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Abstract. The aim of this paper is to establish and prove some results on common fixed
point for a pair of multi-valued mappings in complex valued b-metric spaces. Our results
generalize and extend a few results in the literature.
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1. Introduction

Fixed point theory is an imperative field of research in mathematics. In this area,
a huge involvement has been made by Banach [8], who gave the notion of contraction
mapping due to a complete metric space to locate fixed point of the specified function.
In 1969, Kannan [20] gave an alternate sort of contractive condition that demonstrated
fixed point theorem. The distinction in Banach theorem and that of mapping in Kannan
is that continuity is necessary for contraction of Banach maps but Kannan maps are
not necessarily continuous. Additionally, Chaterjea [12] gave similar kind of contraction.
In the case of single-valued mappings, the aforementioned results have been generalized
by many researchers in various ways (see, for example, [5, 7, 12, 16]) and the references
therein. One may also consult Rhoades [25] for multitude definitions of contractive type
mappings. Two obvious intersecting properties of most generalizations of the Banach
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fixed point theorem is that their proofs are similar and the contractive conditions consist
of linear combinations of the distances between two distinct points and their images. The
first-two most embraced extensions of Banach principle involving rational inequalities
were presented by Dass-Gupta [13] and Jaggi [18]. On the other hand, the earliest known
fixed point theorem whose statement and proof are significantly different from Banach
fixed point theorem was presented in 1976 by Caristi [11, Theorem 2.1].

Away from single-valued mappings, in 1969, Nadler [24] initiated the study of fixed
point theorems for multi-valued mappings. Nadler’s contraction principle motivated
many researchers and hence the idea has been refined in different directions (see, for
instance, [4, 6, 10, 22]). Moreover, all the generalizations of Banach fixed point theorem
is further classified in two directions-either the contractive condition is replaced with a
more generalized one or the axioms characterizing the ground set is enlarged or weakened.
In the second case, some of these metric-like spaces are called semimetric, quasimetric,
pseuodometric, b-metric, K-metric. Along this line, by replacing the set of real numbers
as the usual co-domain of a metric, Huang and Zhang [17] launched the concept of cone
metric as a generalization of metric spaces, thereby, establishing some fixed point theo-
rems for contractive mappings on cone metric spaces. Starting from the year 2007, many
authors have come up with various significant fixed point results in the setting of cone
metric spaces (see, for example, [19, 27]). The interested researcher may also want to go
deep into a comprehensive new survey on cone metric spaces by Aleksié et al. [3].

It is well-known that fixed point results regarding rational contractive conditions can-
not be extended or even meaningless in cone metric spaces. To overcome this restriction,
Azam et al. [5] initiated the concept of complex valued metric spaces and established
sufficient conditions for the existence of common fixed points of a pair of mappings sat-
isfying contractive type conditions involving rational expressions. Thereafter, the study
of fixed point theorems concerning rational inequalities in complex values metric spaces
have been growing vigorously (see, for example, [1, 2, 4, 14, 15, 21]). Along the line, the
idea of b-metric space was presented by Bakhtin [9] in 1989. Also, Rao [26] introduced
the notion of fixed point results on complex valued b-metric spaces, which is broader
than complex valued metric spaces. However, every complex valued b-metric space is a
cone b-metric space over Banach algebra C in which the cone is normal with the coef-
ficient of normality K = 1, and where the cone has non-empty interior (that is, solid
cone). Following [26], various authors have demonstrated fixed point results for different
mappings fulfilling rational inequalities with regards to complex valued b-metric spaces
(see, for instance, [6, 23]).

In this paper, we adopt the methods in [1, 2, 5] to extend some of the famous fixed
point results to multi-valued mappings in complex valued b-metric spaces.

2. Preliminaries

To begin with, we give some basic definitions and results which will be useful in the
sequel. Let C be the set of complex numbers and u1,us € C. Also, we define a partial
order < and =< on C as follows:

(i) up < ug if and only if Re(u;) < Re(uz) and Im(uy) < Im(us).
(ii) w1 =< ug if and only if Re(uy) < Re(ug) and Im(uq) < Im(usg).

Definition 2.1 Let X° be a non empty set and 7 > 1 be a real number. A function
de 1 X% x X? — C is called complex valued b-metric, if for all £,n,( € X, the following
conditions hold.
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(i) 0 <d.(&,n) and d.(§,n) = 0 if and only if £ = n;
(ii) dc(éa ): dc(%f),
(iii) de(&,m) =2 T[dc(&C) + de(C,m)]-

—
=y
@
=
-+
=
co

X°,d,) is called a complex valued b-metric space.

Ezxzample 2.2 Let X° = [0,1]. Define a mapping d. : X° x X° — C by

de(&,m) = 1€ —nf* +i|¢ — n|?

for all &, € X°. Then (X°, d.) is a complex valued b-metric space with 7 = 2.

Definition 2.3 [4] Let (X°,d.) be a complex valued b-metric space.

(i) We say that a point £ € X° is an interior point of a set P C X, whenever there
exists 0 < r € C such that B(§,r) = {n € X°:d.(&,n) <r} CP.

(ii) We say that a point £ € X is the limit point of a set P C X° whenever for every
0<reC, BEr)n(P\&) #0.

(iii) P € X is called an open set if each element of [P is an interior point of P.

Definition 2.4 [26] Let {¢,} be a sequence in a complex valued b-metric space (X°, d.)
and £ € X, then

(i) & is the limit point of a sequence {¢,} if for every ¢ € C with 0 < ¢ there is p, € Q
such that d.(&,,§) < c for all p > p, and we write li_)rn & =¢.
pP—00

(ii) If for every ¢ € C with 0 < c there is p, € Q such that d.(§,,&p+q) < ¢ for all p > p,
and p,q € Q. Then {,} is a Cauchy sequence in (X°,d.).
(iii) A metric space (X°,d.) is complete if every Cauchy sequence is convergent in (X°, d.).

Lemma 2.5 [14] Let (X, d.) be a complex valued b-metric space and {{,} be a sequence
n (X d.). Then {{,} converges to & iff |d.(&p, &)| — 0 as p — oo.

Lemma 2.6 [14] Let (X, d.) be a complex valued b-metric space and {{,} be a sequence
n (X° d.). Then {{,} is a Cauchy sequence iff |d¢(&p, Epsq)| — 0 as p — 0.

Definition 2.7 Let (X?°,d.) be a complex valued b-metric space. We denote s(u) = {z €
C:u =z} and

s(6,Q) = | s(de(¢,n) = [J{z € C: de(é,n) < 2}

neQ neqQ

for £ € X? and Q € CB(X?°). Also, we have

s(P,Q) = < N s(m,@)> N ( N s(n,IP’)).

meP neQ

for P,Q € CB(X?).
Definition 2.8 [26] Let (X°,d.) be a complex-valued b-metric space.

(i) Let T : X° — CB(X?°) be a multi-valued mapping. For £ € X° and P € CB(X?),
define We(P) = {dc(§,a) : a € P}, and for {,7 € X° and Tn € CB(X?°), we have
We(Ty) = {de(§,u) :uw € Ty}
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(ii) A mapping F : X° — 2C is said to be bounded below if for each ¢ € X there exists
z¢ € C such that z¢ X w for all w € Fg.

(iii) For a multi-valued mapping J : X° — CB(X?), we say that it has lower bound
property on (X¢, d.) if for any £ € X° the mapping F¢ : X° — 2¢ defined by F¢(Jv) =
We(Fv) is bounded below. This means that for £, v € X there is an element l¢(Jv) € C
such that l¢(Jv) < a for all a € W¢(Jv), where l¢(Jv) is said to be a lower bound of J
corresponding to (§,v).

(iv) For a multi-valued mapping J : X° — CB(X?°), we say that it has greatest lower
bound property (g.L.b property) on (X, d.) if the g.l.b of W¢(Jv) exists in C for all
&, v € X° We denote the g.1.b of We(Jv) by d.(&, Jv) and define it as:

d.(&, Jv) =inf{d.({, a) : a € Jv}.

Definition 2.9 Let (X° d.) be a complex valued b- metric space and S,T : X° —
C'B(X°) be multi- valued mappings.

(i) A point £ € X? is called a fixed point of T if £ € T¢.

(ii) A point £ € X? is called a common fixed point of S and T if { € S¢ and £ € T¢.

3. Main results

In this section, we prove our main results and provide some examples to justify their
hypotheses.

3.1 Banach type contractive mapping

Theorem 3.1 Let (X°,d.) be a complete complex valued b-metric space and S, T :
X° — CB(X°) be a pair of multi-valued mappings satisfying the g.l.b property such
that

pde(§,SE)de(n, Tn) + Adc(n, S§)d.(€, Tn)
1+dc(€,n)

ad(&,m) + € 5(S¢, Tn) (1)

for all £, € X° and a, 4, A are non negative real numbers with 7a + p + A < 1, where
72> 1. Then S and T have a common fixed point in X°.

Proof. Let & € X° be arbitrary but fixed element. Then T&, is not empty so we take
&1 € T¢,. Thus, from (1), setting £ = & and n = &1, we have

,U«dC(fov S§0)d0(€17 T&1) + Ade(&a, S§O)d6(§07 T¢,)

ade(&o,&1) + 14 de(&o,&1)

S S(Sgo, Tfl)

This implies

udc(fo,Sﬁo)dc(fl,Tfl) +Ad6(€17§€0)d0<£07’]r§1) c ﬂ S(CL/ Tgl)

Ozdc(fo,fl) + 1+dc(§07§1)

a’ €S,
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and

NdC(foa S§O)d6(§17 Tgl) + /\dC(glv S€O)d0(507 T&)
1+ dc(ny 51)

adc<£07§1) + € S(a/7T§1>

for all a’ € S&,. Since & € S&, we get

pde(§o,SE0)dc (€1, TE1) + Ade(€1,SE,)dc (€0, TE1)

ade(&,&1) + 1+ de(&0,61)

€ s(&1, Tér)

or

Mdc(go,Sgo)dC(glaTgl)+>‘d0(§1aS£O)dC(§OaT£1) c U S(d (51 b/))

Oédc(é-o;gl) + 1+ dc(é‘Oagl)

b eTE,
Therefore, there exists & € T& such that

pde(€o,SE0)dc (€1, TE1) + Ade(€1,SE,)d (€0, TE1)

1 +dc(§07§1) € S(dc(£17§2)).

adc(§07 51) =+

Using Definition 2.7 and g.l.b property, we get

pde(Eo,SEo)dc (&1, Tgl) + )\dc(fl, S€o)de (€0, TE1)
1+ dc(éOv &1)

de(&1,&) = ade(&,61) +

From which we have

,U,dc(fo, 51)d0<£17 52) + )‘dc(gb §1>d0(§O7 52)
1+ dc(‘gﬂv 51)

dc(£1>§2) = Oédc(ﬁo,&) +

This implies

plde(€o, &1)[lde(81, &2)|
1+ |dc(£07£1)|
|de(§0,&1)|
1+ [de(§0, &)

|de(§1,€2)] < alde(8o, &1)| +

= Oé|dc(507 61)’ + ,Uz‘dc({la 62)’

that is,
|de(&1,&2)| < alde(&o, &1)| + plde(&1, &2)]-
This gives
(1= p)lde(&1,&2)| < alde(&o, 1))
or

’dc(§17§2)‘ < ’dc(§07€1)‘-

(1-p)
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Inductively, we can develop a sequence {£,} in X such that |d.(&p, Eptq)| < KP|de(€0,61)],
where Kk = ﬁ Now, for ¢ € N and as (X?,d,) is a complex valued b-metric space, we
have

dc(fp, £p+q) = T[dC(§p7 §p+1) + dc(§p+1a §p+q)]~

From which we get

dc(§p7§p+q) = Tdc(§p7§p+1) + TQdc(prrL fp+2) +.o+ quC(fp-ﬁ-q—l’ §p+q)3

that is,
de(Epy Eprq) = THPAe(Eoy €1) + TR de(€0, €1) + oo 4 TIRPTI7 1A (&5, €1).
This yields
de(€py Eptrq) S THPAe(Eo, €)1+ TR + (TR)? + o+ (TR)T]
or
|de(€ps Eprq)| < ITRPde(Eo, €)1 + T + (T8)% + oo+ (T) 7).

From which we have

TKP

|de(&p: Epra)l < 7 lde(&o, €)1
Since 7o + 1+ A < 1, then % < 1. Letting p, ¢ — o0, gives |dc(&p, Ep+q)| — 0. Hence,
by Lemma 2.6, {{,} is a Cauchy sequence in X°. The completeness of X° implies that
there exists ¢ € X such that lim &, = (.
p—00

Now, we show that ¢ € S¢ and ¢ € T¢. From (1), we have

Nd0(52p7 Sf?p)dC(Cv T¢) + Ade(C, S&p)dC(@pa T¢)

ade(§2p, C) + 1+ de(§2p, C)

€ 5(S&2, TC).

This implies

/’de(§2p7 Sg?p)dc(g7 TC) + Adc(Cv S§2p)dc(€2p, TC) c ﬂ s(a' TC)

Oédc(§2p7 C) + 14 dc(§2p7 C)

GIES§2P

Since §2p41 € S&2p, we have

pide(ap, S€2p)de(C, TC) + Ade(C, SE2p)de(§2p, TC)

Oédc(pr? C) + 1+ dc(&?p) C)

€ s(§2p+1, TC).

This gives

:udc(£2pa Sng)dc(ga TC) + )\dc(g S€2p)dc(£2pa TC)
1+ dc<f2p7 C)

ade(€ap, C) + € | s(de(éapir, b)),

b ETC
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This implies there exists ¢, € T¢ such that

pide(§2p, SE2p)de(C, TC) + Ade(C, SEap)de(§2p, TC)
1 + dc(€2p7 C)

adc(é-?pu C) + € S(dc(é-?p-i-la Cp))

This means

Mdc(§2pa §2p+1)dC(Ca Cp) + )\dC(Cv SEQ:D)dC(@pv TO
1+ de(&2p, C)

Now, dc(Cv Cp) = T[dc(g §2p+1) + dc(§2p+17 Cp)] Therefore,

dc(Ca Cp) = Tdc((v §2p+1) + Tadc(£2pa C)

Tude(§2p, §2p11)de(C, Cp) + TADC(C, E2pr1)de(2p, Cp)
1 + dc(€2p7 C)

dc(€2p+17 Cp) = adc(52p7 C) +

_l’_

Thus,

|de(C, Cp)‘ < T|dC(Ca€2p+1)| + Ta|d0(£2pa 9l

Tl de(ap, E2p11)[1de(C, Gp)| + TAI(C, Eap+1) [ de(E2p, Cp)|
1 + ‘dc(§2p7 <)|

_l’_

As p — oo, we get |dc((,(p)| — 0. By lemma 2.5, it follows that ¢, — (. Since T( is
closed, so ¢ € T¢. Similarly, one can show that ¢ € S{. Thus, T and S have a common
fixed point ¢ in X°. [ |

By setting A = 0 in Theorem 3.1, we have the following corollary.

Corollary 3.2 Let (X d) ba a complete complex valued b-metric space and S,T :
X? — CB(X°) be a pair of multi-valued mappings satisfying the g.l.b property such
that

pde(&,S€)dc(n, Tn)
1+dc(&,m)

ade(§,n) + € 5(8¢,Tn) (2)

for all £,n € X° and «, u are non negative reals with 7o + u < 1, where 7 > 1. Then S
and T have a common fixed point in X°.

By putting S = T in Theorem 3.1, we have the following corollary.
Corollary 3.3 Let (X°,d) be a complete complex valued b metric space and T : X° —
C'B(X°) be a multi-valued mappings satisfying the g.l.b property such that

pde (&, TE)de(n, Tn) + Ad.(n, TE)d.(€, Tn)

€ s(T¢, Tn) (3)

for all £,7 € X° and «a, i, A are non negative reals with 7a 4+ 4+ A < 1, where 7 > 1.
Then T has a fixed point in X°.

Exzample 3.4 Let X° = [0,1]. Define a mapping d. : X° x X° — C by d.(&,n) =

|€ — n|%e™, where ¢ = tan~'|Z|. Then (X°,d.) is a complete complex valued b-metric

n
3
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space. Consider the mapping S, T : X° — C'B(X?), defined by

“ o8| e= 0.8
se= o8], 5= o]

The contractive condition of Theorem 3.1 becomes trivial when £ = n = 0. Now, for non
zero &, 7, define d. by

de(&,m) =& —n’e? , d(&,5€) = ‘5 - g 2ew,
2 2
de(n, Tn) = ‘n — g e, de(n,S¢) = ‘77 — % e,
nl" & nl?;
do(€, ) = ‘5 ~ e (de(se ) = <‘5 1 ew)

Consider,

plde (&5 SE)|de(n, Tn)| + Alde(n, S§)||de(€, Tn)|
11+ de(§,n)|

alde(§,m)| +

This implies

2, ME= 3P — 3P+ An — SPPlE - 2

ofe = T+ 46 n)

Then, clearly for a = % and any value of u and A, we have

2

€ P _ 1 o €= EPm— 2P+ A — 5P - 2P
‘5 7| Szl 1+ de(&,n)] '
Thus,
de(€,S€)d, (1, Tn) + Ade(n, SE)de(€, T
ady(€.m) + P (€,S€)dc(n, Tn) + Adc(n,SE)d.(€ n)es(gg’%)'

1+d.(&m)

Hence, all the conditions of theorem 3.1 are satisfied and 0 is a common fixed point of S
and T.

Theorem 3.5 Let (X° d.) be a complex-valued b-metric space and S, T : X" —
CB(X) be a pair of multi-valued mappings satisfying the g.1.b. property such that

pde (&, S€)de(n, Tn) + Ade(n, SE)dc(€, Tn)

Oédc(ga 77) +

for all £, € B(&,r) and
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where «, i, A are nonnegative real numbers with Ta + y+ A < 1, and k = ﬁ < 1 for
any 7 > 1. Then there exists u in B(£y,r) such that u € Su N Tu.

Proof. Let & be an arbitrary point in X. Since S¢y € CB(X), so there exists some &; €

S& such that M € s(d.(&,£&1)). From (5), it is easy to see that d.(&y,&1) = @,
which implies that

| < (1= #)lr|- (6)

o, )] < £

Hence, & € B(&,r). From (4), we have

pde(8o, S§0)de (&1, TE1) + Ade(€1,961)dc (60, TE1)

adc(§o,&1) + 1 +de(60,&1)

€s(560,T&). ()

From here, by following the remaining steps in the proof of Theorem 1 and using (6), we
obtain

k(1 — k)

|dc(&1,&2)] < Klde(&o,&1)| < Ir| < k(1= K)|r].

Notice that

|de (80, &2)| < T|de(&o,&1)| + Tlde(€1,E2)]

=0l 0= wl
T T
<(1- /@2)|r|.

It follows that & € B(&y, ). From (4), we get

pde(&1,T&)de(E2, SE) + Ade(&1, S€2)de(E2, TEr)

ad.(&1, &) + 1+ de(&1,8)

€s5(T€,58%). (8)

By repeating the above steps and using the fact that (X°,d.) is a complex-valued b-
metric space, we can generate a sequence {&, tnen in B(&o, ) such that |d.(2n, ont1)| <

/{2n|dc(507£1)|a |dc(£2n+1a£2n+2)| < /{2n+1‘dc(£0a£1)|a where £2n+1 € Son and £2n+2 €
T¢op+1. Inductively, we can construct a sequence {&, }nen in X such that

’dc<fm§n+1)’ < ﬂn’dc(£07§1)" (9)

Now, for m,n € N with n < m, by triangle inequality, we have

dc(fna gm) = Tdc(&n, £n+1) + T2dc(§n+1, £n+2) +---+ Tm_ndc(gmfla gm)
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Hence, the iterative scheme (9) yields

T‘dc(gna fn—i—l)‘ + 72‘dc(€n+la fn—i—?) +---+ Tm7n|dc(§m—1a gm)‘)
" (1 + 7R+ 7T ) |de(€o, &)

|de(§ns &m)]

<
<

T

< o lde(0, &)

1

dc(&,&1)] — 0 as n,m — oo. Hence, {&,}nen is a
Cauchy sequence in B(&,r). Since B(&,r) is a closed subspace of a complete space X°,

therefore there exists u € B(&,r) such that &, — u as n — oo. Again, to show that
u € SuNTu, we follow the same steps as in Theorem 3.1 to have |d.(u, u,)| — 0. This
implies that u, — u as n — oo. Since Tu is closed, therefore u € Tu. Analogously,

one can show that u € Su. Consequently, u € SuNTu. [ |

Consequently, |d.(&n, Em)| < %

By setting S = T in Theorem 3.5, we obtain the following corollary.

Corollary 3.6 Let (X°,d.) be a complex-valued b-metric space and T : X — CB(X)
be a multi-valued mapping satisfying the g.l.b. property such that

pde(§, TE)de(n, Tn) + Ade(n, TE)d:(€, Tn)
1+dc(&,m)

adc(§7 77) + €s (Tf, T77) ’ (10)

for all £&,n € B(&,r) and

(1—r)r

T

€ 5(&,T¢o), (11)

where a, 4, A are nonnegative real numbers with 7a + p+ A < 1 and « = ﬁ < 1 for
any 7 > 1. Then there exists u in B(&y,r) such that u € Tu.

3.2 Kannan type contractive mapping

Theorem 3.7 Let (X° ,d) be a complete complex valued b- metric space and S, T :
X° — CB(X?) be a pair of multi-valued mappings satisfying the g.l.b property such
that

Adc(§,S€)d.(n, Tn)
1+dc(&n)

ade(§,S¢) + pde(n, Tn) + € 5(S¢,Tn) (12)

for all £,n € X° and «, 4, A are non negative reals with 7o+ + A < 1. Then S and T
have a common fixed point.

Proof. Let & € X°. Then T¢, is non empty, and so we can take & € T¢,. From (12),
we have

Adc(ﬁm Séo) dc(§1 ) Tgl )

e(8o, SEo) F e, TE1) + =" S

S S(SEO, T§1>
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This implies

Ade(&o, SEo)de (€1, TEr)
1+ de(&o,61)

ade(&o, SE) + pde(&1, TEL) + e ) s(d,T&)

a’ eS¢,

and

(§07 Sgo)dc(éla T{l)
1 + dc(&m 51)

(€0, S8) + pdo(€1,TEy) + 2 € s(d, TEy)

for all a’ € S&,. Since & € SE,, then

)‘dC (507 Sgo)dc (51 ) Tfl )

ade (8o, 88) + pde(€1, TE) + ——7— (&0, &1)

€ 561, Té)

or

)\dc(gou Sfo)dc(gly Tfl)

e(8o, SEo) + pdel(&1, TE1) + =" S

e |J s(de(&,)).

b eTE

Therefore, there exist & € T&; such that

)\dc(goa Sgo)dc(gl, Tgl)
1+ de(8o, 1)

adc(gm Sgo) + ,U/dc(fh T€1) + € 5(d0(517€2))‘

By Definition 2.7, we get

(50, Sfo)dc(éla Tf1)
1 + dc(gm 51)

)\dc(fm gl)dc(glv ‘52)
1+ dc(gové.l) .

dc(§17 52) j adc(507 Sgo) + NdC(gh Tgl) =+ )\dc

= adc(govgl) =+ ,udC(glv 52) +

This implies that

MNde(&o, €1)de(&1,
|de(&1,62)| < alde(&o, &1)| + plde(&1, &2)| + | 1(§+ fdl)(Hfo (él)lgz)’

< alde(&o,&1)| + plde(&r, &2)| + Alde(&1, &2)]-

Thus,
(1= p = A)|de(&1,&2)| < alde(&o, 1)
or
o
|dc(§l)£2)| < m’dC(govgl)"

Inductively, we can develop a sequence {£,} in X such that |dc(&p, {prq)| < KP|de(o, 1),
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where k =

1—ﬁ— 1~ Now, for ¢ € N and as (X, d,) is a complex valued b-metric space

dc(fpv §p+q) = T[dc(gpv fp+1) + dc(5p+1a 5p+q)-]
From which we have
dc(fpv fp+q) = Tdc(fpv fp+1) + T2dc(§p+1’ §p+2) +o Tt qu0(5p+q—17€p+q)?

that is,

de(&p, Eprg) X THPde(6o, €1) + T2RP T de(€0, 61) + o + TIRPTI1L(&), €1)
2 7KPd (&, &1)[L + TR + (75)2 + ..+ (Tﬁ)q_l].

Hence,

|de(ps €prq)| < [TRPAe(Eo, &)L+ T8 + (T8)% + o + (7)Y
< TRPde(Eo, EI[L 4 TR 4 (TR)? + .. + (TR) 7]

Thus,

T

KP
T delor )]

el pta)] < 7

Since Tao + 4+ A < 1 then = 1f:‘7A < 1. Thus, 7k < 1. As p,q — o0, we get
|dc(&p, Eptq)| — 0. Hence, by lemma 2.6, {¢,} is a Cauchy sequence in X°. The com-
pleteness of X ensures that there exists a point ( € X such that limit, & = ¢. Now,

we show that ¢ € S¢ and ¢ € T¢. From (12), we have

)\dc(§2pa S§2p)dc(<7 TC)
1+ dc(€2p7 C)

adc(§2p7 S§2p) + MdC(C7 TC) + € 3(S€2P7 TC)

and

Adc(&pv S§2p)d0(ga TC)
1 + dc(§2pa C)

ade(Eap, SEap) + pde (¢, TC) + e [ sl T¢).

a’'€SEsp
Since {511 € S&ap,

(€2p7 g&p)dC(Cv TC)

.
de(8ap, Stap) + 1de(6, TO) + == e 0

€ s(&2p+1, TC)

and

)\dc (£2p7 Sng)dc (<7 TC)

Oédc(£2p7 S&p) + Mdc(Ca TC) + 1 + dc(pr C)

€ [ s(de(éopir, V).

b ETC



F. Ahmad et al. / J. Linear. Topological. Algebra. 09(01) (2020) 75-94. 87

So, there exists an element ¢, € T¢ such that

)\dc(é-Zpa S€2p)dc(47 TC)
1 + dc(£2pa C)

ade(&2p, SE2p) + pde(¢, TC) + € s(de(§2p 41 Gp))-

Using Definition 2.7, we have

(§2p7 S§2p)dc(g7 TC)
1+ dc(£2p7 <)

Ad,
dc(€2p+l7 Cp) = adC(€2p7 852;0) + Hd0(<7 TC) =+

By g.l.b property of T,

Ade(&2p, §2pr1)de(C, Cp)

dc(éép-‘rl? gp) = adc(ﬁzp’ £2p+1) T Ndc((’ Cp) * 1+d (§2 C)
c\S2p>

NOW? dc(Ca Cp) j T[dc(ga £2p+1) + dc(£2p+1> Cp)] Therefore,

TAde(§2p, E2pi1)de(C, Gp)

de(C,Cp) =X Tde(C, Eapi1) + Tade(Eap, Eopi1) + Tde(C, Gp) + 1+ do(€2y, C)
c\S2p)

This gives

TMdC(&pa §2p+1)‘ |de(C, Cp) | '

|dC(C7Cp>‘ < T’dC(C7£2p+1)‘ + Ta|dc(£2p7§2p+l)| + TM’dC(Ca Cp)’ + 1 + ’dc(§2p; C)’

As p — oo, we get |d.(C,(p)] — 0. By lemma 2.5, we have ¢, — (. Since T( is closed,
so ¢ € T¢. Similarly it follows that € S¢. Thus S and T have a common fixed point in
Xe. [ ]

By setting S = T in above Theorem 3.7, we get the following corollary.

Corollary 3.8 Let (X° d.) be a complete complex valued b-metric space and T : X° —
C'B(X°) be multi-valued mappings satisfying the g.1.b property such that

Ad (&, TQ)dc(n, Tn)
1+d.(&m)

ade(&, TE) + pde(n, Tn) + € s(T¢, Tn) (13)

for all £&,n € X° and «a, i, A are non negative reals with 7a 4+ + A < 1, where 7 > 1.
Then T has a fixed point in X°.

Theorem 3.9 Let (X°d.) be a complete complex valued b-metric space and
T: X° — CB(X?) be a multi-valued mapping fulfilling the g.l.b property such that

de(§, TE)dc(n, Tn) /\dc(n7T€)dc(€7Tn)

NS TR e T T e ”
dc(é.v Tg)dc(é.v TT/) dc(na Tﬁ)dc(n, Tn)
A P e i ww e B G )

for all £, € X? and A1, Ag, A3, Ag, A5 are nonnegative real numbers with A\ + A + A3
+ 27X + 275 < 1. Then T has a fixed point in X©°.



88 F. Ahmad et al. / J. Linear. Topological. Algebra. 09(01) (2020) 75-94.

Proof. Let & € X°. Then T¢, is non-empty, so we take & € T¢,. Thus, from (14), we
have

dC(€O7T§O)dC(§17T§1) —|—A dc(élyTgo)dc(nggl)
L+ de(€0,&1) T 14 de(&, &)
dc(goano)dc(goanl) dc(&lano)dc(glaTgl)
THdlen€) 0 Tddelen€) U T

A1de(&o,€1) + A2

+ N\

This implies

dC(&OJTfo)dC(§17T€1) —|—A dc(é‘laTgo)dc(nggl)

L+ de(&0,&1) I+ dl&, &)
dc(goaTgo)dc(goaTgl) dc(flaTéo)dc(nggl)

N R TR AR

A1de(&o,€1) + A2

+ N\

Thus,

dc(&oaTgo)dc(glanl) + A dc(glano)dc(goaTgl)
1+ de(&o,&1) T I+ do(0, &)

dc(§07T§0)dc(§oaT€1) A dc(glaTgo)dc(§17Tfl)
1+ de(6o,€1) T 1+ de(é0, &)

Aldc(foa 51) + >\2

+ A\ € s(a,T&)

for all a € TE,. Since &1 € TE,, we get

dc(&oaTgo)dc(glaTgl) A dc(&lano)dc(goaTgl)

L+ de(€0,&1) T+ d(&, &)
dc(fm Téo)dc(gm Tfl) d(:(fl, Tfo)dc(&, Tfl)

M G ) YT 1rdie ey e Te)

Ade(&o,&1) + A2

Hence,

(ngfo)dc(gthl) + A dc(€1,T§0)dc(§o,T§1)
1+ de(6o,&1) AT
dC(€O7T£O)dC(§O7T£1) dc(glnyo)d(flaTgl)
e TN T €, )

dc
)\ldc<£m fl) + )\2

+ N\

Thus, there exists some & € Té; such that

dc(£07T§o)dc(£17T€1) A dc(&hr]rfo)dc(gm’]rél)
1+ de(&o,€1) T 14 de(80, &)

e(€o, TEo)elo, TE1) \ del61, To) (61, TE1)
T a6 6) TN Itdie,6)  C &)

A1de(&o,€1) + A2

+ N\
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By Definition 2.7, we get

dc(govTéo)dc(glanl) +A dc(glano)dc(émTfl)
L+ de(60,61) T 4 de(80, 1)
dC(SOaT§O)dC(€O7T§1) + A dC(§17T§O)dC(€17T§1)
1 +dc(£m£1) b 1 +dc(£oa£1) .

dc(§17§2) j Aldc(govfl) + )\2

+ M\

Using the g.l.b property of T, we have

dc(&l, 52) = /\ldC(foa gl) + A2 dc(ém gl)dC(gh 62) + )\3 dC(fl, gl)dc(gm 52)

1 +dc(§07€1) 1 +dC(§07€1)
dc(gmgl)dc(goaéé) dc(glagl)dc(£17§2)
M LG s) T 1 dEn )
Hence,
|de(€1,82)] < A1]de(&o, &1)] + A2)[de(&1,€2)| + Aalde(Eo, 2)]
Thus,

(1= A2 = Ag)[de(&1, &2)| < (A1 + Aa)lde(o, 61)-

and |d.(&1,&2)| < klde(&o,&1)|, where k = % Inductively, we develop a sequence

{&} in X such that |d(&p, Eprq)| < mp\dc(gofg_lﬁ. On similar steps as in the previous

theorems , we conclude that {&,} is a Cauchy sequence in X°. So, by completeness of

X°, there exists some ¢ € X°, such that le & = ¢. We show that ¢ € T(¢. From (14),
P—00

we have

(£2p7 T£2p)dc(C7 TC) )\3 dc(Ca T£2p)dc(§2pa TC)
1+ d6(52p> C) 1+ d6(52p> C)
dc(pra Tpr)dc (52;07 Tg) dc(ga Tpr)dc(€7 TC)
THdel@p Q) 1t T

d.
Ade(§2p, Q) + A2

+ X\

This implies

(52})’ Tng)dc(Ca TC) )\3 dc(Ca T§2p)dc(§2pa TC)
1 +C d(é.?p? C) 1 + dC(é.Qp? C)
dc(€2pv T€2p)dc(£2p7 TC) A dc(Cv T€2p)dc(c’ TC) T
@ T I L) @O

de
)‘ldC(€2pv C) + )\2

+ A\

Since &2p41 € T&2p, we get

(§2p7 Tpr)dc(Ca TC) )\3 dc(Cv T§2p)dc(€2pa TC)
1+ dc(£2p> C) 1+ dc(£2p> C)
dc(§2pa Trg2p)dc (€2p7 TC) dc(Ca T§2p)dc(g7 TC)
T oS R S TN (oW o B A

d.
Ade(&2p, C) + A2

+ N\
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or

dC(§2p’ T&p)dC(Cu TQ dC(Ca Tg?p)dr:(&pv TO

Ade(§2p, C) + A2 L+ o2y C) + A3 T+ do(Eay. O)
dc(@vang)dC(&pyTC) (C Tg?p) (C TC
T @0 T 1 @O bEgL oo D)

So, there exists some ¢, € T¢ such that

dc(§2pa T§2p)dC(Ca TC) + )\3 dc(C: T§2p)dc(§2pa TC)
1+ dC(&pa C) 1+ dC(@p’ C)

de(&2p, Téop)dc(E2p, TC) de(¢, Téyy)do(C, TC)
1+ dc(£2p7 C) A 1+ dc(£2p’ C) € S(dc(§2p+17 Cp))

Therefore, by Definition 2.7,

A1de(§2p, C) + A2

+ M\

dc(£2p7 T£2p)dc(C7 TC) + A dc(Cy T£2p)dc(£2p7 TC)

de(&opt1,Cp) = Ade(Eop, €) + A2 L+ do(Eap C) 11, (2. 0)

de(E2p, TE2p)de(82p, TC) s de(C, Té2p)de (G, TC)
1+ dc(é?pv C) 1+ d (§2p7 C)

+ N\

Using the g.l.b property, we have

dc } dC 9 dC ? d Y
dc(£2p+17 Cp) = >\1dc(£2p7 C) + >\2 (5211)_}_&2(11?217 ég Cp) + )\3 (Cl ?—pc—gl()fz;&éj) CP)

de(&2p, Eopr1)de(§2p, Cp) s de(C, &opr1)de(C, Cp)
1+ dc(€2p7 C) 1+ d (52}2, C)

By triangle inequahty: dC(C7 Cp) = T[dC(C7 §2p+1) + dC(§2p+17 Cp)] Thus,

dc(£2p7 €2p+1)dc(c’ Cp)
1 + dc(£2pa C)

+ X\

dc(§2p+1a Cp) = Tdc(Ca §2p+1) + T)\ldc(§2p7 C) + T

(C £2p+1) (§2p7 CP) dC(@pa €2p+1)d6(§2p7 Cp)
- T)‘3 1+d (52197 ) * T)\4 1+ dc(§2pa C)
de(C, Eapy1)de(C, Gp)
S 40

which implies

de(§2p, §2p11)de(C, Gp)
1 + dc(€2p7 C)

|de(§2p11, Cp)| < Tlde(C, Eopy1)| + TAL]de(§2p, €)| + TA2

dc(Ca €2p+1) (£2p7 CP) dC(SZpa £2p+l)dc(§2p7 Cp)
* T)\S 1+ d (52;0» ) * T)\4 1+ dc(£2py C)
de(C, €opy1)de(C, )
T T ) |




F. Ahmad et al. / J. Linear. Topological. Algebra. 09(01) (2020) 75-94. 91

As p — o0, we get |de(§2p41,p)| — 0. By lemma 2.5, (, — ¢ as p — oo, also since T( is
closed then ¢ € T¢. Thus T has a fixed point in X°. [ |

4. Application to Homotopy Result

In this section, we apply Corollary 3.6 to prove a homotopy result. First, for conve-
nience, we recall the following familiar definitions.

Definition 4.1 A relation < is a total order on a set G if for all s,¢,u € G, the following
conditions hold:

(i) Reflexivity: s < s;

(ii) Antisymmetry: if s <t and ¢ < s, then s = ¢;

(iii) Transitivity: if s < ¢t and ¢ < u, then s < u;

(iv) Comparability: for every s,t € G, either s <t or t < s.

Recall that if the set G satisfies only the axioms (i) — (i77), then it is said to be partially
ordered. In what follows, we shall call a totally ordered set a chain.

Lemma 4.2 (Kuratowski-Zorn’s Lemma) If G is any nonempty partially ordered set in
which every chain has an upper bound, then G has a maximal element.

Definition 4.3 Let X° and Y° be any two topological spaces and w,w : X° — Y?°
continuous functions. A function H : X° x [0,1] — Y such that if x € X°, then
H(z,0) =7(z) and H(z,1) = w(z), is called a homotopy between 7 and w.

We shall denote the boundary of a set G by Bd(G).

Theorem 4.4 Let (Xj, d.) be a complex-valued b-metric space with G an open subset
of X°. Let H :[0,1] x G — CB(X) be multi-valued mapping having the g.l.b property.
Assume that there exists @ € X° and 0 < r € C such that the following conditions are
satisfied:

(i) a ¢ [H(t,a)], for each a € Bd(G) and each t € [0,1];
(i) H(t,.): G — CB(X) be a multi-valued mapping satisfying

pde(a, H(t,a))de(b, H(f,b)) + Adc(b, H(t,a))dc(a, H(f),b)
1+dc(a,b)

adc(a,b) + € s(H(t,a), H(L,b))

and
—— e s(a, H(,a)), (15)

where k = ﬁ <1, for any 7 > 1;
(iii) there exists a continuous nondecreasing function g : (0,1] — A U {0} such that

9(s) —g(t) € s (H(s,a), H(t,b)), g(s) € (1)

for all s,t € [0,1] and each @ € G, where A = {z € C : 0 < z}. Then H(0,.) has a
fixed point if and only if H(1,.) has a fixed point.
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Proof. Assume H(0,.) has a fixed point u, so v € H(0,u). From (¢), u € G. Define
Q:={(t,a) €[0,1] X G:a € H(a,t)}.

Obviously, Q # (. Define the partial ordering in Q as

2
11—k

(t,a) 2 (s,b) &t <s and d.(a,b) = (g(s) —g(t)).

Let Z be a chain in  and ¢ = sup{t : (t,a) € Z}. Also, let {(tn, an)}nen be a sequence
in Z such that (t,,an) < (tnt1,an+1) and t,, —> ¢ as n — 0o. Then for n < m, we have

2
de(am, an) = T (9(tm) — g(tn)) — 0 as n,m — oo,

which implies that {a,}nen is a Cauchy sequence in X°. By the completeness of the
complex-valued b-metric space X°, there exists a € X such that a,, — @ as n — oo.
By condition (iii), we have

pde(an, H(tn, an))de(a, H(t, @) + Ade(a, H(tn, an))de(an, H(t, a))
1+ de(an,a)

adc(an, a) +
€ s (H(tn,an), H(t,a)).

Since a,, € H(tp,a,), then we have

pde(an, H (tn, an))de(a, H(t, ) + Ade(a, H(tn, an))de(an, H(f, a))

adc(an, a) + 1+ do(an, a)

€ s (an, H(t,a)).
Therefore, there exists a;, € H(f,a) such that

pde(an, H(tn, an))de(a, H(E, ) + A (@, H (b, an))de(an, H(L, @)

<
de(an, ay) = ade(an, a) + 1+ de(an, @)

€ s (an, H(t,a)).

Since H has the g.1.b property, then

(@, ap)d. (an,ak).

{ .
de(an, ay) = adelan, ) + =207 =25

Therefore,

Alde(@, an)||de(an, ax)|

dC 3] g dC n?‘ .
efan a1)| < alde(, )|+ = 7

Using the fact that |1 + dc(an,a)| > |dc(an,a)|, we obtain |d.(an,ar)| < a|dc(an,a)| +
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Alde(an, ax)|. Therefore, |d.(an, ar)| < 125 |dc(an, @)|. Notice that

|de(@, ar)| < 7lde(a; an)| + 7lde(an, ar)]

< 7lde(a, an)| + %|dc(an, Q)] — 0 asn — oco.

Therefore, a, — & € H(f,a) and thus @ € G implies (f,a) € Q. It follows that (¢,a) <
(t,a) for all (t,a) € Z, which yields that (£, a) is an upper bound of Z. Consequently, by
Kuratowski-Zorn’s Lemma, Z has a maximal element (f,d). We claim that { = 1. But
suppose ¢ < 1 and choose 0 < r € C , £ < t such that B(f,7) C G. By condition (i7), we
have g(t) —g(t) € s (H(t,a), H(t,a)), where g(t) — g(t) € s (a, H(t,a)) for all a € H(t,a).
Hence, there exists a € H(t,a) such that g(t) — g(f) € s(d.(a,a)) and dc(a,a) =< g(t) —
g(t) = (1 = K)r for r = :2-(g(t) — g(a)). It follows that |dc(a,a)| < (1 — &)|r|. Thus,
by condition (i), we deduce that the mapping H(t,.) : B(a,r) — CB(X) satisfies all
the hypotheses of Corollary 3.6. Therefore, for all t € [0, 1], there exists a € B(a,r)
such that a € H(t,a). Hence (a,t) € Q. Since dc(a,a) < r = 2-(g(t) — g(£)), then we

1-k
have (£,a) < (t,a), a contradiction. So, £ = 1. This shows that H(., 1) has a fixed point.
Conversely, if H(1,.) has a fixed point, then on similar steps, one can prove that H(0,.)

has a fixed point. [ |
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