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Abstract. We extend the results of Walters on the uniqueness of invariant measures with
maximal entropy on compact groups to an arbitrary locally compact group. We show that the
maximal entropy is attained at the left Haar measure and the measure of maximal entropy
is unique.
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1. Introduction and preliminaries

The ergodic theory and dynamics is usually studied in the context of probability spaces,
or compact metric spaces in the topological setting. The main reason is the examples
which suggest lack of finite invariant measure in the non compact case, yet it is known that
there might be infinite invariant measure [1, 11]. The other concern is the uniqueness of
infinite invariant measures with certain characteristic property. For instance, it is known
that the normalized Haar measure of a compact group is the unique probability measure
of maximal entropy on the group. The main purpose of the current paper is to show a
similar result for arbitrary locally compact group (Theorem 3.2).

The paper is organized as follows. In section 2, we briefly review part of the existing
literature on infinite invariant measures for non compact dynamics [2]. We recall a result
on the existence of invariant measures for transformation groups from [2]. Section 3 is
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devoted to the extension of the results on uniqueness of invariant measures with maximal
entropy on locally compact groups [3].

2. infinite invariant measures

This section briefly reviews certain results on infinite invariant measures. Before doing
this we briefly review the compact case.

2.1 compact dynamics

Let us take a look at the existence and uniqueness of invariant measures in compact
dynamics.

If X is a set and p ∈ X, f : X → R is a function and T : X → X is a bijection,

M(f, p, k) = fk(p) :=
1

k

k∑
i=1

f(T ip) (k = 1, 2, · · · )

and M(f, p) = f∗(p) := limk→∞M(f, p, k), when the limit exists. Also the upper density

of a set E ⊆ N is by definition δ∗(E) := lim supk→∞
1
k

∑k
i=1 χE(i).

Now if X is a compact metric space and T is a bijective homeomorphism of X, by the
Krylov-Bogolioubov theorem, the system (X,T ) admits an invariant probability Radon
measure µ, and for any closed subset K of X, either µ(K) > 0 for some invariant measure
µ, or M(χK , p) = 0, for every p ∈ X. Moreover, the set M(X,T ) of invariant regular
Borel probability measures on X is convex and weak∗-compact.

A system (X,T ) is uniquely ergodic if it has a unique invariant probability Borel
measure µ as above (equivalently, if it has a unique ergodic set) and strictly ergodic (in
the sense of Nemyckĭi and Stepanov [7], which differs slightly with the same notion in
[6]) if X consists of a single ergodic set.

By the unique ergodic theorem, if the system (X,T, µ) is uniquely ergodic then fk(p) →∫
X fdµ as k → ∞, uniformly on X, for any f ∈ C(X).
An alternative uniqueness type result is the uniqueness of invariant measure with

maximal entropy. If α is any finite open cover of X, we let N(α) be the number of
members in a subcover of α of minimal cardinality. For two covers α and β, we write
α∨β := {U ∩V : U ∈ α, V ∈ β} and α ⩾ β if α is a refinement of β. Then N(α) ⩾ N(β)
when α ⩾ β and N(α ∨ β) ⩽ N(α)N(β) and so the following limit exists

h(α, T ) = lim
n→∞

1

n
logN(

n−1∨
i=0

T−iα),

The topological entropy of T is defined by htop(T ) := suph(α, T ), where the supremum is
taken over all finite open covers of X. On the other hand, for µ ∈ M(X,T ) and a finite
measurable partition α of X, we write,

Hµ(α) = −
∑
A∈α

µ(A) log µ(A) and hµ(α, T ) = lim
n→∞

1

n
Hµ(

n−1∨
i=0

T−iα).
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The measure-theoretic entropy of T is defined as hµ(T ) = suphµ(α, T ), where the supre-
mum is taken over all finite measurable partitions of X. It is known that

h(T ) = sup
µ∈M(X,T )

hµ(T ).

This indeed holds for any (non metrizable) compact Hausdorff space X [4].
There are examples in which the above supremum is not attained [5] and cases where

there is a unique µ ∈ M(X,T ) at which the supremum is attained [13].

2.2 dynamics on complete metric spaces

The existence of a finite invariant measures for transformations on (complete) metric
spaces imposes certain restriction on the transformation. Even in the compact case, the
invariant measures may be quite trivial (confined to a finite set of points) [8]. For the
existence of an invariant measures, we have the following result of Oxtoby-Ulam: Let T be
an automorphism of a complete separable metric space X. There exist a finite invariant
measure in X iff for some point p and compact subset K, M(χK , p) < ∞, where χK is
the characteristic function of K. Also, it is sufficient that the limit superior is positive [8,
Theorem 1]. If we insist that the finite invariant measure is zero at points, then it exists
iff T has uncountably many periodic points and there is a compact set K consisting of
non-periodic points, one of which returns to K with positive frequency under iterations
of T [8, Theorem 2].

Next for infinite invariant measures, let T be an automorphism of a complete, separa-
ble metric space X, of second category in itself. Then there exists a (possibly infinite)
measure, invariant under T , defined for Borel sets, zero for points, positive (possibly
infinite) for non-void open sets, such that it is finite and strictly positive on some Borel
set. If we only require that the measure is positive on uncountable open sets (and X
itself is uncountable), we may drop the category condition on X [8, Theorem 4].

2.3 transformation groups

In this subsection we review the existence of invariant measures for transformation groups
based on [2].

Let G be a locally compact group and (X, d) be a metric space. Let G act continuously
on X. The action is uniformly expansive if there are constants δ > 0 and C ⩾ 1 such that
d(t · x, t · y) ⩽ Cd(x, y), for each t ∈ G, whenever d(x, y) < δ. The action is topologically
transitive if there is a dense orbit at each point. For flows on compact metrizable spaces,
topological transitivity is equivalent to the average shadowing property (possibly with
respect to some other equivalent metric) [9, Theorem 2].

The next theorem is the main result of [2].

Theorem 2.1 Let G be a locally compact group acting continuously on a metric space
X. If the action is uniformly expansive and topologically transitive then there is an
G-invariant Radon measure on X.

There are non transitive actions which are locally transitive. A concrete example is
the irrational rotation on the unit circle S1, which is not transitive, but has dense orbits.
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3. invariant measures of maximal entropy

In this section we prove uniqueness results for invariant measures. In the first subsection
we show uniqueness of invariant measures for homeomorphisms of locally compact groups.
Unlike the compact case [3], here the invariant measure is not a probability measure and
uniqueness is only up to a positive scalar (unless we make some normalization). Then
we move to intrinsically ergodic systems, in the sense of Weiss [14]. We show that in the
non compact case, some of the results of [14] are still valid. The final subsection involves
the main results of this paper. Following Walters [13], we study systems with unique
invariant measures of maximal entropy. We adapt the results of [13] to the setup of [12].

3.1 automorphisms on groups

Let T be a continuous proper transformation of a locally compact metrizable group
(sometimes we need further to assume that T is a homeomorphism, in which case we
specify this). We assume that T has a (not necessarily finite) positive invariant mea-
sure. By the main result of [2], this holds when T is positively expansive continuous
transformation with dense orbits.

We let m denote the left Haar measure of G. We assume that there is a Borel subset
E0 of G with 0 < m(E0) = m(T−1E0) < ∞. Let B be the Borel σ-field of G. Let
MT (G) denote the collection of Radon measures on G which are invariant under T .
Let π, π1 and π2 be the multiplication map and projections onto the first and second
components from G × G onto G. The Borel σ-field of G × G is B ×B. We have three
sub-σ-fields B1 := π−1

1 (B), B2 := π−1
2 (B), and Bc := π−1B (c stands for convolution)

of B × B. Let µ ∗ ν be the convolution of Radon measures µ and ν on G, given by
µ ∗ ν(E) = µ× ν(π−1(E)), for E ∈ B.

First let us observe that B1 ∨ Bc = B ×B. Consider the measurable map σ : (G ×
G,B ×B) → (G,B) defined by σ(x, y) = y−1x. Then π1 : (G × G,B1 ∨Bc) → (G,B)
is measurable, and the same holds for π1 replaced by π. Therefore, this also holds for
π1 replaced by π2 = σ ◦ (π × π1), and the equality between σ-fields follows. A similar
argument shows that B2 ∨Bc = B×B.

Lemma 3.1 With the above notations,
(i) m ∈ MT (G),
(ii) When T is also a group homomorphism, µ ∗ ν ∈ MT (G) for µ, ν ∈ MT (G).

Proof. (i) Since T is proper f ◦ T has compact support for each f ∈ Cc(G) and∫
G
f(gx)d(m ◦ T−1)(x) =

∫
G
f(T (gx))dm(x)

=

∫
G
f ◦ T (gx)dm(x)

=

∫
G
f ◦ T (x)dm(x)

=

∫
G
f(x)d(m ◦ T−1)(x),

hence by the uniqueness of the left Haar measure, there is a constant c > 0 such that
m ◦ T−1 = cm. On the other hand, for the Borel set E0 as above, 0 < m ◦ T−1(E0) =
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m(E0) < ∞, thus c = 1.
(ii) The fact that T is a group homomorphism could be written as Tπ = π(T × T ). If

µ, ν ∈ MT (G), for any E ∈ B,

µ ∗ ν(T−1E) = µ× ν(π−1T−1E) = µ× ν((T−1 × T−1)π−1E)

= µ× ν(π−1E) = µ ∗ ν(E).

On the other hand, if µ, ν ∈ MT (G), take Borel sets E1, E2 with 0 < µ(E1) < ∞ and
0 < ν(E2) < ∞, and put E0 = π(E1 ×E2), then

µ ∗ ν(E0) = µ× ν(π−1E0) = µ× ν(π−1π(E1 × E2)) ⩾ µ× ν(E1 × E2) > 0.

■

Now as in part (ii) above, assume that T is a group homomorphism. Then for T -
invariant measures µ, ν, the convolution µ ∗ ν is also T -invariant. A second observation
is that the multiplication map π induces a conjugacy between the systems (G×G,T ×
T,Bc, µ× ν) and (G,T,B, µ ∗ ν). Since hµ×ν(T × T ) = hµ(T ) + hν(T ), we get

hµ∗ν(T ) ⩽ hµ(T ) + hν(T ).

Next assume that G is separable, then B is separable, hence there are increasing se-
quences of finite algebras Bn and Cn with

∨∞
n=1Bn = Bc and

∨∞
n=1 Cn = B1. For a field

D, let us put D̄ =
∨∞

i=1 T
=iD, then as for the case of probability measures, we still have

Hµ×ν(Bn ∨ Cn

∣∣(Bn ∨ Cn)
¯) ⩽ Hµ×ν(Bn|(Bn)

¯) +Hµ×ν(Cn|(Cn)
¯),

taking limit on n we get

hµ×ν(T × T,B×B) ⩽ hµ×ν(T × T,Bc) + hµ×ν(T × T,B1).

By the above equivalence, hµ(T )+hν(T ) ⩽ hµ∗ν(T )+hµ(T ). In particular, if hµ(T ) < ∞,
we get hν(T ) ⩽ hµ∗ν(T ). Similarly, if hν(T ) < ∞, we get hµ(T ) ⩽ hµ∗ν(T ). For ν = m,
we have µ ∗m = m (since m is left translation invariant, this holds for the case that µ
is a finite linear combination of point masses, and the general case follows by taking an
strict limit), therefore, if we know that hm(T ) < ∞, we get hµ(T ) ⩽ hm(T ). This shows
that in this case, m is a measure with maximal entropy. To have a case, where m is the
unique measure with maximal entropy, we further need an ergodicity condition.

We prove the following result, which extends [13, Theorem 2.1].

Theorem 3.2 Let G be a σ-compact, locally compact Polish group with left Haar
measure m and T : G → G be an automorphism of G. If hm(T ) < ∞ then m is the
unique invariant Radon measure of maximal entropy on G iff m is ergodic.

To prepare for an argument based on ergodicity, let us first observe that B1 and Bc
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are (m×m)-independent subfields of B×B. Given Borel subsets E,F of G,

m×m(π−1
1 (E) ∩ π−1(F )) =

∫
E

∫
x−1F

dm(y)dm(x)

=

∫
E
m(x−1F )dm(x)

= m(F )m(E),

including the case that some of the terms above might be infinite. Conversely, if B1 and
Bc are (m× ν)-independent, for some ν ∈ M(G), then

m× ν(π−1
1 (E) ∩ π−1(F )) = m× ν(π−1

1 (E))m× ν(π−1(F ))

= m(E)m ∗ ν(F )

= m(E)m(F )

= m×m(π−1
1 (E) ∩ π−1(F )),

thus ν = m.
Proof of Theorem 3.2. Suppose that h(m) < ∞ and m is ergodic. Following [13,

Theorem 2.1] (which proves the result for compact groups) we want to show that m
is the unique invariant measure with maximal entropy. Take any invariant measure µ.
First assume that µ is also ergodic. Since (G,T,m) is mixing, (G ×G,T × T,m × µ) is
(B×B)-ergodic, and so it is also B1-ergodic and Bc-ergodic. Both these systems have
finite entropy, hence there are measurable partitions which give these entropies. On the
other hand,

hm(T,B) + hµ(T,B) = hm×µ(T × T,B×B)

= hm×µ(T × T,B1 ∨Bc)

⩽ hm×µ(T × T,B1) + hm×µ(T × T,Bc)

= hm(T,B) + hm∗µ(T,B)

= 2hm(T,B),

and if hm(T,B) = hµ(T,B), then all the terms above are equal. In particular,

hm×µ(T × T,B1 ∨Bc) = hm×µ(T × T,B1) + hm×µ(T × T,Bc),

which implies that B1 and Bc are (m× ν)-independent, therefore µ = m.
Next, for a not necessarily ergodic, but probability measure µ, we use the Jacob’s bar-

rycentric decomposition, which is valid for our dynamic when G is a complete separable
metrizable group [10, Theorem 9.6.2]. The ergodic decomposition of µ consists of ergodic
invariant probability measures µP , P ∈ P, and there is a probability measure µ̂ on P
such that

hµ(T ) =

∫
P
hµP

(T )dµ̂(P ),

where the left side is finite (by the above observations) and so is the integrand (every-
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where) in the right side. We may assume that µP ̸= m (otherwise we are back to the
compact case), and so by the above observation, hµP

(T ) < hm(T ), for each P , thus
hµ(T ) < hm(T ).

Finally we deal we the general case, without any restriction on the invariant Radon
measure µ. The above cited theorem is proved in [10] for probability measures, however
the proof is based on the fact that P (being the same as the convex set of probability
Borel measures on a complete separable metrizable space) is complete, separable and
metrizable (in the weak∗ topology). When G is a σ-compact Polish group, this could
be recovered for non probability measure µ. First, by [1, 2.2.9], there is a standard
probability space (Y, λ), a collection of Borel invariant ergodic measures {µy}y∈Y such
that y 7→ µy(E) is λ-measurable and µ(E) =

∫
Y µy(E)dλ(y), for each E ∈ B. Since Y

is a standard Borel space, we may apply the same proof as in [10, Theorem 9.6.2] (plus
the above argument) to get

hµ(T ) =

∫
Y
hµy

(T )dλ(y) < hm(T ).

This shows that if m is ergodic then m is the unique invariant measure of maximal
entropy. Conversely, if m is not ergodic, then applying the above analog of the Jacob’s
barrycentric decomposition to m (instead of µ) we conclude that hm(T ) > hν(T ) could
not hold for any ergodic invariant measure ν, that is m is not unique among invariant
measures of maximal entropy.
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