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Invariant elements in the dual Steenrod algebra
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Abstract. In this paper, we investigate the invariant elements of the dual mod p Steenrod
subalgebra A∗

p under the conjugation map χ and give bounds on the dimensions of (χ −
1)(A∗

p)d, where (A∗
p)d is the dimension of A∗

p in degree d.
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1. Introduction

The mod p Steenrod algebra (A), is the algebra of the stable cohomology operations on
mod p cohomology, where p is a prime number. It has a Hopf structure and its dual is a
commutative Hopf algebra which is isomorphic to the polynomial algebra in generators ξk
of degree 2k−1 (k ⩾ 0) for p = 2 and isomorphic to the tensor product of the polynomial
algebra in generators ξk of degree 2pk − 2 (k ⩾ 1) and the exterior algebra in generators
τk of degree 2pk − 1 (k ⩾ 0) for p > 2. The Steenrod algebra and its dual have unique
anti-automorphism map χ over themselves. The map χ is also called a conjugation.

Researchers in this area obtained some formulas to determine the image of the certain
monomial of the Steenrod algebra to get an information about the image of all monomials
under χ. Milnor [7] has given a formula of a conjugation of a Steenrod square (or Steenrod
powers) in terms of Milnor bases in a certain degree. Davis [5] computes the conjugation

of Ppn−1+...+p+1 by Milnor’s formula. Straffin [12] has got a formula of the images of Sq2
k

’s
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for k ⩾ 0, the algebraically generators of the Steenrod algebra, under χ. Silverman [10]

extends the formula of Davis and computes the conjugation of Sq2
j(2i+1−1) . . .Sq(2

i+1−1).
Karaca and I.Y. Karaca [6] have generalized the results of Silverman for the odd prime
case. For p = 2, let A denote the mod 2 Steenrod algebra. Crossley and Whitehouse
[4] determine the subspace, Aχ, of elements invariant under χ and give bounds on the
dimension of this subspace for each degree.

This paper is organized as follows. In section 2, we give the construction of the Steenrod
algebra and basic facts related to our study. In section 3, we generalize the results of [4] to
odd prime case. Let Ap denote the subalgebra of the mod p Steenrod algebra generated
by the Steenrod powers Pk for k ⩾ 0 and A∗

p denote its dual. If (A∗
p)d is the d degree

part of A∗
p and Dd is the dimension of (A∗

p)d then we find bounds on the dimensions of
(χ− 1)(A∗

p)d and we obtain

Dd−1/2 ⩽ dim((χ− 1)(A∗
p)d) ⩽ Dd. (1)

2. Preliminaries

Let p be a prime number. Then the Steenrod operation is a natural transformation

Sqi :Hn(X;Z2)→ Hn+i(X;Z2), if p = 2

P i :Hn(X;Zp)→ Hn+2i(p−1)(X;Zp) if p > 2

that has certain conditions such as instability. The degree of the element Sqi is i and the
degree of P i is 2i(p−1). The Steenrod squares Sqk (or Pk) generate all stable operations
in the cohomology theory [9]. In [1, 2], Adem showed that all relations in the Steenrod
algebra are generated by the set of Adem relations: For p = 2, we have

SqiSqj =
[ i
2
]∑

k=0

(
j − k − 1
i− 2k

)
Sqi+j−kSqk

for all i, j > 0 such that i < 2j. For the odd prime number p,

P iPj =

[ i
p
]∑

k=0

(−1)i+k

(
(p− 1)(j − k)− 1

i− pk

)
P i+j−kPk,

where i < pj and

P iβPj =

[ i
p
]∑

k=0

(−1)i+k

(
(p− 1)(j − k)

i− pk

)
βP i+j−kPk

−
[ i−1

p
]∑

k=0

(−1)i+k−1

(
(p− 1)(j − k)− 1

i− pk − 1

)
P i+j−kβPk

such that i ⩽ pj for all i, j > 0, where β is the Bockstein homomorphism

β : Hn(X;Zp)→ Hn+1(X;Zp).
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Then the mod 2 Steenrod algebra is the graded associative algebra over Z2 generated
by the elements Sqi of degree i for i ⩾ 0 subject to the Adem relations. Likewise the
construction of the mod 2 Steenrod algebra, for an odd prime number p, the mod p
Steenrod algebra is the graded associative algebra over Zp generated by the elements P i

of degree 2i(p − 1) for i > 0, and β of degree 1 such that β2 = 0 subject to the Adem
relations. For details, we refer to references [3, 8, 11, 13].

The Adem relations lead us to have a minimal algebraic generating set for the Steenrod
algebra. For p = 2, the mod 2 Steenrod algebra is generated as an algebra by Sq0 and
Sq2

k

for k ⩾ 0. For p > 2, the mod p Steenrod algebra is generated as an algebra by β
and the operations Ppk

for k ⩾ 0 [9].
Milnor [7] has shown that there is a unique algebra map ψ : A → A⊗A such that for

all i ⩾ 0

ψ(Sqi) =
∑

j+k=i

Sqj ⊗ Sqk, if p = 2

ψ(P i) =
∑

j+k=i

Pj ⊗ Pk and

ψ(β) = β ⊗ 1 + 1⊗ β, if p > 2,

which makes it into a Hopf algebra and incorporates a conjugation map χ : A → A.
Conjugation map χ is an anti-automorphism of the Steenrod algebra and χ2 = 1. The
conjugation in A is determined in Steenrod operations by

χ(Sqk) =
∑

1⩽i⩽k

Sqiχ(Sqk−i) if p = 2,

χ(Pk) =
∑

1⩽i⩽k

P iχ(Pk−i) if p > 2.

Milnor [7] has shown that the dual of the mod 2 Steenrod algebra is a polynomial algebra
on generators ξi, i ⩾ 0, of degree 2i − 1 and for an odd prime number p, the dual of
the mod p Steenrod algebra is the tensor product of a polynomial algebra on generators
ξi, i ⩾ 1, of degree 2(pi − 1) and an exterior algebra on generators τi, i ⩾ 0, of degree
2pi − 1. The co-product ψ on the dual Steenrod algebra A∗ is given by the formulas [7]

ψ(ξk) =
∑

0⩽i⩽k

ξ2
i

k−i ⊗ ξi, if p = 2,

ψ(ξk) =
∑

0⩽i⩽k

ξp
i

k−i ⊗ ξi and

ψ(τk) = τk ⊗ 1 +
∑

0⩽i⩽k

ξp
i

k−i ⊗ τi if p > 2.

The conjugation formula on the generators of the dual Steenrod algebra is

χ(ξn) =
∑

α∈Part(n)

(−1)ℓ(α)
ℓ(α)∏
i=1

ξp
σ(i)

α(i) , (2)
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where α = (α(1), α(2), . . . α(ℓ(α))) is an ordered partition α of the integer n with length
ℓ(α), Part(n) is the set of all ordered partitions of n and σ(i) is the partial sum σ(i) =
i−1∑
j=1

α(j).

3. Conjugation Invariants

Let Fp be a field with p elements.

Proposition 3.1 Let A be a Hopf algebra. Let Aχ = Ker(χ − 1) be the invariant
elements of A under the antiautomorphism χ : A → A. If A is a (co)commutative Hopf
algebra over Fp, then Im(χ+ 1) = Ker(χ− 1) and Im(χ− 1) = Ker(χ+ 1).

Proof. Let a ∈ Ker(χ − 1). This means that χ(a) = a. If we take an element b ∈ A as
b = 1

2a, then (χ+1)(b) = a and hence a ∈ Im(χ+1). On the other hand, let a ∈ Im(χ+1)
so that there is an element b in A such that (χ+ 1)(b) = a. Then, we obtain

(χ− 1)(a) = (χ− 1)(χ+ 1)(b) = (χ2 − 1)(b) = 0

and, hence a ∈ Ker(χ− 1).
Let a ∈ Ker(χ + 1). This means that χ(a) = −a. If we take an element b ∈ A as

b = −1
2a, then (χ− 1)(b) = a and hence a ∈ Im(χ− 1). Let a ∈ Im(χ− 1) so that there

is an element b in A such that (χ− 1)(b) = a. Then, we have

(χ+ 1)(a) = (χ+ 1)(χ− 1)(b) = (χ2 − 1)(b) = 0

and hence, a ∈ Ker(χ+ 1). ■

Then we have the corrollary follows from the Proposition 3.1.

Corollary 3.2 Im(χ− 1) is a subalgebra of A.

Let Ap be the mod p Steenrod algebra reduced by the Steenrod powers Pk. We now
consider the dual mod p Steenrod algebra A∗

p. Let (A∗
p)d be the part of A∗

p in degree d
and use the notation (r1, r2, . . . , rn) to denote the monomial ξr11 ξ

r2
2 . . . ξrkk . We order the

monomials of a given degree in A∗
p by the right lexicographic orderings. For instance,

(1, 2, 0, 4) < (3, 1, 1, 5) < (0, 0, 0, 0, 1).

Proposition 3.3 The matrix of the conjugation map χ : (A∗
p)d → (A∗

p)d in each degree
is lower triangular with respect to right lexicographic ordering of the monomial bases.

Proof. By (2), we have χ(ξn) = −ξn + Pn, where Pn is a polynomial in ξ1, . . . , ξn−1

so that Pn is strictly lower than ξn. Hence for any monomial M in ξ1, . . . , ξn, we have
χ(M) = ±M +Q, where Q is strictly lower than M . It follows that the matrix is lower
triangular. ■

Definition 3.4 [4] Let ξr11 ξ
r2
2 . . . ξrnk be the monomial in (A∗

p)d. If rn = 1, then the
monomial is called uniterminal.

Proposition 3.5 In (A∗
p)d, the image of unitermials under χ−1 is linearly independent.
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Proof. For a uniterminal monomial (r1, . . . , rn−1, 1), we have

χ(ξr11 ξ
r2
2 . . . ξ

rn−1

n−1 ξn) = ±χ(ξ1)
r1χ(ξ2)

r2 . . . χ(ξn−1)
rn−1χ(ξn)

= ±(−ξ1)r1(−ξ2 + . . . . )r2 . . . (−1ξn−1 + . . . )rn−1(. . .+ ξ1ξ
p
n−1 + . . . )

= ±(ξr11 ξ
r2
2 . . . ξ

rn−1

n−1 ξ1ξ
p
n−1)(. . . )

= ±(ξr1+1
1 ξr22 . . . ξ

rn−1+p
n−1 )(. . . ).

Therefore, the image of the monomial (r1, . . . , rn−1, 1) under χ − 1 contains the mono-
mial (r1 + 1, r2, . . . , rn−1 + p) as a summand. Now, we claim that with respect to
the right lexicographic ordering, no lower uniterminal monomial than (r1, . . . , rn−1, 1)
has (r1 + 1, r2, . . . , rn−1 + p) as a summand in its image under χ − 1. Assuming
not, let (s1, . . . , sn′−1, 1) be another monomial lower than (r1, . . . , rn−1, 1) contains the
monomial (r1 + 1, r2, . . . , rn−1 + p) as a summand in its image and let n′ ⩽ n. If
n′ ⩽ n − 1, then (χ − 1)(s1, . . . , sn′−1, 1) will have no summand which contains ξn−1-
exponent greater than 1. The matrix of a conjugation map is a lower triangular with
respect to right lexicographic ordering so that (χ − 1)(s1, . . . , sn′−1, 1) doesn’t have
(r1 + 1, r2, . . . , rn−1 + p) as a summand. If n′ = n, then (χ − 1)(s1, . . . , sn′−1, 1) con-
tains a summand (s1+1, . . . , sn′−1+ p) that is less than (r1+1, r2, . . . , rn−1+ p) so that
it cannot contain (r1 + 1, r2, . . . , rn−1 + p) as a summand.

Let Q be a linear combination of images under χ − 1 of uniterminal monomials. Let
P is a linear combination of uniterminal monomials so we may write Q = (χ − 1)(P ).
Suppose that (r1, . . . , rn−1, 1) is the highest monomial which appears in P . Then our
claim shows that (χ−1)(P ) has (r1+1, r2, . . . , rn−2, rn−1+2) as a summand and cannot
be a zero. This completes the proof. ■

Let Ud denote the number of uniterminal monomials in degree d. It is easy to see that
dim((χ− 1)(A∗

p)d) ⩾ Ud. Using Lemma 3.3 in [4], we obtain some results about Ud.

Lemma 3.6 Let Dd denote the dimension of (A∗
p)d. Then

(i) Ud ⩾ Dd−1

2 ,
(ii) Ud = Dd−1 − Ud−1.

Proof. We map uniterminal monomials in degree d with another degree d monomials
that is not uniterminal by the pairing

(r1, r2, . . . , rn−1, 1)←→ (r1 + 1, r2, . . . , rn−1 + p).

Note that the monomials left unpaired are characterized by the fact that they begin
with zero and not uniterminal. The number of these is Dd − 2Ud which is less than or
equal to the total number beginning with zero which is Dd − Dd−1. This gives us the
first claim.

The number of uniterminal monomials starting with zero in degree d is Ud − Ud−1 so
that the number of unpaired monomials is (Dd −Dd−1)− (Ud − Ud−1). Hence, we have

Dd − 2Ud = (Dd −Dd−1)− (Ud − Ud−1),

which implies that −Ud = −Dd−1 + Ud−1 and this gives us the second claim. ■

Under these circumstances, we give bounds on the dimensions of (χ−1)(A∗
p)d. Finally,

we obtain the following result.
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Theorem 3.7 Let Dd be the dimension of (A∗
p)d. Then, we have

Dd−1

2
⩽ dim((χ− 1)(A∗

p)d) ⩽ Dd.
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