
Journal of Linear and Topological Algebra
Vol. 12, No. 02, 2023, 113- 118
DOR: 20.1001.1.22520201.2023.12.02.4.4
DOI: 10.30495/JLTA.2023.703516

A (2− ε)-approximation ratio for vertex cover problem on special
graphs

N. Yekezarea, M. Zohrehbandiana, M. Maghasedia,∗

aDepartment of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.

Received 1 May 2023; Revised 25 June 2023; Accepted 30 June 2023.

Communicated by Ghasem Soleimani Rad

Abstract. The vertex cover problem is a famous combinatorial problem, and its complexity
has been heavily studied. It is known that it is hard to approximate to within any constant
factor better than 2, while a 2-approximation for it can be trivially obtained. In this paper,
new properties and new techniques are introduced which lead to approximation ratios smaller
than 2 on special graphs; e.g. graphs for which their maximum cut values are less than
0.999|E|. In fact, we produce a (1.9997)-approximation ratio on graph G, where the (0.878)-
approximation algorithm of the Goemans-Williamson for the maximum cut problem on G
produces a value smaller than 0.877122|E|.
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1. Introduction

The vertex cover problem (VCP) is a famous NP-complete problem, where the set
of vertices in graph G should be partitioned into two sets, one that includes none of
the edges of the graph and the other that includes at least one endpoint of every edge
of the graph. The VCP problem cannot be approximated within a factor of 1.36 [6],
unless P=NP, while a 2-approximation factor for it can be trivially obtained by taking
all the vertices of a maximal matching in the graph. However, improving this simple
2-approximation algorithm has been a quite hard task [11, 12].
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The minimum VCP problem is one of the fundamental problems in the combinatorial
optimization and it has received a lot of attentions, and, many approximation algorithms
have been proposed to construct vertex cover in different ways. The best constant ap-
proximation ratio known is 2, and this is the best-known worst-case one [5]. Several
approximation algorithms were proposed by various authors to deal with the problem of
minimum VCP. Some of them can be classified as direct algorithms.

The first algorithm in this class is the maximum degree greedy algorithm, where, it
introduces few changes in the previously existing greedy heuristic algorithm for set-cover
problem by Chavatal [3]. The other algorithms in this class which have some improve-
ments for classical algorithms and calculation techniques are the depth first search al-
gorithm [13], the edge deletion algorithm [8], the ListLeft algorithm [1], the ListRight
algorithm [4], the iterated local search algorithm [17] and so on.

Another class of VCP approximation algorithms is intelligent algorithms. In this class,
Singh et al. [15] proposed a hybrid approach for the problem combining with steady-state
genetic algorithm and Greedy Heuristic. Xu et al. [18] presented an efficient simulated
annealing algorithm and simulated on several benchmark graphs. Stefan et al. [16] applied
a modified reactive tabu search approach with simulated annealing for the minimum
weight vertex cover problem. Bhasin [2] applied the theory of natural selection via genetic
algorithms for solving the problem.

Ant colony optimization algorithm is also used to discuss the problem [10, 14]. For a
detailed literature review and comparative analysis of some well-known approximation
algorithms for Minimum VCP problem, see [7]. Contribution of that paper is the provision
of small benchmark graphs on which the given approximation algorithms fail to provide
optimal results.

In this paper, we introduce a (2− ε)-approximation ratio on special graphs. The rest
of the paper is structured as follows: Section 2 is about the vertex cover problem and
introduces new properties and techniques which lead to a (2− ε)-approximation ratio on
special graphs. Finally, Section 3 is allocated to conclusions.

2. Introducing a (2 − ε)-approximation ratio on special graphs

In the mathematical discipline of graph theory, a vertex cover of a graph is a set of
vertices such that each edge of the graph is incident to at least one vertex of the set.
The problem of finding a minimum vertex cover is a typical example of an NP-complete
optimization problem. In this section, new properties and new techniques are introduced
which lead to approximation ratios smaller than 2 on special problems.

Let G = (V,E) be an undirected graph on vertex set V and edge set E, where |V | = n.
Throughout this paper, suppose that the vertex cover problem on G is hard with an
optimal value z∗V CP ⩾ n

2 , and we have produced an arbitrary feasible solution for the
problem with vertex partitioning V = V1G ∪ V−1G and objective value |V1G| (V1G is a
vertex cover of graph G).

By defining the decision variables xoj and xij as follows:

xoj = {+1 (if j∈V ∗
1G)

−1 (if j∈V ∗
−1G)

xij = {+1 (if i,j∈V ∗
−1G or i,j∈V ∗

1G)

−1 (Otherwise)
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And by addition of triangle inequalities to the constraints of vertex cover problem, we
can introduce the following ILP model for the minimum vertex cover problem:

mins.t z =
∑
j∈V

1 + xoj
2

xoi + xoj − xij = +1 ij ∈ E

xij + xik + xjk ⩾ −1 i, j, k ∈ V

xij − xik − xjk ⩾ −1 i, j, k ∈ V

xoj , xij ∈ {−1,+1} i, j ∈ V

Here, triangle inequalities are as cutting plane inequalities. By relaxing the last con-
straints and addition of the constraint X ⪰ 0, we have a well-known semidefinite pro-
gramming formulation.

Theorem 2.1 Suppose that for a feasible solution V1G∪V−1G we have |V1G| ⩽ k|V−1G|.
Then, based on such a solution, we have an approximation ratio |V1G|

z∗
V CP

≤ 2k
k+1 .

Proof. We know that |V1G|+ |V−1G| = n. Therefore, there exist t ⩽ k, for which |V1G| =
t|V−1G| = t n

t+1 . Then, z
∗
V CP ⩾ n

2 = t+1
2t |V1G| which concludes that |V1G|

z∗
V CP

⩽ 2t
t+1 ⩽ 2k

k+1 . ■

Therefore, for bounded values of k, we have some approximation ratios smaller than
2. For example,

If |V1G| ⩽ 2|V−1G| then |V1G|
z∗
V CP

⩽ 2k
k+1 ⩽ 4

3 < 1.36,

If |V1G| ⩽ 3|V−1G| then |V1G|
z∗
V CP

⩽ 2k
k+1 ⩽ 3

2 ,

...
If |V1G| ⩽ 106|V−1G| then |V1G|

z∗
V CP

⩽ 2k
k+1 ⩽ 2000000

1000001 < 2− 10−6,

But, if k → ∞ then |V1G|
z∗
V CP

→ 2. Hence, we don’t still have an approximation ratio

better than 2.

Corollary 2.2 Suppose that we know v ∈ V ∗
−1G, where degv ⩾ n

500 . Then, by construc-
tion of graph H from graph G, after addition of n

500 copies of vertex v, we have V ∗
1G = V ∗

1H
and z∗V CP (G) = z∗V CP (H). Therefore, we can introduce V−1H by v and n

500 copies of it,
to produce a feasible solution V1H ∪ V−1H , correspondingly, where |V1H | ⩽ 500|V−1H |.
Hence, we have a performance ratio |V1G|

z∗
V CP (G) =

|V1H |
z∗
V CP (H) ⩽

2×500
500+1 < 1.997.

Corollary 2.3 We can remove each vertex v with degv ⩾ n
500 (i.e. we can consider

v ∈ V ∗
1G) to produce an approximation ratio on GV−{v}. Otherwise, we can produce

a feasible solution V ∗
−1G = {v}, V ∗

1G = V − {v} with approximation ratio |V1G|
z∗
V CP (G) =

|V1H |
z∗
V CP (H) < 1.997.
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Theorem 2.4 For a fixed value of a, suppose that we can select an arbitrary matching
with cardinality n

a (not a maximal matching). Then, we can produce a feasible solution

with an approximation ratio of |V1G|
z∗
V CP

⩽ max { 4a
3a−2 ,

2a
a+0.002} < 2, or more than 0.999 of

the selected edges are cuts and have only one vertex in the optimal vertex cover.

Proof. After removing 2n
a selected vertices, let H be the remaining subgraph for which

we have |VH | = n− 2n
a = a−2

a n.

If the vertex cover problem on graph H is easy (i.e. |V ∗
−1H | ⩾ |VH |

2 = a−2
2a n), then we

can produce a suitable feasible solution V1G ∪ V−1G, correspondingly, where |V−1G| =
|V ∗

−1H | ⩾ |VH |
2 = a−2

2a n. Hence, |V1G| ⩽ n ⩽ 2a
a−2 |V−1G| and |V1G|

z∗
V CP

⩽ 2× 2a

a−2
2a

a−2
+1

= 4a
3a−2 < 2.

Otherwise, the vertex cover problem on H is hard and |V ∗
1H | ⩾ |VH |

2 ⩾ a−2
2a n. Produce

G’ by addition of n
a new vertices and connection of endpoints of each edge of the selected

matching to one of these vertices to construct n
a triangles in G’. We have z,∗V CP = z∗V CP +

αn
a (0 ⩽ α ⩽ 1). Moreover, due to these triangles, we have z,∗V CP ⩾ 2n

a (for triangles)
+

a−2
2a n(for H) =

(a+2)n
2a = n

2 + n
a , and

n
z,∗
V CP

⩽ 2a
a+2 . Therefore, We have n

z,∗
V CP

= n
z∗
V CP+αn

a

⩽
2a
a+2 , which concludes that n

z∗
V CP

⩽ 2a
a+2−2α .

Therefore, if α ⩽ 0.999 then for all feasible solutions V1G ∪ V−1G, we have |V1G|
z∗
V CP

<
n

z∗
V CP

< 2a
a+2−1.998 < 2. Otherwise (i.e. α > 0.999), more than 0.999 of the selected edges

have only one vertex in the optimal vertex cover. ■

Corollary 2.5 For different values of 3 ⩽ a ⩽ 10 and by consideration of disjoint sets of
matchings with cardinality n

a , where their unions are equal to the set E, we can conclude
that

all feasible solutions V1G∪V−1G have a ratio |V1G|
z∗
V CP

⩽ max{ 4a
3a−2 ,

2a
a+0.002 | 3 ⩽ a ⩽ 10} =

2×10
10+0.002 < 1.9997,
or more than 0.999 of the edges of E have only one vertex in optimal vertex cover; i.e.

The optimal value for the maximum cut problem is more than 0.999|E|.

Corollary 2.6 By executing the (0.878)-approximation algorithm of the Goemans-
Williamson [9] for the maximum cut problem on G,

if ZGW < 0.878× 0.999|E| = 0.877122|E| then less than 0.999 of the edges of E have
only one vertex in the optimal vertex cover, and (based on Corollary 2.5), we can produce

a ratio |V1G|
z∗
V CP

⩽ 1.9997.

But, if ZGW ⩾ 0.877122|E| then we cant ensure to produce a (2 − ε)-approximation
ratio for vertex cover problem on G.

Therefore, we could introduce (2− ε)-approximation ratio on special graphs with suit-
able characteristics; e.g. Graphs for which their cut values introduced by Goemans-
Williamson algorithm are less than 0.877122|E|.
Algorithm (To produce a vertex cover solution with a factor ρ ⩽ 1.999 on graphs with
maximum cut value smaller than 0.999|E|)

Step 1. Produce an arbitrary feasible solution V1G ∪ V−1G.
Step 2. If |V1G| < 0.999n then (based on Theorem 2.1) stop and return the current

solution V1G ∪ V−1G with a ratio factor of 1.998. Otherwise, go to Step 3.
Step 3. In different iterations and for different values of 3 ⩽ a ⩽ 10, introduce disjoint

sets of matchings with cardinality n
a , where their unions are equal to the set E. In each

iteration, if the vertex cover problem on the remaining subgraph H is easy, then (based
on H and Theorem 2.4) produce a suitable feasible solution V1G ∪ V−1G, which has an
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approximation ratio |V1|
z∗
V CP

⩽ 4a
3a−2 < 4×3

3×3−2 < 1.715. Otherwise, go to Step 4.

Step 4. Based on Step 3, we know that in all iterations, the vertex cover problem on
the remaining subgraph H was hard. Therefore, if by executing the 0.878-approximation
algorithm of the Goemans-Williamson, ZGW ⩾ 0.877122|E|, then conclude that the
maximum cut value on G is greater than 0.999|E| and we can’t ensure to produce a
(2 − ε)-approximation ratio for vertex cover problem on G. Otherwise, (i.e. less than
0.999 of the edges of E have only one vertex in optimal vertex cover) return the current
feasible solution V1G ∪ V−1G which has an approximation ratio of 1.9997, since based on

Corollary 2.5, for all feasible solutions V1G ∪ V−1G we have a ratio |V1G|
(z∗

V CP
⩽ 1.9997.

3. Conclusion

One of the open problems about the vertex cover problem is the possibility of intro-
ducing an approximation algorithm within any constant factor better than 2. Here, we
proposed a new algorithm to introduce a (1.9997)-approximation algorithm for vertex
cover problem on special graphs; i.e. Graphs for which their maximum cut values are less
than 0.999|E|.

Note that there is no need to explain the proven approach by small examples. For
example, for all graphs G with n < 1000 vertices and z∗ > n

2 , we can introduce V−1G =

{v1} and V1G = V − {v1} to have a feasible solution with a ratio of |V1G|
z∗
V CP (G) ⩽ n−1

n

2

<

1.998 < 2.
As an idea for extension of the approach for graphs with maximum cut values of more

than 0.999|E|, we can connect the endpoints of P4s to produce a P5-free graph with
an objective value almost equal to the original graph. We know that the vertex cover
problem is polynomially solvable on P5-free graphs and this may lead to introducing a
(2− ε)-approximation algorithm for vertex cover problem on all graphs.
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