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1. Introduction and preliminaries

The starting point of studying the stability of functional equations seems to be the
famous talk of Ulam [20] in 1940, in which he discussed a number of important unsolved
problems. Among those was the question concerning the stability of group homomor-
phisms.

Given a group G1, a metric group G2 with the metric d(., .) and a positive number ϵ,
does there exists a δ > 0 such that if f : G1 → G2 satisfies d(f(x.y), f(x)f(y)) ⩽ δ for
all x, y ∈ G1, then a homomorphism ϕ : G1 → G2 exists with d(f(x), ϕ(x)) ⩽ ϵ, for all
x ∈ G1.

The first partial answer to Ulam question was given by Hyers [15] in the case of Cauchy
equation in Banach spaces. Later, the result of Hyers was significantly generalized by
Rassias [19] and Găvruţa [13]. Since then, the stability problems of several functional
equations have been extensively investigated.
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We say a functional equation is hyperstable if any function f satisfying the equation
approximately (in some sense) must be actually solutions to it. It seems that the first
hyperstability result was published in [5] and concerned the ring homomorphisms. How-
ever, the term hyperstability has been used for the first time in [17]. Quite often the
hyperstability is confused with superstability which admits bounded functions. The next
definition more precisely describes the notion of hyperstability (BA to mean “the family
of all functions mapping from a nonempty set A into a nonempty set B”).

Definition 1.1 Let X be a nonempty set, (Y, d) be a metric space, ε ∈ RXn

0 and F1, F2

be operators mapping from a nonempty set D ⊂ Y X into Y Xn

. We say that the operator
equation

F1φ(x1, . . . , xn) = F2φ(x1, . . . , xn), (x1, . . . , xn ∈ X) (1)

is ε-hyperstable provided that every φ0 ∈ D which satisfies

d (F1φ0(x1, . . . , xn),F2φ0(x1, . . . , xn)) ⩽ ε(x1, . . . , xn), (x1, . . . , xn ∈ X)

fulfills the equation (1).

For information concerning the notion of hyperstability we refer to the survey paper
[12]. Numerous papers on this subject have been published and we refer to [1–4, 6–
8, 14, 17, 18].

Throughout this paper, N stands for the set of all positive integers, N0 := N∪{0}, Nm0

the set of integers ⩾ m0, R+ := [0,∞) and we use the notation X0 for the set X \ {0}.
Let us recall (see, for instance, [16]) some basic definitions and facts concerning non-

Archimedean normed spaces.

Definition 1.2 By a non-Archimedean field we mean a field K equipped with a function
(valuation) | · | : K → [0,∞) such that for all r, s ∈ K, the following conditions hold:

(1) |r| = 0 if and only if r = 0,
(2) |rs| = |r||s|,
(3) |r + s| ⩽ max

{
|r|, |s|

}
.

The pair (K, |.|) is called a valued field.

In any non-Archimedean field we have |1| = | − 1| = 1 and |n| ⩽ 1 for n ∈ N0. In any
field K the function | · | : K → R+ given by

|x| :=
{
0, x = 0,
1, x ̸= 0,

is a valuation which is called trivial, but the most important examples of non-
Archimedean fields are p-adic numbers which have gained the interest of physicists for
their research in some problems coming from quantum physics, p-adic strings and super
strings.

Definition 1.3 Let X be a vector space over a scalar field K with a non-Archimedean
non-trivial valuation | · |. A function || · ||∗ : X → R is a non-Archimedean norm valuation
if it satisfies the following conditions:

(1) ∥x∥∗ = 0 if and only if x = 0,
(2) ∥rx∥∗ = |r| ∥x∥∗ (r ∈ K, x ∈ X),
(3) The strong triangle inequality (ultrametric); namely
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∥x+ y∥∗ ⩽ max
{
∥x∥∗, ∥y∥∗

}
for all x, y ∈ X.

Then (X, ∥ · ∥∗) is called a non-Archimedean normed space or an ultrametric normed
space.

Definition 1.4 Let {xn} be a sequence in a non-Archimedean normed space X.

(1) A sequence{xn}∞n=1 in a non-Archimedean space is a Cauchy sequence iff the
sequence {xn+1 − xn}∞n=1 converges to zero;

(2) The sequence {xn} is said to be convergent if, there exists x ∈ X such that, for
any ε > 0, there is a positive integer N such that ∥xn − x∥∗ ⩽ ε, for all n ⩾ N .
Then the point x ∈ X is called the limit of the sequence {xn}, which is denoted
by lim

n→∞
xn = x;

(3) If every Cauchy sequence in X converges, then the non-Archimedean normed
space X is called a non-Archimedean Banach space or an ultrametric Banach
space.

Let X, Y be normed spaces. A function f : X → Y is Cubic provided it satisfies the
functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x) for all x, y ∈ X, (2)

and we can say that f : X → Y is Cubic on X0 if it satisfies (2) for all x, y ∈ X0 such
that x+ y ̸= 0, x− y ̸= 0, 2x+ y ̸= 0 and 2x− y ̸= 0.

In this paper, we present some hyperstability results for the equation (2) in ultra-
metric Banach spaces using the fixed point method derived from [4, 7, 9]. The obtained
results generalize the existing ones in [2]. Before proceeding to the main results, we state
Theorem 1.5 which is useful for our purpose. To present it, we introduce three following
hypotheses:

(H1) X is a nonempty set, Y is an ultrametric Banach space over a non-Archimedean
field, f1, ..., fk : X −→ X and L1, ..., Lk : X −→ R+ are given.

(H2) T : Y X −→ Y X is an operator satisfying the inequality

∥∥∥T ξ(x)− T µ(x)
∥∥∥
∗
⩽ max

1⩽i⩽k

{
Li(x)

∥∥∥ξ(fi(x))− µ
(
fi(x)

)∥∥∥
∗

}
, ξ, µ ∈ Y X , x ∈ X.

(H3) Λ : RX
+ −→ RX

+ is a linear operator defined by

Λδ(x) := max1⩽i⩽k

{
Li(x)δ

(
fi(x)

)}
, δ ∈ RX

+ , x ∈ X.

Thanks to a result due to Brzdȩk and Ciepliñski [11, re2], we state an analogue of the fixed
point theorem [10, Theorem 1] in ultrametric spaces. We use it to assert the existence of
a unique fixed point of operator T : Y X −→ Y X .

Theorem 1.5 Let hypotheses (H1)-(H3) be valid and functions ε : X −→ R+ and
φ : X −→ Y fulfill conditions ∥T φ(x) − φ(x)∥∗ ⩽ ε(x) and lim

n→∞
Λnε(x) = 0 for x ∈ X.

Then there exists a unique fixed point ψ ∈ Y X of T with ∥φ(x)−ψ(x)∥∗ ⩽ supn∈N0
Λnε(x)

for x ∈ X. Moreover ψ(x) := limn→∞ T nφ(x) for x ∈ X.
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2. Main results

In this section, we use Theorem 1.5 as a basic tool to prove the hyperstability results
of the cubic functional equation in ultrametric Banach spaces. In the rest of the paper
{αn}n is a sequence of real numbers such that limn→∞ αn = 0. Moreover, we always
assume that the characteristic of K is not 2 (i.e., 2 ̸= 0).

Theorem 2.1 Let X be a real linear space and (Y, ∥ · ∥∗) be an ultrametric Banach
space. Assume that the φ : X ×X → [0,+∞) be a function fulfils the conditions

lim
m→∞

max
i+j+k+l=n

{
φ
(
aimb

j
mc

k
md

l
mx, a

i
mb

j
mc

k
md

l
my

)}
= 0 (3)

and

lim
n→∞

max
i+j+k+l=n

{
φ
(
ai+1
m bjmc

k
md

l
mx, a

i
mb

j
mc

k
md

l
mαmx

)}
= 0 (4)

for all x, y ∈ X0 and for sufficiently large integers m, where am = 1+αm

2 , bm =
1+3αm

2 ,cm = 1−αm

2 and dm = 2αm + 1. Assume that f : X → Y satisfies

∥f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x)∥∗ ⩽ φ(x, y) (5)

for all x, y ∈ X0. Then f is cubic on X0.

Proof. Replacing y by αmx and x by 1+αm

2 x in (5), where αm ∈ R, we have∥∥∥∥12f (1 + αm

2
x

)
+ 2f

(
1 + 3αm

2
x

)
+ 2f

(
1− αm

2
x

)
− f((2αm + 1)x)− f(x)

∥∥∥∥
∗

⩽ φ(
1 + αm

2
x, αmx),

which implies∥∥12f(amx) + 2f(bmx) + 2f(cmx)− f(dmx)− f(x)
∥∥
∗ ⩽ φ(amx, αmx) (6)

for all x ∈ X0, where am = αm+1
2 . Define operators Tm : Y X0 → Y X0 and Λm : RX0

+ →
RX0

+ by

Tmξ(x) := 12ξ(amx) + 2ξ(bmx) + 2ξ(cmx)− ξ(dmx), ξ ∈ Y X0 , x ∈ X0,

Λmδ(x) := max
{
δ(amx) , δ(bmx), δ(cmx) , δ(dmx)

}
δ ∈ RX0

+ , x ∈ X0,

and write

εm(x) := φ(amx, αmx), x ∈ X0. (7)

It is easily seen that Λm has the form described in (H3) with k = 4, f1(x) = amx,
f2(x) = bmx, f3(x) = cmx , f4(x) = dmx and L1(x) = L2(x) = L3(x) = L4(x) = 1.
Further, (6) can be written in the form ∥Tmf(x)−f(x)∥∗ ⩽ εm(x) for x ∈ X0. Moreover,
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for every ξ, µ ∈ Y X0 , x ∈ X0∥∥∥Tmξ(x)− Tmµ(x)
∥∥∥
∗

=
∥∥∥12ξ(amx) + 2ξ(bmx) + 2ξ(cmx)− ξ(dmx)− 12µ(amx)− 2µ(bmx)− 2µ(cmx) + µ(dmx)

∥∥∥
∗

⩽ max
{∥∥∥(ξ − µ)(amx)

∥∥∥
∗
,
∥∥∥(ξ − µ)(bmx)

∥∥∥
∗
,
∥∥∥(ξ − µ)(cmx)

∥∥∥
∗
,
∥∥∥(ξ − µ)(dmx)

∥∥∥
∗

}
= max

{∥∥∥(ξ − µ)
(
f1(x)

)∥∥∥
∗
,
∥∥∥(ξ − µ)

(
f2(x)

)∥∥∥
∗
,
∥∥∥(ξ − µ)

(
f3(x)

)∥∥∥
∗
,
∥∥∥(ξ − µ)

(
f4(x)

)∥∥∥
∗

}
.

So, (H2) is valid. By using the mathematical induction, we will show that for all n ∈ N0

and for each x ∈ X0, we have

Λn
mεm(x) = max

i+j+k+l=n

{
φ
(
ai+1
m bjmc

k
md

l
mx, a

i
mb

j
mc

k
md

l
mαmx

)}
, (8)

where am = 1+αm

2 . From (7), we obtain that (8) holds for n = 0. Next, we will assume
that (8) holds for n = k, where k ∈ N. Then we have

Λk+1
m εm(x) = Λm

(
Λk
mεm(x)

)
= max

{
Λk
mεm(amx),Λ

k
mεm(bmx),Λ

k
mεm(cmx),Λ

k
mεm(dmx)

}
= max

{
max

i+j+k+l=n

{
φ
(
ai+2
m bjmc

k
md

l
mx, a

i+1
m bjmc

k
md

l
mαmx

)}
,

max
i+j+k+l=n

{
φ
(
ai+1
m bj+1

m ckmd
l
mx, a

i
mb

j+1
m ckmd

l
mαmx

)}
,

max
i+j+k+l=n

{
φ
(
ai+1
m bjmc

k+1
m dlmx, a

i
mb

j
mc

k+1
m dlmαmx

)}
,

max
i+j+k+l=n

{
φ
(
ai+1
m bjmc

k
md

l+1
m x, aimb

j
mc

k
md

l+1
m αmx

)}}
= max

i+j+k+l=n+1

{
φ
(
ai+1
m bjmc

k
md

l
mx, a

i
mb

j
mc

k
md

l
mαmx

)}
This shows that (8) holds for n = k+1. Now, we can conclude that the equality (8) holds
for all n ∈ N0. From (4) and (8), we obtain lim

n→∞
Λnεm(x) = 0 for all x ∈ X0. Hence,

according to Theorem 1.5, there exists a unique solution Cm : X0 → Y of the equation

Cm(x) = 12Cm(amx) + 2Cm(bmx) + 2Cm(cmx)− Cm(dmx) (9)

such that

∥f(x)− Cm(x)∥∗ ⩽ sup
n∈N0

{
max

i+j+k+l=n

{
φ
(
ai+1
m bjmc

k
md

l
mx, a

i
mb

j
mc

k
md

l
mαmx

)}}
(10)

for all x ∈ X0. Moreover, Cm(x) := lim
n→∞

T n
mf(x) for all x ∈ X0. Now we show that

∥12T n
mf(x) + 2T n

mf(x+ y) + 2T n
mf(x− y)− T n

mf(2x+ y)− T n
mf(2x− y)∥∗

⩽ max
i+j+k+l=n

{
φ
(
aimb

j
mc

k
md

l
mx, a

i
mb

j
mc

k
md

l
my

)}
,

(11)
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for every x, y ∈ X0 such that x + y ̸= 0, x − y ̸= 0, 2x − y ̸= 0, 2x + y ̸= 0. Since the
case n = 0 is just (5), take k ∈ N and assume that (11 holds for n and every x, y ∈ X0

such that x+ y ̸= 0, x− y ̸= 0, 2x− y ̸= 0, 2x+ y ̸= 0. Then∥∥∥12T n+1
m f(x) + 2T k+1

m f(x+ y) + 2T n+1
m f(x− y)− T n+1

m f(2x+ y)− T n+1
m f(2x− y)

∥∥∥
∗

=
∥∥144T n

mf(amx) + 24T n
mf(bmx) + 24T n

mf(cmx)− 12T n
mf(dmx) + 24T n

mf(am(x+ y))

+ 4T n
mf(bm(x+ y) + 4T n

mf(cm(x+ y)− 2T n
mf(dm(x+ y)) + 24T n

mf(am(x− y))

+ 4T n
mf(bm(x− y) + 4T n

mf(cm(x− y)− 2T n
mf(dm(x− y))− 12T n

mf(am(2x+ y))

− 2T n
mf(bm(2x+ y)− 2T n

mf(cm(2x+ y) + T n
mf(dm(2x+ y))− 12T n

mf(am(2x− y))

− 2T n
mf(bm(2x− y)− 2T n

mf(cm(2x− y) + T n
mf(dm(2x− y))

∥∥∥
∗

⩽ max {∥12T n
mf(amx) + 2T n

mf(am(x+ y)) + 2T n
mf(am(x− y))− T n

mf(am(2x+ y))

− T n
mf(am(2x− y))∥∗, ∥12T n

mf(bmx) + 2T n
mf(bm(x+ y)) + 2T n

mf(bm(x− y))

− T n
mf(bm(2x+ y))− T n

mf(bm(2x− y))∥∗, ∥12T n
mf(cmx) + 2T n

mf(cm(x+ y))

+ 2T n
mf(cm(x− y))− T n

mf(cm(2x+ y))− T n
mf(cm(2x− y))∥∗, ∥12T n

mf(dmx)

+ 2T n
mf(dm(x+ y)) + 2T n

mf(dm(x− y))− T n
mf(dm(2x+ y))− T n

mf(dm(2x− y))∥∗}

⩽ max
{

max
i+j+k+l=n

{
φ
(
ai+1
m bjmc

k
md

l
mx, a

i+1
m bjmc

k
md

l
my

)}
,

max
i+j+k+l=n

{
φ
(
aimb

j+1
m ckmd

l
mx, a

i
mb

j+1
m ckmd

l
my

)}
,

max
i+j+k+l=n

{
φ
(
aimb

j
mc

k+1
m dlmx, a

i
mb

j
mc

k+1
m dlmy

)}
,

max
i+j+k+l=n

{
φ
(
aimb

j
mc

k
md

l+1
m x, aimb

j
mc

k
md

l+1
m y

)}
,

⩽ max
i+j+k+l=n+1

{
φ
(
aimb

j
mc

k
md

l
mx, a

i
mb

j
mc

k
md

l
my

)}}
for all x, y ∈ X0 such that x + y ̸= 0, x − y ̸= 0, 2x − y ̸= 0 and 2x + y ̸= 0. Thus, by
induction, we have shown that (11) holds for every n ∈ N0. Letting n → ∞ in (11), we
obtain that

Cm(2x+ y) + Cm(2x− y) = 2Cm(x+ y) + 2Cm(x− y)− 12Cm(x)

for all x, y ∈ X0 such that x+ y ̸= 0, x− y ̸= 0, 2x− y ̸= 0 and 2x+ y ̸= 0. In this way,
we obtain a sequence {Cm}m⩾m0

of cubic functions on X0 such that

∥f(x)− Cm(x)∥∗ ⩽ sup
n∈N0

{
max

i+j+k+l=n

{
φ
(
ai+1
m bjmc

k
md

l
mx, a

i
mb

j
mc

k
md

l
mαmx

)}}
, x ∈ X0

this implies that

∥f(x)− Cm(x)∥∗ ⩽ max
i+j+k+l=n

{
φ
(
ai+1
m bjmc

k
md

l
mx, a

i
mb

j
mc

k
md

l
mαmx

)}
, x ∈ X0.

Letting m→ ∞ in (3), it follows that f is cubic on X0. ■
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The following corollaries are immediate consequences of Theorem 2.1.

Corollary 2.2 [2, Theorem 2.1] Let (X, ∥ · ∥) and (Y, ∥ · ∥∗) be normed space and
ultrametric Banach space respectively, c ⩾ 0, p, q ∈ R, p+ q < 0 and q < 0. If f : X → Y
satisfies

∥f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x)∥∗ ⩽ c ∥x∥p ∥y∥q

for all x, y ∈ X0. Then f is cubic on X0.

Proof. The proof follows from Theorem 2.1 by taking φ(x, y) = c ∥x∥p ∥y∥q for all
x, y ∈ X0. It is clear that φ satisfies the conditions (3) and (4). Then, we can choose
αm = m, where m ∈ N to get the desired result. ■

By similar method we can prove the following corollary.

Corollary 2.3 [2, Theorem 2.2] Let (X, ∥ · ∥) and (Y, ∥ · ∥∗) be normed space and
ultrametric Banach space respectively, c ⩾ 0, p, q ∈ R, p+ q > 0 and q > 0. If f : X → Y
satisfies

∥f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 12f(x)∥∗ ⩽ c ∥x∥p ∥y∥q

for all x, y ∈ X0. Then f is cubic on X0.

Proof. Putting φ(x, y) = c ∥x∥p ∥y∥q for all x, y ∈ X0 in Theorem 2.1, we get the the
desired result when we choose αm = −2

m , where m ∈ N3. ■
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