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Abstract. In this paper, we prove that the category of crossed polymodules (i.e. crossed
modules of polygroups) and their morphisms is finitely complete. We, therefore, generalize
the group theoretical case of this completeness property of crossed modules.
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1. Introduction

For a given set X, an ordinary algebraic structure on X equips with binary operations
X × X → X. In general case, one can define a hyperstructure [9] in which the binary
operation is replaced with a binary hyperoperation X × X → P ∗(X). As a particular
case of hyperstructures, polygroups [5, 7] are introduced to generalize the group theory.
Consequently, there exists an inclusion functor Grp → PGrp from the category of groups
to the category of polygroups. Polygroups are applied in many areas such as geometry,
lattice theory, combinatorics and color scheme.

A crossed module of groups [14] G = (∂ : H → G,▷) is defined by a group ho-
momorphism ∂ : H → G together with a (left) group action of G on H satisfying
∂(g ▷ h) = g ∂(h) g−1 and ∂(h) ▷ h′ = hh′ h−1 for all h, h′ ∈ H and g ∈ G. The
complete philosophy of crossed modules from the topological and algebraic point of view
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can be found in [3, 4]. We also refer [11, 13] for some geometric and visual approaches
to the crossed modules.

Crossed modules of polygroups (namely crossed polymodules) are defined in [1] to
generalize the group crossed modules. Explicitly, any group crossed module is a crossed
polymodule. This yields an inclusion functor XMod → PXMod from the category of
crossed modules of groups to the category of crossed modules of polygroups. It is proven
in [10, 15] that the category of crossed modules of groups (in two different general ap-
proaches both cover group crossed modules) and their morphisms is complete.

In this paper, we show that the category of crossed polymodules and their morphisms
is complete; namely it has product, pullback and equalizer objects.

2. Preliminaries

We recall some notions from [1, 5, 6, 8] which will be used in sequel.

Definition 2.1 A polygroup is a multi-valued system P =
⟨
P, ◦, e,−1

⟩
consists of:

• a binary hyperoperation ◦ : P × P → P∗(P ) where P∗(P ) = P(P ) \ ∅,
• a unary operation −1 : P → P ,

• a fixed element e ∈ P ,

such that satisfying:

P1) (x ◦ y) ◦ z = x ◦ (y ◦ z),

P2) e ◦ x = x ◦ e = x,

P3) x ∈ y ◦ z implies y ∈ x ◦ z−1 and z ∈ y−1 ◦ x

for all x, y, z ∈ P .

Remark 1 If x ∈ P and A,B are non-empty subsets of P , then

A ◦B =
∪

a∈A,b∈B
a ◦ b ,

where x ◦B = {x} ◦B and A ◦ x = A ◦ {x}.

Remark 2 It follows directly from the polygroup conditions that

e ∈ x ◦ x−1 ∩ x−1 ◦ x, e−1 = e,
(
x−1

)−1
= x,

for all x ∈ P .

Example 2.2 Suppose that H is a subgroup of a group G. Define a system

G//H =
⟨
{HgH | g ∈ G} , ∗,H,−1

⟩
,

where (HgH)−1 = Hg−1H and also

(Hg1H) ∗ (Hg2H) = {Hg1hg2H | h ∈ H}.

Then the algebra of double cosets G//H is a polygroup.
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Remark 3 Every group is a polygroup. Therefore, we have the inclusion functor
Grp → PGrp from the category of groups to the category of polygroups.

Definition 2.3 Let
⟨
P, ◦, e,−1

⟩
and

⟨
P ′, ⋆, e,−1

⟩
be two polygroups and ϕ be a mapping

from P into P ′ such that ϕ(e) = e. Then ϕ is said to be

• an inclusion homomorphism, if ϕ(x ◦ y) ⊆ ϕ(x) ⋆ ϕ(y),

• a weak homomorphism, if ϕ(x ◦ y) ∩ ϕ(x) ⋆ ϕ(y) ̸= ∅,
• a strong homomorphism, if ϕ(x ◦ y) = ϕ(x) ⋆ ϕ(y),

for all x, y ∈ P .

Definition 2.4 Let P =
⟨
P, ◦, e,−1

⟩
be a polygroup and Ω be a non-empty set. A map

α : P ×Ω → P∗(Ω) is called a (left) polygroup action on Ω if the following axioms hold:

1) α(e, w) = {w} = w, for all w ∈ Ω,

2) α(h, α(g, w)) =
∪

x∈h◦g
α(x,w), for all g, h ∈ P and w ∈ Ω,

3)
∪

w∈Ω
α(g, w) = Ω, for all g ∈ P ,

4) x ∈ α(g, y) ⇒ y ∈ α(g−1, x), for all g ∈ P .

From the second condition, we get∪
w0∈α(g,w)

α(h,w0) =
∪

x∈h◦g
α(x,w).

For any w ∈ Ω, we write g ▷ w := α(g, w). Therefore, we have

1) e ▷ w = w,

2) h ▷ (g ▷ w) = (h◦ g) ▷ w, where g ▷ A =
∪
a∈A

g ▷ a and similarly B ▷ w =
∪
b∈B

b ▷ w,

for all A ⊆ Ω and B ⊆ P ,

3)
∪

w∈Ω
g ▷ w = Ω,

4) x ∈ g ▷ y ⇒ y ∈ g−1 ▷ x, for all g ∈ P .

Example 2.5 Suppose that
⟨
P, ◦, e,−1

⟩
is a polygroup. Then, we have the following

possible actions of P on itself:

• g ▷ x := x ◦ g−1,

• g ▷ x := g ◦ x,
• via conjugation, i.e. g ▷ x := g ◦ x ◦ g−1,

for all x, g ∈ P .

Now let us define crossed modules of polygroups and give some examples of them.

Definition 2.6 A crossed module of polygroups (i.e. a crossed polymodule) X =
(C,P, ∂) consist of polygroups

⟨
C, ⋆, e,−1

⟩
and

⟨
P, ◦, e,−1

⟩
together with a strong ho-

momorphism ∂ : C → P and a (left) action P × C → P∗(C) satisfying:

PX1) ∂(p ▷ c) = p ◦ ∂(c) ◦ p−1,

PX2) ∂(c) ▷ c′ = c ⋆ c′ ⋆ c−1,
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for all c, c′ ∈ C and p ∈ P .

Let X = (C,P, ∂) and X ′ = (C ′, P ′, ∂′) be two crossed polymodules. A crossed poly-
module morphism f = (f1, f0) : X → X ′ is a tuple of strong homomorphism such that
the diagram

C
f1

//

∂

��

C ′

∂′

��

P
f0

// P ′

commutes, and f1(p ▷ c) = f0(p) ▷ f1(c) for all p ∈ P and c ∈ C.
Consequently, we have the category of crossed polymodules denoted by PXMod.

Example 2.7 Some well known crossed polymodule examples are given below.
1) Let

⟨
P, ◦, e,−1

⟩
be a polygroup. The identity map idP : P → P is a crossed poly-

module with the action of P on itself by conjugation.
2) Let N ⊂ R be a normal subpolygroup of P (i.e. p−1 ◦N ◦ p ⊆ N for all p ∈ P ). The

inclusion map N → R is a crossed polymodule where the action is defined by conjugation.
3) Every group crossed module is a crossed polymodule. Therefore we have the inclusion

functor XMod → PXMod from the category of crossed modules of groups to the category
of crossed modules of polygroups.

3. Limits in PXMod/X

We know from [12] that the category of polygroups is complete. Briefly, the cartesian
product P × R is the product object with the projection morphisms (that are strong
homomorphisms). Moreover, suppose that α : P → S and β : R → S are two strong
homomorphisms. Then the subobject of the cartesian product:

P ×S R = {(p, r) | α (p) = β (r)} , (1)

gives the pullback of α, β, which is called fiber product. These two objects guarantee the
existence of equalizer object, see [2] for details.

3.1 Limits in the Category of Crossed X-Polymodules

Definition 3.1 The category of crossed polymodules with a fixed codomain X forms a
subcategory of PXMod denoted by PXMod/X. These kind of crossed polymodules will
be called crossed X-polymodules. A morphism in PXMod/X is defined by a tuple (f1, f0)
where f0 = id.

Notation 3.2 From now on, any polygroup operation will be denoted by “◦”, and any
polygroup action will be denoted by “ ▷” for the sake of simplicity.

Lemma 3.3 Suppose that we have two crossed polymodules (P, S, α) and (R,S, β). Then
there exists a crossed polymodule ∂ : P ×S R → S, where ∂ (p, r) = α (p) = β (r) with
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the action of S on P ×S R, s ▷ (p, r) = (s ▷ p, s ▷ r) for all s ∈ S and (p, r) ∈ P ×S R.

Proof. It is clear that the action is well-defined. Moreover ∂ is a strong homomorphism,
since

∂
(
(p, r) ◦

(
p′, r′

))
= ∂

(
p ◦ p′, r ◦ r′

)
= α

(
p ◦ p′

)
= α (p) ◦ α

(
p′
)
= ∂ (p, r) ◦ ∂

(
p′, r′

)
for all (p, r) , (p′, r′) ∈ P ×S R.

Moreover, ∂ satisfies the crossed polymodule conditions as follows.

PX1)

∂ (s ▷ (p, r)) = ∂ (s ▷ p, s ▷ r)

= α(s ▷ p)

= s ◦ α (p) ◦ s−1

= s ◦ ∂ (p, r) ◦ s−1,

PX2)

∂
(
p′, r′

)
▷ (p, r) = α

(
p′
)
▷ (p, r)

=
(
α
(
p′
)
▷ p, α

(
p′
)
▷ r

)
=

(
α
(
p′
)
▷ p, β

(
r′
)
▷ r

)
=

(
p′ ◦ p ◦ p′−1

, r′ ◦ r ◦ r′−1
)

=
(
p′, r′

)
◦ (p, r) ◦ (p′, r′)−1

for all (p, r) , (p′, r′) ∈ P ×S R and s ∈ S. ■

Lemma 3.4 Let (α, id) : (P,X, γ) → (S,X, ∂′) be a crossed polymodule morphism.
Then there exists a crossed polymodule (P, S, α) where the action of S on P are defined
along ∂′, namely, s ▷ p = ∂′(s) ▷ p.

Proof. Since (α, id) is a crossed polymodule morphism, the diagram

P
α

��@
@@

@@
@@

@

γ

��

S

∂′��~~
~~
~~
~

X

commutes; i.e. α(x ▷ p) = x ▷ α(p), for all x ∈ X and p ∈ P . Thus

PX1)

α(s ▷ p) = α
(
∂′(s) ▷ p

)
= ∂′(s) ▷ α(p) = s ◦ α(p) ◦ s−1,
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PX2)

α(p) ▷ p′ = ∂′(α(p)) ▷ p′ = γ(p) ▷ p′ = p ◦ p′ ◦ p−1

for all s ∈ S and p, p′ ∈ P . ■

Proposition 3.5 If (A,B, ∂) and (B,C, ∂′) are crossed polymodules such that C acts
on A in a compatible way with B, namely ∂′(b) ▷ a = b ▷ a. Then (A,C, ∂′∂) becomes
a crossed polymodule.

Lemma 3.6 (Pullback). Suppose that we have two crossed polymodule morphisms

(α, id) : (P,X, γ) → (S,X, ∂′) and (β, id) : (R,X, δ) → (S,X, ∂′).

There exists a crossed polymodule P ×S R → X, which leads to the categorical pullback
object in PXMod/X.

Proof. By using crossed polymodule morphisms (α, id) and (β, id), we get the strong
homomorphisms α : P → S and β : R → S. We already know that the pullback of these
two morphisms is defined by the fiber product P ×S R that makes the diagram

P ×S R

π1

{{ww
ww
ww
ww
w π2

##G
GG

GG
GG

GG

P

α ##G
GG

GG
GG

GG
G R

β{{ww
ww
ww
ww
ww

S

commutative and satisfies the universal property.
By using Lemma 3.4, α and β turn into crossed polymodules, thus we get a crossed

polymodule ∂ : P×SR → S in the sense of Lemma 3.3. Moreover, ∂′ : S → X is already a
crossed polymodule and X acts on P ×S R in a natural way. Therefore by using Remark
3.5, we get the crossed polymodule ∂′∂ : P ×SR → X, which leads to the pullback object
in the category of crossed X-polymodules. All fitting into the diagram:

P ×S R

π1

{{ww
ww
ww
ww
w π2

##G
GG

GG
GG

GG

∂

��

P

α ##G
GG

GG
GG

GG
G

γ

%%

R

β{{ww
ww
ww
ww
ww

δ

yy

S

∂′

��
X

■



B. Davvaz and K. Emir / J. Linear. Topological. Algebra. 09(01) (2020) 95-103. 101

Proposition 3.7 The category of crossedX-polymodules has a terminal object id : X →
X. Consequently, one can construct the product object as a pullback of the morphisms:

X

��?
??

??
??

?
X ′

��~~
~~
~~
~~

1

where X ,X ′ are two crossed X-polymodules and 1 is the terminal object.

This yields the following:

Proposition 3.8 (Product). Given two crossed polymodules α : P → S and β : R → S,
their product is the crossed polymodule ∂ : P ×S R → S.

Thus, we have proved the following.

Corollary 3.9 The category PXMod/X is finitely complete.

4. Limits in PXMod

In this section, we consider the general case of the previous section without any re-
striction on the codomains of crossed polymodules.

Remark 4 Consider we have two crossed polymodules (C1, P1, ∂1) and (C2, P2, ∂2).
There exists an action of P1 × P2 on C1 × C2 component-wise, namely

(p1, p2) ▷ (c1, c2) = (p1 ▷ c1, p2 ▷ c2).

Remark that, each ▷ denotes a different action above, corresponding on the structure.

Proposition 4.1 (Product). We have a crossed polymodule structure

(C1 × C2, P1 × P2, ∂) , (2)

given by

∂(c1, c2) =
(
∂1(c1), ∂2(c2)

)
, (3)

for all (c1, c2) ∈ C1 × C2, since

PX1)

∂
(
(p1, p2) ▷ (c1, c2)

)
= ∂(p1 ▷ c1, p2 ▷ c2)

=
(
∂1(p1 ▷ c1), ∂2(p2 ▷ c2)

)
=

(
p1 ◦ ∂1 (c1) ◦ p−1

1 , p2 ◦ ∂2 (c2) ◦ p−1
2

)
= (p1, p2) ◦

(
∂1(c1), ∂2(c2)

)
◦ (p−1

1 , p−1
2 )

= (p1, p2) ◦ ∂(c1, c2) ◦ (p1, p2)−1 ,



102 B. Davvaz and K. Emir / J. Linear. Topological. Algebra. 09(01) (2020) 95-103.

PX2)

∂ (c1, c2) ▷
(
c′1, c

′
2

)
=

(
∂1(c1), ∂2(c2)

)
▷

(
c′1, c

′
2

)
=

(
∂1(c1) ▷ c′1, ∂2(c2) ▷ c′2

)
=

(
c1 ◦ c′1 ◦ c−1

1 , c2 ◦ c′2 ◦ c−1
2

)
=

(
c1, c2

)
◦
(
c′1, c

′
2

)
◦
(
c−1
1 , c−1

2

)
=

(
c1, c2

)
◦
(
c′1, c

′
2

)
◦
(
c1, c2

)−1
,

for all (c1, c2), (c
′
1, c

′
2) ∈ C1 × C2 and (p1, p2) ∈ (P1, P2). Hence (2) is the product object

in the category of crossed polymodules, namely PXMod.

Proposition 4.2 (Pullback). Consider two crossed polymodule morphisms

(f1, g1) : (C1, P1, ∂1) → (C3, P3, ∂3),

(f2, g2) : (C2, P2, ∂2) → (C3, P3, ∂3).

Recalling (1), define the fiber products A = C1 ×C3
C2 and B = P1 ×P3

P2 which are
the pullbacks of (f1, g1) and (f2, g2) in the category of polygroups, respectively. Then we
obtain a crossed polymodule (A,B, ∂′) where ∂′ is the restriction of ∂ (3) to A, which is
the pullback object in the category PXMod.

Remark 5 Moreover, it is clear that the crossed polymodule (0, 0, id) is the zero object in
this category. Therefore one can also obtain also equalizer object in the category PXMod.

Consequently, we obtain:

Corollary 4.3 The category PXMod is finitely complete.
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