) < hmaz

P(92,y,t)+P(gy,z,t)
20

forall x, y € X, all t > 0 and some 0 < h < b%. Then ¢ has a unique fixed point in X.
Proof. The proof follows from Theorem 4.1 by taking f = 1. [ ]

Corollary 4.4 Let (X, P) be a complete parametric b-metric space with the coefficient
b>1andlet g: X — X be an onto mapping satisfying

P(gz,gy,t) = k P(x,y,t) (7)

for all z, y € X, all t > 0 and some k > b3. Then ¢ has a unique fixed point in X.

Proof. Taking h = + and using condition (7), it follows that

1

P(gz,y,t) + P(gy,w,t)}
2

< hmaz{P(gz, gy,t), P(x, gz, t), P(y, gy, t),

forall z, y € X, all t > 0 and some 0 < h < b%. Now the result follows from Corollary
4.3. [ |

Remark 5 Corollary 4.4 ensures the existence of unique fixed point for expansive map-
pings in parametric b-metric spaces.

The following result is the analogue of Banach contraction theorem in parametric
b-metric spaces.

Theorem 4.5 Let (X, P) be a complete parametric b-metric space with the coefficient
b>1andlet f: X — X be such that

P(fz, fy,t) < aP(z,y,t) (8)

forall x, y € X, all £ > 0 and some 0 < o < b%. Then f has a unique fixed point in X.
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Proof. By using condition (8), it follows that

P(fz, fy,t) < a P(z,y,t)

2b

< amaz{P(z,y,t), P(fz,z,t), P(fy,y,1),
for all z, y € X, all £ > 0 and some 0 < a < b%. Now the result follows from Theorem

4.1 by taking g = I. [ |

By an argument similar to that used in Theorem 4.5, we can obtain the following
results.

Theorem 4.6 Let (X, P) be a complete parametric b-metric space with the coefficient
b>1andlet f: X — X be such that

P(fx, fy,t) < aP(fx,z,t)+ B P(fy,y,t)

forall z, y € X, allt >0and o, 8 > 0 with a4+ 5 < b%. Then f has a unique fixed point
in X.

Theorem 4.7 Let (X, P) be a complete parametric b-metric space with the coefficient
b>1andlet f: X — X be such that

P(fz, fy,t) < a[P(z, fy,t) + P(y, fr,1)]

for all x, y € X, all £ > 0 and some 0 < 2a < b%' Then f has a unique fixed point in X.

The following theorem is a generalization of Theorem 3.3[20] which assures the exis-
tence of unique fixed point without continuity of the function.

Theorem 4.8 Let (X, P) be a complete parametric metric space and let f : X — X be
a mapping satisfying the following condition:

P(fz, fy,t) < B[P(fz,z,t) + P(fy,y,t)] + 6 [P(z, fy,t) + P(y, fz,t)]

forall z, y € X,allt >0and 5,9 > 0 with 49 < % Then f has a unique fixed point
in X.

Proof. The proof follows from Corollary 3.9 by takingn =2, b=1,a=0,y=45. 1

Remark 6 It is worth mentioning that several important fixed point results in parametric
metric spaces can be obtained by putting n =2, b =1 in Theorem 35.1.

5. Fixed Points in Parametric S-Metric Space

In this section, we note that every parametric S-metric is a parametric Ny-metric with
n=3and b=1.

Theorem 5.1 Let (X, Ps) be a parametric S-metric space and let the mappings f, g :
X — X be such that f(X) C ¢g(X) and f(X) or g(X) is a complete subspace of X and
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satisfy the following condition:

Ps(gx, gz, gy,t), Ps(fz, fz, gz, t),
PS(fxvfxafyvt) < hmaz

P, b ) 7t P, s s 7t
Ps(fy, fy, gy, t), Lelozoz.fu.0 1 Ps(ov.9v.J.)

for all xz, y € X, all t > 0 and some 0 < h < 1. Then f and g have a unique point of
coincidence in g(X). Moreover, if f and g are weakly compatible, then f and g have a
unique common fixed point in g(X).

Proof. The proof follows from Corollary 3.2 by taking n =3 and b = 1. [ |
Corollary 5.2 Let (X, Ps) be a complete parametric S-metric space and let g : X — X

be an onto mapping satisfying

Ps(gl‘,g:n,gy,t), PS(:Ev Ilf,gl',t), PS(y7y7gyat)a
Ps(z,z,y,t) < hmax

Ps (97,97,y,t)+Ps (9y,9Y,2,t)
4

forall x, y € X, all £ > 0 and some 0 < h < 1. Then g has a unique fixed point in X.
Proof. The proof follows from Theorem 5.1 by taking f = I. [ |

The following result gives fixed point for expansive mappings in a parametric S-metric
space. In fact, this is a generalization of Theorem 21[35].

Corollary 5.3 Let (X, Ps) be a complete parametric S-metric space and let g : X — X
be an onto mapping satisfying

PS(gxhnggy?t) >kPS(x7x7y7t) (9)

for all x, y € X, all £ > 0 and some k > 1. Then g has a unique fixed point in X.
Proof. Taking h = } and using condition (9), it follows that

1
Ps(z,z,y,t) < z Ps(gx, gz, gy,t)

PS(gxanggya t)’ PS(I‘,CC,gl‘,t), PS(ya y,gyvt)a
< hmax

Ps(g:v,gw,y,t)zps(gy,gy,z,t)
for all z,y € X, all t > 0 and some 0 < h < 1. Now the result follows from Corollary 5.2.

Corollary 5.4 Let (X, Pg) be a complete parametric S-metric space and let f : X — X
be such that

PS(xw%',y7t>7PS(fx7f$7xvt)7
Ps(flf,fﬂf7fy,t) < hmax

PS(fy, fyv Y, t), PS(%w,fy,t)i-Ps(y,y,fx,t)

forall x, y € X, all £ > 0 and some 0 < h < 1. Then f has a unique fixed point in X.
Proof. The proof can be obtained from Theorem 5.1 by taking g = I. [ |
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Corollary 5.5 Let (X, Pg) be a complete parametric S-metric space and let f : X — X
be such that

PS(fxafxvfyvt) gaPS(a:,x,y,t)—I—BPS(fx,fa:,:L‘,t)—I—’yPs(fy,fy,y,t)
+5[P5(xam7fyat)+P3(yvyaf$’t)] (10)
forall z,y € X, allt >0 and «, 5, 7,0 > 0 with a4+ 84+ ~v+ 46 < 1. Then f has a
unique fixed point in X.
Proof. It follows from condition (10) that

PS(.’IJ,.’E,y,t),PS(f.’E,f.’I},x,t),
Ps(fx7f‘r7fyat) S (Oé+,3+’y+45)maa:

PS(fy, f,y7 y7 t), PS (maxvfyvt)zps(yayvfxvt)

for all x, y € X, all ¢ > 0. Taking h = o + 8 + v + 46, it follows that 0 < h < 1. Now
applying Corollary 5.4, we obtain the desired result. [ |

Theorem 5.6 Let (X, Pg) be a complete parametric S-metric space endowed with a
binary relation p over X. Assume that f: X — X is a comparative map which satisfies
the following condition:

Ps(x,,y,t), Ps(fx, fz,x,t),
Ps(fx’fx7fyat) < thLﬂZ
Ps(fyv fyv Y, t)a PS(%%fy,t)l—Ps(%y’fx,t)

for all 2, y € X with xRy, where R = pUp~!, all t > 0 and some 0 < h < 1. Suppose
also that the following conditions hold:

(i) (X, Ps, R) is regular,

(ii) there exists g9 € X such that zoRfxg.
Then f has a fixed point in X. Moreover, f has a unique fixed point in X if the following

property holds:
If x, y are fixed points of f in X, then zRy.

Proof. The proof follows from Corollary 3.7 by takingn =3, b=1and g =1. [ |

Remark 7 It is valuable to note that several important fixed point results in parametric
Sp-metric spaces can be obtained by putting n = 3 and choosing different digraphs G in
Theorem 3.1.
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