Journal of Linear and Topological Algebra Vol. 08, No. 02, 2019, 97-104

Generalized hyperstability of the cubic functional equation in ultrametric spaces

Y. Aribou^{a,*}, H. Dimou^a, S. Kabbaj^a

^aDepartment of Mathematics, Faculty of Sciences, University of Ibn Tofail, BP 133 Kenitra, Morocco.

Received 25 April 2018; Revised 26 July 2018; Accepted 20 February 2019. Communicated by Choonkil Park

Abstract. In this paper, we present the generalized hyperstability results of cubic functional equation in ultrametric Banach spaces using the fixed point method.

© 2019 IAUCTB. All rights reserved.

Keywords: Stability, hyperstability, ultrametric space, cubic functional equation.

2010 AMS Subject Classification: 42C99, 46B99, 46C99.

1. Introduction and preliminaries

The starting point of studying the stability of functional equations seems to be the famous talk of Ulam [20] in 1940, in which he discussed a number of important unsolved problems. Among those was the question concerning the stability of group homomorphisms.

Given a group G_1 , a metric group G_2 with the metric d(.,.) and a positive number ϵ , does there exists a $\delta > 0$ such that if $f: G_1 \to G_2$ satisfies $d(f(x,y), f(x)f(y)) \leq \delta$ for all $x, y \in G_1$, then a homomorphism $\phi: G_1 \to G_2$ exists with $d(f(x), \phi(x)) \leq \epsilon$, for all $x \in G_1$.

The first partial answer to Ulam question was given by Hyers [15] in the case of Cauchy equation in Banach spaces. Later, the result of Hyers was significantly generalized by Rassias [19] and Găvruţa [13]. Since then, the stability problems of several functional equations have been extensively investigated.

 * Corresponding author.

© 2019 IAUCTB. All rights reserved. http://jlta.iauctb.ac.ir

E-mail address: youssefaribou17@gmail.com (Y. Aribou); dimouhajira@gmail.com (H. Dimou); samkabbaj@yahoo.fr (S. Kabbaj).

We say a functional equation is hyperstable if any function f satisfying the equation approximately (in some sense) must be actually solutions to it. It seems that the first hyperstability result was published in [5] and concerned the ring homomorphisms. However, the term hyperstability has been used for the first time in [17]. Quite often the hyperstability is confused with superstability which admits bounded functions. The next definition more precisely describes the notion of hyperstability (B^A to mean "the family of all functions mapping from a nonempty set A into a nonempty set B").

Definition 1.1 Let X be a nonempty set, (Y, d) be a metric space, $\varepsilon \in \mathbb{R}_0^{X^n}$ and $\mathcal{F}_1, \mathcal{F}_2$ be operators mapping from a nonempty set $\mathcal{D} \subset Y^X$ into Y^{X^n} . We say that the operator equation

$$\mathcal{F}_1\varphi(x_1,\ldots,x_n) = \mathcal{F}_2\varphi(x_1,\ldots,x_n), \quad (x_1,\ldots,x_n \in X)$$
(1)

is ε -hyperstable provided that every $\varphi_0 \in \mathcal{D}$ which satisfies

$$d\left(\mathcal{F}_{1}\varphi_{0}(x_{1},\ldots,x_{n}),\mathcal{F}_{2}\varphi_{0}(x_{1},\ldots,x_{n})\right) \leqslant \varepsilon(x_{1},\ldots,x_{n}), \quad (x_{1},\ldots,x_{n}\in X)$$

fulfills the equation (1).

For information concerning the notion of hyperstability we refer to the survey paper [12]. Numerous papers on this subject have been published and we refer to [1-4, 6-8, 14, 17, 18].

Throughout this paper, \mathbb{N} stands for the set of all positive integers, $\mathbb{N}_0 := \mathbb{N} \cup \{0\}$, N_{m_0} the set of integers $\geq m_0$, $\mathbb{R}_+ := [0, \infty)$ and we use the notation X_0 for the set $X \setminus \{0\}$.

Let us recall (see, for instance, [16]) some basic definitions and facts concerning non-Archimedean normed spaces.

Definition 1.2 By a non-Archimedean field we mean a field \mathbb{K} equipped with a function (valuation) $|\cdot| : \mathbb{K} \to [0, \infty)$ such that for all $r, s \in \mathbb{K}$, the following conditions hold:

- (1) |r| = 0 if and only if r = 0,
- (2) |rs| = |r||s|,
- (3) $|r+s| \leq \max\{|r|, |s|\}.$

The pair $(\mathbb{K}, |.|)$ is called a valued field.

In any non-Archimedean field we have |1| = |-1| = 1 and $|n| \leq 1$ for $n \in \mathbb{N}_0$. In any field K the function $|\cdot| : \mathbb{K} \to \mathbb{R}_+$ given by

$$|x| := \begin{cases} 0, \, x = 0, \\ 1, \, x \neq 0, \end{cases}$$

is a valuation which is called trivial, but the most important examples of non-Archimedean fields are *p*-adic numbers which have gained the interest of physicists for their research in some problems coming from quantum physics, *p*-adic strings and super strings.

Definition 1.3 Let X be a vector space over a scalar field \mathbb{K} with a non-Archimedean non-trivial valuation $|\cdot|$. A function $||\cdot||_* : X \to \mathbb{R}$ is a non-Archimedean norm valuation if it satisfies the following conditions:

- (1) $||x||_* = 0$ if and only if x = 0,
- (2) $||rx||_* = |r| ||x||_* \ (r \in \mathbb{K}, x \in X),$
- (3) The strong triangle inequality (ultrametric); namely

 $||x + y||_* \leq \max\{||x||_*, ||y||_*\}$ for all $x, y \in X$.

Then $(X, \|\cdot\|_*)$ is called a non-Archimedean normed space or an ultrametric normed space.

Definition 1.4 Let $\{x_n\}$ be a sequence in a non-Archimedean normed space X.

- (1) A sequence $\{x_n\}_{n=1}^{\infty}$ in a non-Archimedean space is a Cauchy sequence iff the sequence $\{x_{n+1} x_n\}_{n=1}^{\infty}$ converges to zero;
- (2) The sequence $\{x_n\}$ is said to be convergent if, there exists $x \in X$ such that, for any $\varepsilon > 0$, there is a positive integer N such that $||x_n - x||_* \leq \varepsilon$, for all $n \ge N$. Then the point $x \in X$ is called the limit of the sequence $\{x_n\}$, which is denoted by $\lim_{n \to \infty} x_n = x$;
- (3) If every Cauchy sequence in X converges, then the non-Archimedean normed space X is called a non-Archimedean Banach space or an ultrametric Banach space.

Let X, Y be normed spaces. A function $f: X \to Y$ is Cubic provided it satisfies the functional equation

$$f(2x+y) + f(2x-y) = 2f(x+y) + 2f(x-y) + 12f(x) \text{ for all } x, y \in X, \quad (2)$$

and we can say that $f: X \to Y$ is Cubic on X_0 if it satisfies (2) for all $x, y \in X_0$ such that $x + y \neq 0, x - y \neq 0, 2x + y \neq 0$ and $2x - y \neq 0$.

In this paper, we present some hyperstability results for the equation (2) in ultrametric Banach spaces using the fixed point method derived from [4, 7, 9]. The obtained results generalize the existing ones in [2]. Before proceeding to the main results, we state Theorem 1.5 which is useful for our purpose. To present it, we introduce three following hypotheses:

- (H1) X is a nonempty set, Y is an ultrametric Banach space over a non-Archimedean field, $f_1, ..., f_k : X \longrightarrow X$ and $L_1, ..., L_k : X \longrightarrow \mathbb{R}_+$ are given.
- (H2) $\mathcal{T}: Y^X \longrightarrow Y^X$ is an operator satisfying the inequality

$$\left\|\mathcal{T}\xi(x) - \mathcal{T}\mu(x)\right\|_{*} \leq \max_{1 \leq i \leq k} \left\{L_{i}(x)\right\|\xi\left(f_{i}(x)\right) - \mu\left(f_{i}(x)\right)\right\|_{*}\right\}, \, \xi, \mu \in Y^{X}, \, x \in X.$$

(H3) $\Lambda : \mathbb{R}^X_+ \longrightarrow \mathbb{R}^X_+$ is a linear operator defined by

$$\Lambda\delta(x) := \max_{1 \leq i \leq k} \left\{ L_i(x)\delta\left(f_i(x)\right) \right\}, \ \delta \in \mathbb{R}^X_+, \ x \in X.$$

Thanks to a result due to Brzdęk and Ciepliński [11, re2], we state an analogue of the fixed point theorem [10, Theorem 1] in ultrametric spaces. We use it to assert the existence of a unique fixed point of operator $\mathcal{T}: Y^X \longrightarrow Y^X$.

Theorem 1.5 Let hypotheses (H1)-(H3) be valid and functions $\varepsilon : X \longrightarrow \mathbb{R}_+$ and $\varphi : X \longrightarrow Y$ fulfill conditions $\|\mathcal{T}\varphi(x) - \varphi(x)\|_* \leq \varepsilon(x)$ and $\lim_{n \to \infty} \Lambda^n \varepsilon(x) = 0$ for $x \in X$. Then there exists a unique fixed point $\psi \in Y^X$ of \mathcal{T} with $\|\varphi(x) - \psi(x)\|_* \leq \sup_{n \in \mathbb{N}_0} \Lambda^n \varepsilon(x)$ for $x \in X$. Moreover $\psi(x) := \lim_{n \to \infty} \mathcal{T}^n \varphi(x)$ for $x \in X$.

2. Main results

In this section, we use Theorem 1.5 as a basic tool to prove the hyperstability results of the cubic functional equation in ultrametric Banach spaces. In the rest of the paper $\{\alpha_n\}_n$ is a sequence of real numbers such that $\lim_{n\to\infty} \alpha_n = 0$. Moreover, we always assume that the characteristic of \mathbb{K} is not 2 (i.e., $2 \neq 0$).

Theorem 2.1 Let X be a real linear space and $(Y, \|\cdot\|_*)$ be an ultrametric Banach space. Assume that the $\varphi: X \times X \to [0, +\infty)$ be a function fulfils the conditions

$$\lim_{m \to \infty} \max_{i+j+k+l=n} \left\{ \varphi \left(a_m^i b_m^j c_m^k d_m^l x, a_m^i b_m^j c_m^k d_m^l y \right) \right\} = 0 \tag{3}$$

and

$$\lim_{n \to \infty} \max_{i+j+k+l=n} \left\{ \varphi \left(a_m^{i+1} b_m^j c_m^k d_m^l x, a_m^i b_m^j c_m^k d_m^l \alpha_m x \right) \right\} = 0 \tag{4}$$

for all $x, y \in X_0$ and for sufficiently large integers m, where $a_m = \frac{1+\alpha_m}{2}$, $b_m = \frac{1+3\alpha_m}{2}$, $c_m = \frac{1-\alpha_m}{2}$ and $d_m = 2\alpha_m + 1$. Assume that $f: X \to Y$ satisfies

$$\|f(2x+y) + f(2x-y) - 2f(x+y) - 2f(x-y) - 12f(x)\|_* \le \varphi(x,y)$$
(5)

for all $x, y \in X_0$. Then f is cubic on X_0 .

Proof. Replacing y by $\alpha_m x$ and x by $\frac{1+\alpha_m}{2}x$ in (5), where $\alpha_m \in \mathbb{R}$, we have

$$\begin{split} \left\| 12f\left(\frac{1+\alpha_m}{2}x\right) + 2f\left(\frac{1+3\alpha_m}{2}x\right) + 2f\left(\frac{1-\alpha_m}{2}x\right) - f((2\alpha_m+1)x) - f(x) \right\|_* \\ &\leqslant \varphi(\frac{1+\alpha_m}{2}x, \alpha_m x), \end{split}$$

which implies

$$\left\| 12f(a_m x) + 2f(b_m x) + 2f(c_m x) - f(d_m x) - f(x) \right\|_* \le \varphi(a_m x, \alpha_m x)$$
(6)

for all $x \in X_0$, where $a_m = \frac{\alpha_m + 1}{2}$. Define operators $\mathcal{T}_m : Y^{X_0} \to Y^{X_0}$ and $\Lambda_m : \mathbb{R}^{X_0}_+ \to \mathbb{R}^{X_0}_+$ by

$$\begin{aligned} \mathcal{T}_m \xi(x) &:= 12\xi(a_m x) + 2\xi(b_m x) + 2\xi(c_m x) - \xi(d_m x), \quad \xi \in Y^{X_0}, \ x \in X_0, \\ \Lambda_m \delta(x) &:= \max \left\{ \ \delta(a_m x) \ , \ \delta(b_m x), \ \delta(c_m x) \ , \delta(d_m x) \right\} \quad \delta \in \mathbb{R}^{X_0}_+, \ x \in X_0, \end{aligned}$$

and write

$$\varepsilon_m(x) := \varphi(a_m x, \alpha_m x), \quad x \in X_0.$$
(7)

It is easily seen that Λ_m has the form described in (H3) with k = 4, $f_1(x) = a_m x$, $f_2(x) = b_m x$, $f_3(x) = c_m x$, $f_4(x) = d_m x$ and $L_1(x) = L_2(x) = L_3(x) = L_4(x) = 1$. Further, (6) can be written in the form $\|\mathcal{T}_m f(x) - f(x)\|_* \leq \varepsilon_m(x)$ for $x \in X_0$. Moreover, for every $\xi, \mu \in Y^{X_0}, x \in X_0$

$$\begin{aligned} \left\| \mathcal{T}_{m}\xi(x) - \mathcal{T}_{m}\mu(x) \right\|_{*} \\ &= \left\| 12\xi(a_{m}x) + 2\xi(b_{m}x) + 2\xi(c_{m}x) - \xi(d_{m}x) - 12\mu(a_{m}x) - 2\mu(b_{m}x) - 2\mu(c_{m}x) + \mu(d_{m}x) \right\|_{*} \\ &\leqslant \max\left\{ \left\| (\xi - \mu)(a_{m}x) \right\|_{*}, \left\| (\xi - \mu)(b_{m}x) \right\|_{*}, \left\| (\xi - \mu)(c_{m}x) \right\|_{*}, \left\| (\xi - \mu)(d_{m}x) \right\|_{*} \right\} \\ &= \max\left\{ \left\| (\xi - \mu)(f_{1}(x)) \right\|_{*}, \left\| (\xi - \mu)(f_{2}(x)) \right\|_{*}, \left\| (\xi - \mu)(f_{3}(x)) \right\|_{*}, \left\| (\xi - \mu)(f_{4}(x)) \right\|_{*} \right\}. \end{aligned}$$

So, (H2) is valid. By using the mathematical induction, we will show that for all $n \in \mathbb{N}_0$ and for each $x \in X_0$, we have

$$\Lambda_m^n \varepsilon_m(x) = \max_{i+j+k+l=n} \left\{ \varphi \left(a_m^{i+1} b_m^j c_m^k d_m^l x, a_m^i b_m^j c_m^k d_m^l \alpha_m x \right) \right\},\tag{8}$$

where $a_m = \frac{1+\alpha_m}{2}$. From (7), we obtain that (8) holds for n = 0. Next, we will assume that (8) holds for n = k, where $k \in \mathbb{N}$. Then we have

This shows that (8) holds for n = k+1. Now, we can conclude that the equality (8) holds for all $n \in \mathbb{N}_0$. From (4) and (8), we obtain $\lim_{n \to \infty} \Lambda^n \varepsilon_m(x) = 0$ for all $x \in X_0$. Hence, according to Theorem 1.5, there exists a unique solution $C_m : X_0 \to Y$ of the equation

$$C_m(x) = 12C_m(a_m x) + 2C_m(b_m x) + 2C_m(c_m x) - C_m(d_m x)$$
(9)

such that

$$\|f(x) - C_m(x)\|_* \leqslant \sup_{n \in \mathbb{N}_0} \left\{ \max_{i+j+k+l=n} \left\{ \varphi \left(a_m^{i+1} b_m^j c_m^k d_m^l x, a_m^i b_m^j c_m^k d_m^l \alpha_m x \right) \right\} \right\}$$
(10)

for all $x \in X_0$. Moreover, $C_m(x) := \lim_{n \to \infty} \mathcal{T}_m^n f(x)$ for all $x \in X_0$. Now we show that

$$\|12\mathcal{T}_{m}^{n}f(x) + 2\mathcal{T}_{m}^{n}f(x+y) + 2\mathcal{T}_{m}^{n}f(x-y) - \mathcal{T}_{m}^{n}f(2x+y) - \mathcal{T}_{m}^{n}f(2x-y)\|_{*} \\ \leqslant \max_{i+j+k+l=n} \Big\{\varphi\Big(a_{m}^{i}b_{m}^{j}c_{m}^{k}d_{m}^{l}x, a_{m}^{i}b_{m}^{j}c_{m}^{k}d_{m}^{l}y\Big)\Big\},$$
(11)

for every $x, y \in X_0$ such that $x + y \neq 0, x - y \neq 0, 2x - y \neq 0, 2x + y \neq 0$. Since the case n = 0 is just (5), take $k \in \mathbb{N}$ and assume that (11 holds for n and every $x, y \in X_0$ such that $x + y \neq 0, x - y \neq 0, 2x - y \neq 0, 2x + y \neq 0$. Then

$$\begin{split} & \left\| 12\mathcal{T}_{m}^{n+1}f(x) + 2\mathcal{T}_{m}^{k+1}f(x+y) + 2\mathcal{T}_{m}^{n+1}f(x-y) - \mathcal{T}_{m}^{n+1}f(2x+y) - \mathcal{T}_{m}^{n+1}f(2x-y) \right\|_{*} \\ & = \left\| 144\mathcal{T}_{m}^{n}f(a_{m}x) + 24\mathcal{T}_{m}^{n}f(b_{m}x) + 2\mathcal{T}_{m}^{n}f(c_{m}x) - 12\mathcal{T}_{m}^{n}f(d_{m}x) + 2\mathcal{T}_{m}^{n}f(a_{m}(x+y)) \right. \\ & + \mathcal{T}_{m}^{n}f(b_{m}(x+y) + \mathcal{T}_{m}^{n}f(c_{m}(x+y) - 2\mathcal{T}_{m}^{n}f(d_{m}(x+y)) + 2\mathcal{T}_{m}^{n}f(a_{m}(x-y)) \\ & + \mathcal{T}_{m}^{n}f(b_{m}(x-y) + \mathcal{T}_{m}^{n}f(c_{m}(x-y) - 2\mathcal{T}_{m}^{n}f(d_{m}(x-y)) - 12\mathcal{T}_{m}^{n}f(a_{m}(2x+y)) \\ & - 2\mathcal{T}_{m}^{n}f(b_{m}(2x+y) - 2\mathcal{T}_{m}^{n}f(c_{m}(2x+y) + \mathcal{T}_{m}^{n}f(d_{m}(2x+y)) - 12\mathcal{T}_{m}^{n}f(a_{m}(2x-y)) \\ & - 2\mathcal{T}_{m}^{n}f(b_{m}(2x-y) - 2\mathcal{T}_{m}^{n}f(c_{m}(2x-y) + \mathcal{T}_{m}^{n}f(d_{m}(2x-y)) \right\|_{*} \\ \leqslant \max\left\{ \left\| 12\mathcal{T}_{m}^{n}f(a_{m}x) + 2\mathcal{T}_{m}^{n}f(a_{m}(x+y)) + 2\mathcal{T}_{m}^{n}f(a_{m}(2x+y)) - \mathcal{T}_{m}^{n}f(a_{m}(2x+y)) \right. \\ & - \mathcal{T}_{m}^{n}f(a_{m}(2x-y)) \right\|_{*}, \left\| 12\mathcal{T}_{m}^{n}f(b_{m}(x+y)) + 2\mathcal{T}_{m}^{n}f(b_{m}(x-y)) - \mathcal{T}_{m}^{n}f(b_{m}(2x+y)) - \mathcal{T}_{m}^{n}f(b_{m}(2x+y)) - \mathcal{T}_{m}^{n}f(b_{m}(2x+y)) \\ & - \mathcal{T}_{m}^{n}f(b_{m}(2x+y)) - \mathcal{T}_{m}^{n}f(b_{m}(2x-y)) \right\|_{*}, \left\| 12\mathcal{T}_{m}^{n}f(c_{m}(x+y)) + 2\mathcal{T}_{m}^{n}f(c_{m}(x+y)) \right. \\ & + 2\mathcal{T}_{m}^{n}f(c_{m}(x-y)) - \mathcal{T}_{m}^{n}f(c_{m}(2x+y)) - \mathcal{T}_{m}^{n}f(c_{m}(2x-y)) \right\|_{*}, \left\| 12\mathcal{T}_{m}^{n}f(d_{m}(x+y)) + 2\mathcal{T}_{m}^{n}f(d_{m}(x+y)) + 2\mathcal{T}_{m}^{n}f(d_{m}(x+y)) - \mathcal{T}_{m}^{n}f(d_{m}(2x-y)) \right\|_{*} \right\} \\ \leqslant \max\left\{ \left. \max_{i+j+k+l=n} \left\{ \varphi\left(a_{i}^{i}b_{m}^{i}c_{m}^{k}d_{m}^{k}x, a_{i}^{i+1}b_{m}^{i}c_{m}^{k}d_{m}^{k}y\right) \right\}, \\ \\ & \max_{i+j+k+l=n} \left\{ \varphi\left(a_{i}^{i}b_{m}^{i}c_{m}^{k}d_{m}^{k}x, a_{m}^{i}b_{m}^{i}c_{m}^{k}d_{m}^{k}y\right) \right\}, \\ \\ & \max_{i+j+k+l=n} \left\{ \varphi\left(a_{i}^{i}b_{m}^{i}c_{m}^{k}d_{m}^{k}x, a_{m}^{i}b_{m}^{i}c_{m}^{k}d_{m}^{k}y\right) \right\}, \\ \\ & \leq \max_{i+j+k+l=n+1} \left\{ \varphi\left(a_{i}^{i}b_{m}^{i}c_{m}^{k}d_{m}^{k}x, a_{m}^{i}b_{m}^{i}c_{m}^{k}d_{m}^{k}y\right) \right\}, \\ \\ & \leq \max_{i+j+k+l=n+1} \left\{ \varphi\left(a_{m}^{i}b_{m}^{i}c_{m}^{k}d_{m}^{k}x, a_{m}^{i}b_{m}^{i}c_{m}^{k}d_{m}^{k}y\right) \right\}, \end{aligned}$$

for all $x, y \in X_0$ such that $x + y \neq 0$, $x - y \neq 0$, $2x - y \neq 0$ and $2x + y \neq 0$. Thus, by induction, we have shown that (11) holds for every $n \in \mathbb{N}_0$. Letting $n \to \infty$ in (11), we obtain that

$$C_m(2x+y) + C_m(2x-y) = 2C_m(x+y) + 2C_m(x-y) - 12C_m(x)$$

for all $x, y \in X_0$ such that $x + y \neq 0$, $x - y \neq 0$, $2x - y \neq 0$ and $2x + y \neq 0$. In this way, we obtain a sequence $\{C_m\}_{m \ge m_0}$ of cubic functions on X_0 such that

$$\|f(x) - C_m(x)\|_* \leqslant \sup_{n \in \mathbb{N}_0} \left\{ \max_{i+j+k+l=n} \left\{ \varphi \left(a_m^{i+1} b_m^j c_m^k d_m^l x, a_m^i b_m^j c_m^k d_m^l \alpha_m x \right) \right\} \right\}, \quad x \in X_0$$

this implies that

$$\|f(x) - C_m(x)\|_* \leq \max_{i+j+k+l=n} \left\{ \varphi \left(a_m^{i+1} b_m^j c_m^k d_m^l x, a_m^i b_m^j c_m^k d_m^l \alpha_m x \right) \right\}, \quad x \in X_0.$$

Letting $m \to \infty$ in (3), it follows that f is cubic on X_0 .

The following corollaries are immediate consequences of Theorem 2.1.

Corollary 2.2 [2, Theorem 2.1] Let $(X, \|\cdot\|)$ and $(Y, \|\cdot\|_*)$ be normed space and ultrametric Banach space respectively, $c \ge 0$, $p, q \in \mathbb{R}$, p+q < 0 and q < 0. If $f: X \to Y$ satisfies

$$\|f(2x+y) + f(2x-y) - 2f(x+y) - 2f(x-y) - 12f(x)\|_* \leq c \|x\|^p \|y\|^q$$

for all $x, y \in X_0$. Then f is cubic on X_0 .

Proof. The proof follows from Theorem 2.1 by taking $\varphi(x, y) = c ||x||^p ||y||^q$ for all $x, y \in X_0$. It is clear that φ satisfies the conditions (3) and (4). Then, we can choose $\alpha_m = m$, where $m \in \mathbb{N}$ to get the desired result.

By similar method we can prove the following corollary.

Corollary 2.3 [2, Theorem 2.2] Let $(X, \|\cdot\|)$ and $(Y, \|\cdot\|_*)$ be normed space and ultrametric Banach space respectively, $c \ge 0$, $p, q \in \mathbb{R}$, p+q > 0 and q > 0. If $f: X \to Y$ satisfies

$$\|f(2x+y) + f(2x-y) - 2f(x+y) - 2f(x-y) - 12f(x)\|_* \leq c \|x\|^p \|y\|^q$$

for all $x, y \in X_0$. Then f is cubic on X_0 .

Proof. Putting $\varphi(x, y) = c ||x||^p ||y||^q$ for all $x, y \in X_0$ in Theorem 2.1, we get the the desired result when we choose $\alpha_m = \frac{-2}{m}$, where $m \in \mathbb{N}_3$.

Acknowledgments

We thank the reviewer very much for their suggestions.

References

- M. Almahalebi, On the hyperstability of σ-Drygas functional equation on semigroups, Aequationes math. 90 (4) (2016), 849-857.
- M. Alamahalebi, A. Chahbi, Hyperstability of the Jensen functional equation in ultrametric spaces, In press.
 A. Bahyrycz, J. Brzdęk, M. Piszczek, On approximately *p*-wright afine functions in ultrametric spaces, J. Funct. Spaces Appl. (2013), 2013;723545.
- [4] A. Bahyrycz, M. Piszczek, Hyperstability of the Jensen functional equation, Acta Math. Hungar. 142 (2014), 353-365.
- [5] D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949), 385-397.
- [6] J. Brzdęk, A hyperstability result for the Cauchy equation, Bull. Aust. Math. Soc. 89 (2014), 33-40.
- J. Brzdęk, Hyperstability of the Cauchy equation on restricted domains, Acta Math. Hungar. 141 (1-2) (2013), 58-67.
- [8] J. Brzdęk, Remarks on hyperstability of the Cauchy functional equation, Aequationes Math. 86 (2013), 255-267.
- [9] J. Brzdęk, Stability of additivity and fixed point methods, Fixed Point Theory Appl. (2013), 2013:285.
- [10] J. Brzdęk, J. Chudziak, Zs. Páles, A fixed point approach to stability of functional equations, Nonlinear Anal. 74 (2011), 6728-6732.
- [11] J. Brzdęk, K. Ciepliński, A fixed point approach to the stability of functional equations in non-Archimedean metric spaces, Nonlinear Analysis 74 (2011), 6861-6867.
- [12] J. Brzdęk, K. Ciepliński, Hyperstability and superstability, Abs. Appl. Anal. (2013), 2013:401756.
- [13] P. Găvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
- [14] E. Gselmann, Hyperstability of a functional equation, Acta. Math. Hungar. 124 (2009), 179-188.
- [15] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
 [16] A. Khyersiler, New Archived day, Archaiz Organization, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
- [16] A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer Academic Publishers, Dordrecht, 1997.
- [17] Gy. Maksa, Zs. Páles, Hyperstability of a class of linear functional equations, Acta. Math. 17 (2) (2001), 107-112.

- [18] M. Piszczek, Remark on hyperstability of the general linear equation, Aequationes. Math. 88 (1) (2014), 163-168.
- [19] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
- [20] S. M. Ulam, Problems in Modern Mathematics, Science Editions, John-Wiley & Sons Inc, New York, 1964.