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Abstract. A hereditary class on a set X is a nonempty collection of subsets of X which is
closed under subsets. In this paper, we present a new structure of proximity spaces by using
a hereditary class, called H-proximity spaces, as a generalization of Efremovič proximity
spaces, I-proximity spaces and coarse proximity spaces. Some properties of this proximity
structure and generalized topology induced by it are studied.
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1. Introduction and Preliminaries

The concept of proximity or nearness in topology was described by Riesz in 1908 but
ignored at the time [15]. It was rediscovered by Efremovič in 1934, but not published until
1951 [4]. He axiomatically characterized the proximity relation “A is near B” for subsets
A, B of any set X. The set X together with this relation was called an infinitesimal
(proximity) space. Proximity space is a natural generalization of a metric space and of a
topological group. Every proximity δ on a set X induces a topology τδ on X by defining
the closure of a subset A to be the set {x | {x}δA}. Conversely, Efremovič showed that
if (X, τ) is any completely regular space, then there exists a proximity δ on X such that
τ = τδ. In fact, the proximity δ is defined by A ̸ δB if and only if A and B are functionally
distinguishable, i.e., there exists a continuous map f : X → [0, 1] such that f(a) = 0 for
all a ∈ A and f(b) = 1 for all b ∈ B.

Some authors have worked with weaker axioms than those of Efremovič and some types
of proximity structures were introduced, such as quasi-proximity [14], paraproximity [7],
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pseudo-proximity [6], local proximity [11], I-proximity [10], coarse proximity [5] and µ-
proximity [12]. In this paper, we present a new structure of proximity spaces by using a
hereditary class, called H-proximity spaces, as a generalization of Efremovič proximity
spaces, I-proximity spaces and coarse proximity spaces. The relationships between H-
proximity spaces and generalized topological spaces induced by them in the sense of
Császár are investigated.

We first recall some basic results and definitions of proximity structures.

Definition 1.1 [13] Let X be a set and P (X) be the power set of X. A (Efremovič)
proximity on a set X is a relation δ on P (X) satisfying the following axioms for all
A,B,C ∈ P (X):

(1) AδB implies BδA,
(2) AδB implies A ̸= ∅ and B ̸= ∅,
(3) A ∩B ̸= ∅ implies AδB,
(4) (A ∪B)δC if and only if AδC or BδC,
(5) A ̸ δB implies that there exists a subset E such that A ̸ δE and (X − E) ̸ δB;

where A ̸ δB means AδB is not true. If AδB, then we say that A is close to (or near) B.
Axiom 4 is called the union axiom and axiom 5 is called the strong axiom. A pair (X, δ),
where X is a set and δ is a proximity on X, is called a proximity space.

Definition 1.2 [1, 5] A bornology B on a nonempty set X is a family of subsets of X
satisfying:

(1) {x} ∈ B for all x ∈ X,
(2) A ⊆ B and B ∈ B implies A ∈ B ( i.e., it is closed under taking subsets),
(3) if A,B ∈ B, then A ∪B ∈ B ( i.e., it is closed under taking finite unions).

Definition 1.3 [3, 9] A nonempty collection H of subsets of a set X is called an ideal
if it is closed under taking subsets and finite unions; and it is called a hereditary class if
it is closed under taking subsets only.

Remark 1 It is clear that every bornology is an ideal and every ideal is a hereditary
class. Ideal is a fundamental concept in topological spaces and plays an important role in
the study of topological spaces [9]. Similarly, hereditary classes are important in the study
of generalized topological spaces [3]. Bornologies play an important role in the theory of
locally convex spaces [8], boundedness in metric spaces [1] and coarse geometry [5].

Example 1.4 The following families are bornologies on a nonempty set X:

(1) the finite subsets of X,
(2) the countable subsets of X,
(3) the power set P (X),
(4) the bounded subsets of a metric space X,
(5) the totally bounded subsets of a metric space X,
(6) the subsets of a metric space X with compact closure.

Example 1.5 Let X be a nonempty set and A ⊊ X. Then the collections H1 = {∅}
and H2 = {B ⊆ X | B ⊆ A} are ideals but not bornologies. Indeed, ∅ ∈ H for any
hereditary class H, so H1 is the smallest hereditary class on X. Also, the collection
Hp = {∅}

∪
{{x} | x ∈ X} is a hereditary class (called hereditary class of points) but not

an ideal if X has at least two elements.

In the following, we recall some notions and notations defined in [2, 3]. Let X be a
set. A subset µ of P (X) is called a generalized topology (briefly GT) on X and the pair
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(X,µ) is called a generalized topological space (briefly GTS) if ∅ ∈ µ and any union of
elements of µ belongs to µ. A GTS (X,µ) is called strong if X ∈ µ. A set A ⊆ X is said
to be µ-open if A ∈ µ and µ-closed if X − A ∈ µ. A mapping f : (X,µX) → (Y, µY )
between GTS’s is said to be µ-continuous if f−1(B) ∈ µX whenever B ∈ µY .

A mapping λ : P (X) → P (X) is said to be monotone provided that A ⊆ B ⊆ X
implies λA ⊆ λB, where we write λA for λ(A).

A monotone map λ : P (X) → P (X) is said to be:

(1) idempotent if λ2A = λλA = λA for all A ⊆ X,
(2) restricting if λA ⊆ A for all A ⊆ X,
(3) enlarging if A ⊆ λA for all A ⊆ X,
(4) ∨-additive if λ(A ∪B) = λA ∪ λB for all A,B ⊆ X.

Remark 2 [2] If µ is a GT on X, then the interior operator iµ : P (X) → P (X) defined
by iµA :=

∪
{M ∈ µ | M ⊆ A} is monotone, idempotent and restricting; and the closure

operator cµ : P (X) → P (X) defined by cµA :=
∩
{N | A ⊆ N,X −N ∈ µ} is monotone,

idempotent and enlarging. Moreover, iµ and cµ are conjugate, i.e., cµA = X−(iµ(X−A))
for all A ⊆ X. Conversely, if λ : P (X) → P (X) is enlarging, monotone and idempotent,
then the collection µ := {A | λ(X −A) = X −A} is a GT on X such that cµA = λA for
all A ⊆ X.

Definition 1.6 [3] Let (X,µ) be a GTS with a hereditary class H and A ⊆ X. Then

A∗ := {x ∈ X | Ox ∩A /∈ H for every µ-open set Ox containing x}

is called the local function of A with respect to H and µ.

Theorem 1.7 [3] Let (X,µ) be a GTS with a hereditary class H. Then the operator
c∗ : P (X) → P (X) defined by c∗(A) = A ∪ A∗ is monotone, idempotent and enlarging.
Hence the collection µ∗ := {A ⊆ X | c∗(X −A) = X −A} is a GT on X, called the GT
induced by (µ,H).

Theorem 1.8 [3] Let (X,µ) be a GTS with a hereditary class H. Then the following
statements hold:

(1) µ ⊆ µ∗.
(2) If H = {∅}, then c∗(A) = cµ(A) = A∗ and µ = µ∗.
(3) The collection {M −H | M ∈ µ,H ∈ H} is a base for µ∗.
(4) If Mµ :=

∪
{M | M ∈ µ}, then H∗ = X −Mµ for any H ∈ H.

(5) If X ∈ µ and H ∈ H, then H∗ = ∅. Hence H is µ∗-closed.

2. H-Proximity Spaces

In this section, we introduce a new approach of proximity structure based on a hered-
itary class. Some results on these spaces and generalized topological spaces induced by
them are investigated.

Definition 2.1 Let H be a hereditary class on a nonempty set X. A binary relation
θ on P (X) is called an H-proximity on X if it satisfies the following conditions for all
A,B,C ∈ P (X):

(A1) AθB implies BθA,
(A2) AθB implies A /∈ H and B /∈ H,
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(A3) A ∩B /∈ H implies AθB,
(A4) AθB or AθC implies Aθ(B ∪ C),
(A5) A ̸ θB implies that there exist subsets C and D such that A ̸ θ(X−C), (X−D)̸ θB

and C ∩D ∈ H.

A triple (X,H, θ), where X is a set, H is a hereditary class on X and θ is an H-proximity
on X, is called an H-proximity space. Axiom (A4) is called the weak union axiom and
(A5) is called the H-strong axiom.

Lemma 2.2 Let H be a hereditary class on a nonempty set X and θ a binary relation
on P (X) satisfying the axioms (A1)–(A3). Then the following statements hold.

(1) The strong axiom implies the H-strong axiom.
(2) If θ also satisfies the union axiom, then the axioms strong and H-strong are

equivalent.

Proof. To prove (1), let A ̸ θB. Then there exists a subset D such that A ̸ θD and (X −
D)̸ θB. Since D ̸ θA, there exists a subset C such that D ̸ θC and (X − C )̸ θA. Thus by
(A3), we have C ∩D ∈ H. To prove (2), let the H-strong axiom holds and A ̸ θB. Then
there exist subsets C and D such that A ̸ θ(X − C), (X − D) ̸ θB and C ∩ D ∈ H. Set
E = X − C and H = C ∩ D, we have A ̸ θE and H ∈ H. Now we show that C ̸ θB.
For contradiction assume that CθB. Since C ⊆ (X − D) ∪ H, by the union axiom we
have ((X − D) ∪ H)θB. Again by the union axiom, (X − D)θB or HθB, which is a
contradiction to (X −D) ̸ θB or H ∈ H, respectively. Thus the result holds. ■

Remark 3 If H is a bornology (an ideal) on a nonempty set X and θ a binary relation
on P (X) such that satisfies the axioms (A1)–(A3) and also the axioms union and strong,
then the triple (X,H, θ) is called a coarse proximity space [5] (an I-proximity space [10]).
Thus by Lemma 2.2, every coarse proximity space is an I-proximity space and every I-
proximity space is an H-proximity space. Also, every proximity space is an H-proximity
space, where H = {∅}.

Example 2.3 Let H be a hereditary class on a nonempty set X. For any subsets A and
B of X, define

AθB ⇐⇒ A ∩B /∈ H.

Then θ is an H-proximity on X. Indeed, one easily sees that θ satisfies the axioms (A1)–
(A4). To show the H-strong axiom, set E = B. Then the strong axiom holds and hence
by Lemma 2.2, the result follows.

Example 2.4 Let H be a hereditary class on a nonempty set X. For any subsets A and
B of X, define

AθB ⇐⇒ A,B /∈ H.

Then θ is an H-proximity on X. Indeed, one easily sees that θ satisfies the axioms (A1)–
(A4). To show axiom the H-strong axiom, assume A ̸ θB. It follows that A ∈ H or
B ∈ H. If A ∈ H, let E = X − A. If B ∈ H, let E = B. Then the strong axiom holds
and hence by Lemma 2.2, the result follows.

Similar to the proofs of proximity spaces, we have the following lemma and so the
proof is omitted.

Lemma 2.5 Let (X,H, θ) be anH-proximity space. Then the following statements hold.
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(1) If AθB, A ⊆ C and B ⊆ D, then CθB.
(2) If there exists an x such that Aθx and xθB, then AθB.
(3) If A /∈ H, then AθA.

Theorem 2.6 Let (X,H, θ) be anH-proximity space. Then the operator (−)θ : P (X) →
P (X) defined by Aθ = {x ∈ X | xθA} satisfies the following conditions:

(1) A ⊆ B ⇒ Aθ ⊆ Bθ,
(2) Aθ ∪Bθ ⊆ (A ∪B)θ and (A ∩B)θ ⊆ Aθ ∩Bθ,
(3) A ∈ H ⇒ Aθ = ∅,
(4) if Hp ⊆ H, then Aθ = ∅ for every subset A of X.

Proof. Property (1) follows from Lemma 2.5, and property (2) follows from property
(1). To see (3) and (4), if A ∈ H or Hp ⊆ H, then x ̸ θA for any x ∈ X. Hence Aθ = ∅. ■

Unlike proximity spaces, the following example shows that in H-proximity spaces the
operator (−)θ need not be ∨-additive and A ⊈ Aθ, in general. Also, the converse of the
weak union axiom need not be true, i.e., the union axiom need not be true.

Example 2.7 Let X = {a, b, c}, H = {∅, {a}, {b}} and θ be the H-proximity relation
defined in Example 2.4. If A = {a}, B = {b} and C = {c}, then (A ∪ B)θ = C but
Aθ ∪Bθ = ∅. Also, Cθ(A ∪B) but C ̸ θA, C ̸ θB; and A ⊈ Aθ = ∅.

Theorem 2.8 Let (X,H, θ) be an H-proximity space and A,B ⊆ X. Then the following
statements hold.

(1) B ̸ θA implies Aθ ⊆ X −B.
(2) B ̸ θA implies B ̸ θAθ.
(3) B ̸ θA implies Bθ ̸ θAθ.
(4) Aθ = Aθθ, i.e., (−)θ is idempotent.

Proof. (1): Let B ̸ θA and Aθ ∩ B ̸= ∅. Then there exists x ∈ B such that xθA. By
Lemma 2.5, BθA, which is a contradiction. Thus Aθ ∩B = ∅ and hence Aθ ⊆ X −B.

(2): Let B ̸ θA. Then by the H-strong axiom, there exist subsets C and D such that
B ̸ θ(X − C), (X −D)̸ θA and C ∩D ∈ H. By part (1) we have Aθ ⊆ D. Now, we show
that Aθ ⊆ (X − C). Suppose x ∈ Aθ, then xθA. If x ∈ C, then x ∈ C ∩ D and hence
{x} ∈ H, which is a contradiction to xθA. Thus Aθ ⊆ (X − C). Since B ̸ θ(X − C), by
Lemma 2.5, we have B ̸ θAθ.

(3): By part (2) and axiom (A1), the result holds.
(4): If x /∈ Aθ, then x ̸ θA. By part (2), x ̸ θAθ and hence x /∈ Aθθ. Thus Aθθ ⊆ Aθ.

Conversely, if x ∈ Aθ, then {x} /∈ H. So xθx and hence by Lemma 2.5, xθAθ, i.e., x ∈ Aθθ.
■

In the following, we consider the GT on X which is induced by an H-proximity on
X, and study its elementary properties. For this purpose, we first give the concept of an
admissible H-proximity space.

Definition 2.9 An H-proximity space (X,H, θ) is said to be admissible if θ satisfies the
following condition for all A,B ⊆ X:

Aθ(B ∪Bθ) =⇒ AθB.

Lemma 2.10 Let (X,H, θ) be an admissible H-proximity space and A,B ⊆ X. Then
the following statements hold.

(1) Aθ(B ∪Bθ) ⇐⇒ AθB.
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(2) Aθ = (A ∪Aθ)θ.

Proof. Let AθB. Then by the weak union axiom Aθ(B ∪Bθ), so part (1) holds. To see
(2), we have x ∈ Aθ ⇔ xθA ⇔ xθ(A ∪Aθ) ⇔ x ∈ (A ∪Aθ)θ. ■

Remark 4 Notice that by the union axiom and Theorem 2.8, proximity spaces, coarse
proximity spaces and I-proximity spaces are admissible H-proximity spaces.

Example 2.11 The H-proximity spaces defined in Examples 2.3 and 2.4 are admissible.
For θ given in 2.3, we have Bθ = {x | x ∈ B and {x} /∈ H} ⊆ B for any B ⊆ X. Thus
the condition of admissibility holds. For θ given in 2.4, let Aθ(B ∪Bθ). Then A /∈ H and
B∪Bθ /∈ H. If B ∈ H, then Bθ = ∅. So B = B∪Bθ /∈ H, a contradiction. Hence B /∈ H,
this implies AθB. Thus the condition of admissibility holds.

Example 2.12 Let X = {a, b, c, d}, H = {∅, {a}, {b}} and D = {c}, D′ = {a, b},
F = {a, b, c}. Suppose θ1 = {(D,D′), (D′, D), (F,X−F ), (X−F, F )} and θ2 = {(A,B) |
A ∩ B /∈ H}, i.e., θ2 is the relation given in 2.3. Now, we define θ = θ1 ∪ θ2 and show
that θ is an H-proximity relation on X but not admissible. It is clear that θ satisfies the
axioms A1, A2 and A3. To see axiom A4, if Aθ2B and Aθ2C, then Aθ2(B ∪C). For case
Dθ1D

′, if Dθ2B for some B ⊆ X, then D∩B /∈ H. Thus (D′ ∪B)∩D = D∩B /∈ H and
hence Dθ2(D

′ ∪B). Similarly, for cases D′θ1D, Fθ1(X − F ) and (X − F )θ1F the result
holds. To see axiom A5, let A ̸ θB. Then A ∩ B ∈ H and A ̸ θ1B. If B = F or X − F ,
then F ̸= A ̸= X − F , put E = X − A. Otherwise F ̸= B ̸= X − F , put E = B. Thus
there exists a subset E of X such that A ̸ θE and (X −E) ̸ θB. Finally, let A = D′. Then
Aθ = D and (A ∪Aθ)θ = F θ = {c, d}. Thus Aθ ⊊ (A ∪Aθ)θ, which shows that (X,H, θ)
is not admissible by Lemma 2.10.

Theorem 2.13 Let (X,H, θ) be an admissible H-proximity space. Then the operator
cθ : P (X) → P (X) defined by cθ(A) = A ∪ Aθ is enlarging, monotone and idempotent.
Hence the collection µθ := {A | cθ(X −A) = X −A} is a strong GT on X, called the GT
induced by (θ,H).

Proof. It is clear that cθ is enlarging, and monotone by Theorem 2.6. By the admissi-
bility, we have cθcθ(A) = A ∪Aθ ∪ (A ∪Aθ)θ = A ∪Aθ = cθ(A) for any A ⊆ X. Thus cθ
is idempotent. Also, cθ(∅) = ∅ and cθ(X) = X, so ∅, X ∈ µθ. ■

Example 2.14 Let (X,H, θ) be the admissible H-proximity space given in 2.3. Then
Aθ ⊆ A for any subset A of X. Thus cθ(A) = A for any subset A of X. Hence µθ = P (X)
is the discrete topology.

Now, we give an example of admissible H-proximity spaces such that the induced GT
µθ need not be a topology, in general.

Example 2.15 Let (X,H, θ) be the admissible H-proximity space given in 2.7. Then
Aθ = {c} for any A /∈ H. It is easily verified that cθ(A) = A for any A ⊆ X such that
A ̸= {a, b} and cθ({a, b}) = X. Hence µθ = P (X)−{{c}}, which is not a topology on X.

Theorem 2.16 Let (X,H, θ) be an admissible H-proximity space. Then the following
statements hold.

(1) A ⊆ X is µθ-closed if and only if Aθ ⊆ A.
(2) Aθ is µθ-closed for any A ⊆ X.
(3) If Hp ⊆ H, then µθ = P (X).
(4) H = {∅} if and only if cθ(A) = Aθ for any A ⊆ X.

Proof. Part (1) is clear. Since Aθθ = Aθ, it follows that Aθ is a µθ-closed set. If Hp ⊆ H,
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then by Theorem 2.6, Aθ = ∅. Thus cθ(A) = A for any A ⊆ X, so that µθ = P (X). To
show part (4), let H = {∅} and A ⊆ X. If x ∈ A, then xθA and hence x ∈ Aθ. Thus
A ⊂ Aθ, so that cθ(A) = Aθ. Conversely, since X ⊆ Xθ, it follows that xθX for any
x ∈ X. Thus {x} /∈ H for any x ∈ X. Hence H = {∅}. ■

Corollary 2.17 A subset G of an admissible H-proximity space (X,H, θ) is µθ-open if
and only if x ̸ θ(X −G) for every x ∈ G.

Proof. By part (1) of the above theorem, the result holds. ■

Corollary 2.18 Let (X,H, θ) be an admissible H-proximity space and A,B ⊆ X. Then

AθB ⇐⇒ cθ(A)θcθ(B).

Proof. By Lemma 2.10, we have

AθB ⇔ Aθcθ(B) ⇔ cθ(B)θA ⇔ cθ(B)θcθ(A) ⇔ cθ(A)θcθ(B).

■

3. Alternative description of H-proximity spaces

In this section, we first introduce the concept of an H-proximity neighborhood and
explore several of its basic properties. Then we give a definition of an H-proximity in
terms of H-proximity neighborhoods.

Definition 3.1 Let (X,H, θ) be an H-proximity space. Given subsets A,B ⊆ X, we say
that B is an H-proximity neighborhood of A, denoted A ≪ B, if A̸ θ(X −B).

Theorem 3.2 Let (X,H, θ) be an H-proximity space. Let A,B,C and D be subsets of
X. Then the relation ≪ satisfies the following properties:

(P1) X ≪ (X −H) for all H ∈ H,
(P2) A ≪ B implies that there exists H ∈ H such that (A−H) ⊆ B,
(P3) A ⊆ B ≪ C ⊆ D implies A ≪ D,
(P4) A ≪ B if and only if (X −B) ≪ (X −A),
(P5) A ≪ B implies that there exists F ⊆ X such that A ≪ F and F −H ≪ B for

some H ∈ H.

Proof. By Axiom A2, X ̸ θH for any H ∈ H. This means that X ̸ θ(X − (X −H)), or
equivalently X ≪ (X − H) for any H ∈ H, which is the property (P1). To show (P2),
notice that if A ∩ (X − B) /∈ H, then Aθ(X − B), a contradiction to A ≪ B. So if
H = A∩(X−B), then H ∈ H and (A−H) ⊆ B. To show (P3), for contradiction assume
that A ̸≪D, i.e., Aθ(X − D). The weak union axiom implies that Bθ(X − D). Since
(X −D) ⊆ (X −C), again by the weak union axiom we get Bθ(X −C), a contradiction
to B ≪ C. To show (P4), we have

A ≪ B ⇔ A ̸ θ(X −B) ⇔ (X −B)̸ θ(X − (X −A)) ⇔ (X −B) ≪ (X −A).

To show (P5), let A ≪ B, i.e., A ̸ θ(X−B). By the H-strong axiom there exist C,D ⊆ X
such that A ̸ θ(X − C), (X −D)̸ θ(X −B) and C ∩D ∈ H. Set F = C and C ∩D = H,
we have A ≪ F and F −H ⊆ (X −D). Thus (F −H) ̸ θ(X −B) and hence F −H ≪ B.
■
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Theorem 3.3 Let X be a set with a hereditary class H. If ≪ is a binary relation on
P (X) satisfying (P1) through (P5) of Theorem 3.2 and θ is a relation on P (X) defined
by

A ̸ θB if and only if A ≪ (X −B).

Then θ is an H-proximity on X. Also, B is an H-proximity neighborhood of A if and
only if A ≪ B.

Proof. To show axiom (A1), assume A ̸ θB. Then A ≪ (X − B), property (P4) implies
that B ≪ (X − A), i.e., B ̸ θA. To show axiom (A2), notice that properties (P1) and
(P3) imply that A ≪ (X −H) for all H ∈ H, i.e., A ̸ θH for all H ∈ H. By symmetry
proven in axiom (A1), this implies axiom (A2). To show axiom (A3), assume A ̸ θB, i.e.,
A ≪ (X − B). By property (P2), there exists H ∈ H such that (A − H) ⊆ (X − B).
Thus A∩B ⊆ H, which shows that A∩B ∈ H. To show the weak union axiom, assume
(A ∪ B)̸ θC, i.e., (A ∪ B) ≪ (X − C). Property (P3) implies that A ≪ (X − C) and
B ≪ (X − C), i.e., A ̸ θC and B ̸ θC. To show the H-strong axiom, assume A ̸ θB, i.e.,
A ≪ (X − B). By property (P5), there exist F ⊆ X and H ∈ H such that A ≪ F
and F − H ≪ (X − B). Let C = F and D = (X − (F − H)). Then A ̸ θ(X − C) and
(X −D)̸ θB and C ∩D = F ∩H ∈ H. Finally, B is an H-proximity neighborhood of A
if and only if A ̸ θ(X −B) if and only if A ≪ (X − (X −B)) if and only if A ≪ B. ■

Theorem 3.4 Let (X,H, θ) be an H-proximity space. Let A,B and C be subsets of X.
Then the following statements hold.

(1) If A ≪ (B ∩ C), then A ≪ B and A ≪ C.
(2) If (B ∪ C) ≪ A, then B ≪ A and C ≪ A.
(3) If A ∈ H, then A ≪ E for any E ⊆ X.
(4) If A ≪ B, then A−B ∈ H.
(5) If A−B ∈ H and B ≪ C, then A−H ≪ C for some H ∈ H.
(6) If A ≪ B and B ≪ C, then A−H ≪ C for some H ∈ H.

Proof. Parts (1) and (2) follow from property (P3). To show (3), let A ∈ H. Then
A ̸ θ(X − E) for any E ⊆ X, so the result holds. To show (4), assume A ≪ B, by
property (P2) there exists H ∈ H such that A −H ⊆ B. Thus A − B ⊆ H, and hence
A−B ∈ H. To show (5), let A−B ∈ H and B ≪ C. Set H = A−B, then A−H ⊆ B.
Since B ̸ θ(X − C), it follows that A−H ̸ θ(X − C), i.e., A−H ≪ C. Part (6) follows
from parts (4) and (5). ■

Corollary 3.5 Let (X,H, θ) be an admissible H-proximity space and A,B ⊆ X such
that A ≪ B. Then

(1) cθ(A) ≪ B,
(2) A ≪ iµθ

(B).

Proof. Since A ̸ θ(X−B), by Corollary 2.18, we have cθ(A)̸ θ(X−B) and A ̸ θcθ(X−B).
Since cθ(X −B) = X − iµθ

(B), the result follows. ■

Corollary 3.6 Let (X,H, θ) be an admissible H-proximity space and A,B ⊆ X such
that A ̸ θB. Then

(1) cθ(A)−H ⊆ (X −B) for some H ∈ H,
(2) A−H ⊆ iµθ

(X −B) for some H ∈ H.

Proof. Since A ̸ θ(X − (X − B)), it follows that A ≪ (X − B). Thus by the previous
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corollary and Theorem 3.2, the result follows. ■

4. Compatible H-proximities

In this section, we introduce the concepts of complete regularity and normality for a
GTS with respect to a hereditary H and study its relationships to some H-proximities
defined on these spaces.

Definition 4.1 Let H be a hereditary class on a nonempty set X. If there exists a GT
µ and an H-proximity θ on X such that µ = µθ, then µ and θ are said to be compatible.

Definition 4.2 Let (X,µ) be a GTS and A,B ⊆ X. We say that A and B are µ-
functionally distinguishable if there exists a µ-continuous function f : X → [0, 1] such
that f(a) = 0 for all a ∈ A and f(b) = 1 for all b ∈ B, where [0, 1] is endowed the GT
generated by the base {[0, t) | t ∈ (0, 1)}

∪
{(t, 1] | t ∈ (0, 1)}.

Notice that by definition, ∅ is µ-functionally distinguishable with any subset A of a
GTS (X,µ).

Definition 4.3 Let µ and µ′ be two GT’s on a set X and H be a hereditary class on
X. Then X is called (µ, µ′)-completely regular if for any µ-closed sets F and any x ∈ X
such that {x} ∩ F ∈ H, {x} − F and F − {x} are µ′-functionally distinguishable.

Remark 5 Notice that in the above definition if x ∈ F , then {x} − F = ∅ and hence
{x} − F and F − {x} are µ′-functionally distinguishable. Also, if H = {∅} and µ = µ′,
then (µ, µ′)-completely regular is exactly µ-completely regular in the general case, i.e.,
for any µ-closed sets F and any x ∈ X such that x /∈ F , {x} and F are µ-functionally
distinguishable.

Theorem 4.4 Let (X,µ) be a GTS with a hereditary class H. Then the relation θ
defined by A̸ θB if and only if there exists H ∈ H such that A − H and B − H are
µ-functionally distinguishable, is an H-proximity on X.

Proof. Axiom (A1) is easily verified. To show (A2), let A ∈ H and B ⊆ X. Then
A − A = ∅ and B − A are µ-functionally distinguishable, i.e., A̸ θB. To show (A3), let
A ̸ θB. Then A−H and B−H are µ-functionally distinguishable for some H ∈ H. Thus
(A − H) ∩ (B − H) = ∅ and hence A ∩ B ⊆ H, which implies that A ∩ B ∈ H. The
weak union axiom is easily verified. To prove the H-strong axiom, let A ̸ θB. Then A−H
and B − H are µ-functionally distinguishable for some H ∈ H. Thus there exists a µ-
continuous function f : X → [0, 1] such that A−H ⊆ f−1({0}) and B −H ⊆ f−1({1}).
Let E = {x ∈ X | 1

2 ⩽ f(x) ⩽ 1} and define g : [0, 1] → [0, 1] by g(y) = 2y for y ∈ [0, 12)

and g(y) = 1 for y ∈ [12 , 1]. Then g ◦ f : X → [0, 1] is a µ-continuous function such
that (A−H) ⊆ (g ◦ f)−1({0}) and (E −H) ⊆ (g ◦ f)−1({1}). Hence A̸ θE. Similarly, if
X − E = {x ∈ X | 0 ⩽ f(x) < 1

2}, then we have (X − E) ̸ θB. Thus the strong axiom
holds. ■

Theorem 4.5 Let (X,µ) be a (µ∗, µ)-completely regular strong GTS with a hereditary
class H such that H ⊆ µ∗. Then the H-proximity θ defined in Theorem 4.4 is compatible
with µ∗, where µ∗ is the GT induced by (µ,H).

Proof. Let G ∈ µ∗ and x ∈ G. Since X − G is µ∗-closed and {x} ∩ (X − G) = ∅ ∈ H,
by assumption {x} and (X − G) are µ-functionally distinguishable and hence {x} −H
and (X − G) − H are µ-functionally distinguishable for H = ∅ ∈ H. Thus x ̸ θ(X −G)
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for any x ∈ G. Hence by Corollary 2.17, G ∈ µθ. Conversely, Let G ∈ µθ and x ∈ G.
Again by Corollary 2.17, x ̸ θ(X −G). So {x} −H and (X −G) −H are µ-functionally
distinguishable for some H ∈ H. If x ∈ H, then {x} ∈ µ∗ and hence x ∈ iµ∗(G). If
x /∈ H, then there exists a µ-continuous function f : X → [0, 1] such that f(x) = 0 and
(X −G)−H) ⊆ f−1({1}). Let M = f−1([0, 12)). Then x ∈ M −H ⊆ G and M ∈ µ. By
Theorem 1.8, x ∈ iµ∗(G). Thus G = iµ∗(G) is µ∗-open, which shows that µθ ⊆ µ∗. ■

Corollary 4.6 Let (X,µ) be a µ-completely regular strong GTS with the hereditary
class H = {∅} and θ be the H-proximity defined in Theorem 4.4. Then θ is compatible
with µ.

Proof. By Theorem 4.5 and Remark 5, the result follows. ■

Definition 4.7 Let µ and µ′ be two GT’s on a set X and H be a hereditary class on X.
Then X is called (µ, µ′)-normal if for any µ-closed sets F1 and F2 such that F1∩F2 ∈ H,
there exist G1, G2 ∈ µ′ such that F1 ⊆ G1, F2 ⊆ G2 and G1 ∩G2 ∈ H.

Remark 6 If H = {∅} and µ = µ′, then (µ, µ′)-normal is exactly µ-normal in the general
case, i.e., for any µ-closed sets F1 and F2 such that F1 ∩ F2 = ∅, there exist G1, G2 ∈ µ
such that F1 ⊆ G1, F2 ⊆ G2 and G1 ∩G2 = ∅.

Theorem 4.8 Let (X,µ) be a (µ∗, µ)-normal strong GTS with a hereditary class H.
Then the relation θ defined by

AθB ⇐⇒ c∗(A) ∩ c∗(B) /∈ H,

is an H-proximity on X.

Proof. Axiom (A1) is easily verified. To show (A2), notice that if A ∈ H, then by
Theorem 1.8, A∗ = ∅ and hence c∗(A) = A. Thus c∗(A) ∩ c∗(B) ⊆ A ∈ H, which
shows that A ̸ θB. To show (A3), let A ∩ B /∈ H. Then c∗(A) ∩ c∗(B) /∈ H and hence
AθB. To show the weak union axiom, let AθB and AθC. Then c∗(A) ∩ c∗(B) /∈ H and
c∗(A) ∩ c∗(C) /∈ H. So c∗(A) ∩ c∗(B ∪ C) /∈ H, which shows that Aθ(B ∪ C). To prove
the H-strong axiom, let A ̸ θB. Then c∗(A) ∩ c∗(B) ∈ H, so by assumption there exist
G1, G2 ∈ µ such that c∗(A) ⊆ G1, c

∗(B) ⊆ G2 and G1∩G2 ∈ H. Set C = G1 andD = G2,
then we have c∗(A)∩ c∗(X −C) ⊆ c∗(A) ∈ H and c∗(B)∩ c∗(X −D) ⊆ c∗(B) ∈ H. Thus
A ̸ θ(X − C), (X −D)̸ θB and C ∩D ∈ H. ■

Definition 4.9 A GTS (X,µ) with a hereditary class H is called (µ, µ′)-T4 if it is
(µ, µ′)-normal and µ-T1.

Theorem 4.10 Let (X,µ) be a (µ∗, µ)-T4 strong GTS with a hereditary class H. Then
the H-proximity θ defined in Theorem 4.8 is compatible with µ∗.

Proof. It suffices to show that c∗(A) = cθ(A) for any A ⊆ X. Let x ∈ cθ(A). Then x ∈ A
or x ∈ Aθ. If x ∈ A, then x ∈ c∗(A). If x ∈ Aθ, then xθA and hence c∗({x})∩ c∗(A) /∈ H.
Since (X,µ) is T1 and µ ⊆ µ∗, it follows that x ∈ c∗(A). Thus cθ(A) ⊆ c∗(A). Conversely,
let x /∈ cθ(A). Then x /∈ A and x ̸ θA. So c∗({x}) ∩ c∗(A) ∈ H, by assumption there exist
G1, G2 ∈ µ such that x ∈ G1, c

∗(A) ⊆ G2 and G1∩G2 ∈ H. Since G1∩A ⊆ (G1∩G2) ∈ H,
it follows that x /∈ A∗. Thus x /∈ c∗(A) and hence c∗(A) ⊆ cθ(A). ■

Corollary 4.11 Let (X,µ) be a µ-T4 strong GTS with the hereditary class H = {∅}
and θ be the H-proximity defined in Theorem 4.8. Then θ is compatible with µ.

Proof. By Theorem 4.10 and Remark 6, the result follows. ■
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Theorem 4.12 Let (X,µ) be a strong GTS with an ideal H and θ be the relation
defined in Theorem 4.8. If θ is an admissible H-proximity on X such that is compatible
with µ∗ and H ⊆ µ∗, then X is (µ∗, µ∗)-normal.

Proof. If F1 and F2 are µ∗-closed sets such that F1 ∩ F2 ∈ H, then F1 ̸ θF2. By the
H-strong axiom, there exist subsets C and D such that F1 ̸ θ(X − C), (X − D) ̸ θF2

and C ∩D ∈ H. By Corollary 3.6, there exist H1,H2 ∈ H such that (F1 −H1) ⊆ iµθ
(C)

and (F2 −H2) ⊆ iµθ
(D). Set G1 = iµθ

(C) ∪H1 and G2 = iµθ
(D) ∪H2, then F1 ⊆ G1,

F2 ⊆ G2, G1, G2 ∈ µ∗ and G1 ∩G2 ∈ H. Thus the result holds. ■
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