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Abstract. In this paper, we introduce the concept of Su-type contractive mapping and es-
tablish fixed point theorems for such mappings in the setting of ordered extended partial
b-metric space. We also develop an application for Fredholm type integral equations to vali-
date our main result and a non-trivial example is given to elucidate our work.
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1. Introduction

In the recent past, a lot of generalization of the famous Banach fixed point theorem
has appeared in different framework. So far numerous authors have studied this classical
result to establish the existence and uniqueness of a fixed point for different kind of
contractive shapes, (see, [1–35]).

Khan et al. [21] introduced and employed the notion of altering distance function to
obtain some interesting fixed point results in metric spaces. Note that altering distance
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functions are continuous whereas Su [31] defined generalized altering distance function,
not necessarily continuous.

In 1993, Czerwik [8] introduced the idea of b-metric space. and in 1994, Matthews
[24] investigated the concept of partial metric space. Firstly, Shukla [29] presented the
notion of partial b-metric space. Then, Mustafa et al. [25] modified the idea of partial
b-metric space and also discussed for the sequel some basic lemma for the convergence of
sequences in such spaces. Recently, Parvaneh and Kadelburg [27] introduced the concept
of extended partial b-metric space.

The aim of this article goes in this framework, we generalize the results based on [27] in
the context of extended partial b-metric space via Su-type contractive mapping. Finally,
we have an application for the Fredholm type integral equations.

2. Preliminaries

Before the main results of this paper, We recall some basic concept to make it helpful
for the main sequel.

Definition 2.1 [24] A partial metric space on a non-empty set G is a function p :
G×G→ [0,+∞) such that, for all g1, g2, g3 ∈ G, the following conditions hold:

(p1) g1 = g2 if and only if p (g1, g1) = p (g2, g2) = p (g1, g2) ,
(p2) p (g1, g1) ⩽ p (g1, g2) ,
(p3) p (g1, g2) = p (g2, g1) ,
(p4) p (g1, g2) ⩽ p (g1, g3) + p (g3, g2)− p (g3, g3) .

The pair (G, p) is called a partial metric space.

Definition 2.2 [29] A partial b-metric space on a non-empty set G is a function pb :
G×G → [0,+∞), such that for each g1, g2, g3 ∈ G with s ⩾ 1, the following conditions
hold:

(pb1) g1 = g2 if and only if pb (g1, g1) = pb (g1, g2) = pb (g2, g2) ,
(pb2) pb (g1, g1) ⩽ pb (g1, g2) ,
(pb3) pb (g1, g2) = pb (g2, g1) ,

(pb4) pb (g1, g2) ⩽ s[pb (g1, g3)+ pb (g3, g2)− pb (g3, g3)] +
(1−s)

2 (pb (g1, g1) + pb (g2, g2)) .

The pair (G, pb) is called a partial b-metric space.

Remark 1 Every partial metric space is a partial b-metric space with the setting s = 1
and every b-metric space is a partial b-metric space with the same coefficient and the
behavior of zero self distance. However, the converses do not hold in general.

Definition 2.3 [27] Let G be a non-empty set. A function d : G × G → [0,+∞) is a
p-metric if there exists a strictly increasing continuous function Ω : [0,+∞) → [0,+∞)
with k ⩽ Ω(k) for k ∈ [0,+∞) such that for each g1, g2, g3 ∈ G, the following conditions
hold:

(1) d (g1, g2) = 0 if and only if g1 = g2,
(2) d (g1, g2) = d (g2, g1) ,
(3) d (g1, g2) ⩽ Ω(d (g1, g3) + d (g3, g2)).

The pair (G, d) is called a p-metric space or an extended b-metric space.

Remark 2 It should be noted that the class of p-metric spaces is considerably larger than
the class of b-metric spaces, since a b-metric is a p-metric with the setting Ω(k) = sk
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and a metric is a p-metric with the setting Ω(k) = k.

Definition 2.4 [27] Let G be a non-empty set and Ω : [0,+∞) → [0,+∞) be a strictly
increasing continuous function with Ω−1 (k) ⩽ k ⩽ Ω(k) for k ∈ [0,+∞). A function
pp : G×G→ [0,+∞) is called an extended partial b-metric, or a partial p-metric if, for
each g1, g2, g3 ∈ G, the following conditions are satisfied:

(pp1) g1 = g2 if and only if pp (g1, g1) = pp (g1, g2) = pp (g2, g2) ,
(pp2) pp (g1, g1) ⩽ pp (g1, g2) ,
(pp3) pp (g1, g2) = pp (g2, g1) ,
(pp4) pp (g1, g2)− pp (g1, g1) ⩽ Ω(pp (g1, g3) + pp (g3, g2)− pp (g3, g3)− pp (g1, g1)).

The pair (G, pp) is called a partial p-metric space, or an extended partial b-metric space.

Remark 3 Note that condition (pp4) together with (pp3) implies that also the following
holds for all g1, g2, g3 ∈ G :

pp (g1, g2)− pp (g2, g2) ⩽ Ω(pp (g1, g3) + pp (g3, g2)− pp (g3, g3)− pp (g2, g2)).

It should be noted that the class of partial p-metric spaces is considerably larger than
the class of partial b-metric spaces, since a partial b-metric is a partial p-metric with
Ω(k) = sk and a partial metric is a partial p-metric with Ω(k) = k.

Example 2.5 [27] Let (G, d) be a metric space and pp (g1, g2) = 1 + ζ(d (g1, g2)) where
ζ : [0,+∞) → [0,+∞) is a strictly increasing continuous function with k ⩽ ζ (k) for
k ∈ [0,+∞) and ζ (0) = 0. Then, it is easy to see that pp is a partial p-metric with

Ω (k) = ζ (k) . In particular, one can take ζ (k) = ek − 1, then pp (g1, g2) = ed(g1,g2) is a
partial p-metric with Ω (k) = ek − 1.

Example 2.6 [27] Let (G, d) be a metric space and pp (g1, g2) = 1 + sinh(d (g1, g2)
2).

Then, it is easy to see that pp is a partial p-metric with Ω (k) = 2 cosh k sinh k = sinh 2k.
Note that (G, pp) is not necessarily a partial metric space. For example, if G = R

is the set of real numbers with usual metric, then pp (g1, g2) = 1 + sinh(g1 − g2)
2 is a

partial p-metric on G with Ω (k) = sinh 2k. But it is not a partial metric on G. Indeed,
the ordinary (partial) triangle inequality does not hold. To see this, let g1 = 2, g2 =
5 and g3 = 5

2 . Then, pp(2, 5) ≈ 4052.54, pp(2,
5
2) ≈ 1.25 and pp(

5
2 , 5) ≈ 260.01. Thus,

pp(2, 5) ≰ pp(2,
5
2) + pp(

5
2 , 5)− pp(

5
2 ,

5
2).

Also, pp is not a partial b-metric. Indeed, if pp were partial b-metric, then there would
exist fixed s ≥ 1 for which

pp (g1, g2) ⩽ s[pp (g1, g3) + pp (g3, g2)− pp (g3, g3)] +
(1− s)

2
(pp (g1, g1) + pp (g2, g2)) ,

for all g1, g2, g3 ≥ 0. However, taking g2 = 0 and g3 = 1, we would have pp (g1, 0) ⩽
s[pp (g1, 1)+1+sinh 1−1]+ (1−s)

2 (1 + 1) , i.e., sinh g1
2 ≤ s(1+sinh(g1 − 1)2+sinh 1)−s

which can not hold for fixed s when g1 → +∞.

Recall that a real function T is called super-additive, if T (r1+ r2) ⩾ T (r1)+T (r2) for
each r1, r2 ∈ D(T ). If T is a super-additive function, and if 0 ∈ D(T ), then T (0) ⩽ 0.
Indeed, super-additivity of T yields that T (r1) ⩽ T (r1 + r2) − T (r2), for each r1, r2 ∈
D(T ). Setting r1 = 0, we get T (0) ⩽ T (0 + r2) − T (r2) = 0. Morever, it is easy to see
that 2T (r) ⩽ T (2r) for each r ∈ D(T ).
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Proposition 2.7 [27] Every partial p-metric pp on a non-empty set G with a super-
additive function Ω, defines a p-metric dpp , where

dpp (g1, g2) = 2pp (g1, g2)− pp (g1, g1)− pp (g2, g2) , for each g1, g2 ∈ G.

Lemma 2.8 [27] Let (G, pp) be a partial p-metric space. Then the following conditions
are satisfied:

(i) if pp (g1, g2) = 0, then g1 = g2;
(ii) if g1 ̸= g2, then pp (g1, g2) > 0.

Lemma 2.9 [27] Let (G, pp) be a partial p-metric space with super-additive function Ω.

(i) A sequence {gn} is a pp-Cauchy in (G, pp) iff it is a p-Cauchy in the p-metric
space

(
G, dpp

)
.

(ii) The space (G, pp) is pp-complete iff the p-metric space
(
G, dpp

)
is p-complete.

Moreover,

lim
n→∞

dpp (g, gn) = 0 ⇔ lim
n→∞

pp (g, gn) = lim
n,m→∞

pp (gn, gm) = pp (g, g) .

Lemma 2.10 [27] Let (G, pp) be a partial p-metric space. Suppose that {gn} and {g∗n}
are convergent to g and g∗, respectively. Then

Ω−1(Ω−1[pp(g, g
∗)− pp(g, g)]− 2pp(g, g))− pp(g

∗, g∗)

⩽ lim inf
n→∞

pp(gn, g
∗
n) ≤ lim sup

n→∞
pp(gn, g

∗
n)

⩽ (2pp(g, g) + Ω[pp(g, g
∗) + pp(g

∗, g∗)]) + pp(g, g).

In particular, if pp (g, g
∗) = 0, then limn→∞ pp (gn, g

∗
n) = 0.

In addition, for all g1 ∈ G,

Ω−1[pp(g, g1)− pp(g, g)]− pp(g, g)

⩽ lim inf
n→∞

pp(gn, g1) ⩽ lim sup
n→∞

pp(gn, g1)

⩽ Ω[pp(g, g) + pp(g, g1)] + pp(g, g).

In particular, if pp (g, g1) = 0, then limn→∞ pp (gn, g1) = 0.

Definition 2.11 [31] A mapping ψ : [0,+∞) → [0,+∞) is called a generalized altering
distance function if

(i) ψ is non-decreasing,
(ii) ψ (t) = 0 if and only if t = 0.

Set
Ψ = {ψ : ψ : [0,+∞) → [0,+∞) is a generalized altering distance function}
and
Φ = {φ : φ : [0,+∞) → [0,+∞) is a nondecreasing and right upper semi-continuous

function such that ψ(t) > φ(t) for all t > 0 where ψ ∈ Ψ}.
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3. Main results

A triplet (G,⪯, pp) will be called an ordered partial p-metric space (ordered PPMS,
for short) if (G,⪯) is a partially ordered set and pp is a partial p-metric on G.

For arbitrary points g1, g2 ∈ G, it is said to be

(i) g1 and g2 are comparable point, if either g1 ⪯ g2 or g2 ⪯ g1;
(ii) T is nondecreasing function, if Tg1 ⪯ Tg2 whenever g1 ⪯ g2;
(iii) (G,⪯, pp) is regular, if for each nondecreasing sequence {gn} ∈ G convergent to

some point g ∈ G, then gn ⪯ g, for all n ∈ N.

Definition 3.1 Let (G,⪯, pp) be an ordered partial p-metric space with function Ω. An
operator T : G → G is called Su-type contractive mapping, if there exist ψ ∈ Ψ and
φ ∈ Φ such that

ψ(Ω2(2pp(Tg1, T g2))) ⩽ φ(max{pp(g1, g2), pp(g1, T g1) + pp(g2, T g2),

pp(g1, T g2)− pp(g1, g1), pp(g2, T g1)}), (1)

for each comparable g1, g2 ∈ G.

Theorem 3.2 Let (G,⪯, pp) be an ordered pp-complete PPMS with super-additive func-
tion Ω. Let T : G → G be a non-decreasing continuous Su-type contractive mapping. If
there exists g0 ∈ G such that g0 ⪯ Tg0, then T has a fixed point.

Proof. Let g0 ∈ G be an arbitrary point such that g0 ⪯ Tg0. Let {gn} be the Picard
sequence with initial point g0, that is, gn = Tng0 = Tgn−1 and un = pp(gn, gn+1) =
pp(T

ng0, T
n+1g0) for all n ∈ N ∪ {0}. Since g0 ⪯ Tg0 = g1 and T is non-decreasing,

g1 = Tg0 ⪯ g2 = Tg1. By induction, we get

g0 ⪯ g1 ⪯ g2 ⪯ · · · ⪯ gn ⪯ gn+1 ⪯ · · · .

If gn0
= gn0+1 for some n0 ∈ N, then gn0

= Tgn0
and so gn0

is a fixed point of T .
Therefore, assume that gn ̸= gn+1 for all n ∈ N. By contractive condition (1) with
g1 = gn−1 and g2 = gn, we have

ψ(Ω(2un)) ≤ ψ(Ω2(2un)) = ψ(Ω2(2pp(Tgn−1, T gn)))

≤ φ(max{pp(gn−1, gn), pp(gn−1, T gn−1) + pp(gn, T gn),

pp(gn−1, T gn)− pp(gn−1, gn−1), pp(gn, T gn−1)})

= φ(max{un−1, un−1 + un, pp(gn−1, gn+1)− pp(gn−1, gn−1),

pp(gn, gn)})

⩽ φ(max{un−1 + un,Ω(un−1 + un), pp(gn, gn)})

= φ(Ω(un−1 + un))

< ψ(Ω(un−1 + un)). (2)

By the properties of ψ and Ω, it follows that 2un < un−1 + un; that is,

un < un−1, for all n ∈ N. (3)
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From (3), the sequence {un} is decreasing and hence converges to a real number r ⩾ 0.
We now show that r = 0. Assume on the contrary that r > 0. Then, letting n → ∞ in
(2), we have

ψ(Ω(2r)) ⩽ lim
n→∞

ψ (Ω(2un))

⩽ lim
n→∞

φ (Ω(un−1 + un)) ⩽ φ (Ω(2r)) ,

a contradiction and hence r = 0, that is, limn→∞ un = 0, and thus

lim
n→∞

pp(gn, gn+1) = lim
n→∞

pp(gn, gn) = 0. (4)

To show that {gn} is a pp-Cauchy sequence in G, we have to show that {gn} is a p-
Cauchy sequence in (G, dpp) (see Lemma 2.9). Suppose the contrary, that is, {gn} is not
a p-Cauchy sequence. Then, there exists an ε > 0 for which we can find two subsequences
{gmk

} and {gnk
} of {gn} such that nk is the smallest index for which nk > mk > k and

dpp(gmk
, gnk

) ⩾ ε and dpp(gmk
, gnk−1) < ε. (5)

Using the triangular inequality and (5), we get

ε ≤ dpp(gmk
, gnk

) ⩽ Ω(dpp(gmk
, gnk−1) + dpp(gnk−1, gnk

))

< Ω(ε+ dpp(gnk−1, gnk
)).

Taking the upper limit as k → ∞, and using (4) and (5), we get

Ω−1(ε) ⩽ lim sup
k→∞

dpp(gmk
, gnk

) ⩽ ε,

and so

ε ⩽ lim inf
k→∞

dpp(gmk
, gnk

) ≤ lim sup
k→∞

dpp(gmk
, gnk

) ⩽ Ω(ε). (6)

Since

ε ⩽ dpp(gmk
, gnk

) ≤ Ω(dpp(gmk
, gmk+1) + dpp(gmk+1, gnk

))

≤ Ω(dpp(gmk
, gmk+1) + Ω(dpp(gmk+1, gnk+1) + dpp(gnk+1, gnk

))),

by using (4), we obtain

ε ⩽ Ω(ε) ⩽ lim inf
k→∞

Ω2(dpp(gmk+1, gnk+1)). (7)

On the other hand, by the definition of dpp and (4),

lim inf
k→∞

dpp(gmk
, gnk

) = 2 lim inf
k→∞

pp(gmk
, gnk

). (8)



A. Ali et al. / J. Linear. Topological. Algebra. 09(01) (2020) 53-65. 59

From (1), we get

ψ(Ω2(2pp(gmk+1, gnk+1))) = ψ(Ω2(2pp(Tgmk
, T gnk

)))

≤ φ(max{pp(gmk
, gnk

), pp(gmk
, gmk+1) + pp(gnk

, gnk+1),

pp(gmk
, gnk+1)− pp(gmk

, gmk
), pp(gnk

, gmk+1)})

≤ φ(max{pp(gmk
, gnk

), pp(gmk
, gmk+1) + pp(gnk

, gnk+1),

Ω(pp(gmk
, gnk

) + pp(gnk
, gnk+1)),Ω(pp(gnk

, gmk
) + pp(gmk

, gmk+1))}).

Letting k → ∞ in the previous inequality, by the properties of ψ and φ, we deduce

ψ(Ω(ε)) ≤ lim
k→∞

ψ(Ω2(2pp(gmk+1, gnk+1)))

≤ lim
k→∞

φ(max{pp(gmk
, gnk

), pp(gmk
, gmk+1) + pp(gnk

, gnk+1),

Ω(pp(gmk
, gnk

) + pp(gnk
, gnk+1)),Ω(pp(gnk

, gmk
) + pp(gmk

, gmk+1))})

≤ φ(max{ε, 0,Ω(ε),Ω(ε)}) = φ(Ω(ε)),

which is a contradiction. Therefore {gn} is a p-Cauchy sequence in (G, dpp). Since (G, pp)
is pp-complete, by Lemma 2.9,

(
G, dpp

)
is a p-complete p-metric space. Hence, there exists

r ∈ G such that limn→∞ dpp (gn, r) = 0 and

lim
n→∞

pp (r, gn) = lim
n→∞

pp (gn, gn) = pp (r, r) .

Also, from (4), we have

lim
n→∞

pp (r, gn) = lim
n→∞

pp (gn, gn) = pp (r, r) = 0.

Applying triangular inequality, we obtain

pp (r, T r)− pp (r, r) ⩽ Ω(pp (r, Tgn) + pp (Tgn, T r)) .

Taking n→ ∞ and using the continuity of T and Ω, and pp (r, r) = 0, we get

pp (r, T r) ⩽ Ω
(
lim
n→∞

pp (r, gn+1) + lim
n→∞

pp (Tgn, T r)
)
= Ω(pp (Tr, Tr)). (9)

From (1), we deduce

ψ(Ω(2pp(Tr, Tr))) ≤ ψ(Ω2(2pp(Tr, Tr)))

≤ φ(max{pp(r, r), pp(r, T r) + pp(r, T r),

pp(r, T r)− pp(r, r), pp(r, T r)})

= φ(2pp(r, T r))

< ψ(2pp(r, T r)). (10)
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Suppose that pp(r, T r) > 0. Since ψ is non-decreasing and Ω is super-additive, we deduce

2Ω(pp(Tr, Tr)) ≤ Ω(2pp(Tr, Tr)) < 2pp(r, T r).

So (9) yields that

2Ω(pp(Tr, Tr)) < 2Ω(pp(Tr, Tr)),

which is a contradiction. Thus, pp (r, T r) = 0 and hence r = Tr. ■

Notice that the continuity of T in Theorem 3.2 is not necessary and can be dropped.

Theorem 3.3 Under the same hypotheses of Theorem 3.2 and without assuming the
continuity of T , suppose that (G,⪯, pp) is regular. Then T has a fixed point in G.

Proof. Following similar arguments to those given in Theorem 3.2, we construct a non-
decreasing sequence gn in G such that gn → g for some g ∈ G. Using the regularity of
G, we have gn ⪯ g for all n ∈ N. Now, we have to show that Tg = g. By contractive
condition (1), we have

ψ(Ω2(2pp(Tgn, T g))) ⩽ φ(H(gn, g)), (11)

where

H(gn, g)

= max{pp(gn, g), pp(gn, T gn) + pp(g, Tg), pp(gn, T g)− pp(gn, gn), pp(g, Tgn)}

= max{pp(gn, g), pp(gn, gn+1) + pp(g, Tg), pp(gn, T g)− pp(gn, gn), pp(g, gn+1)}. (12)

Suppose that pp(g, Tg) > 0. Taking limit of (12) as n → ∞ and using Lemma 2.10, we
get

Ω−1[pp(g, Tg)] = min{pp(g, Tg),Ω−1[pp(g, Tg)− pp(g, g)]− pp(g, g)}

≤ lim inf
n→∞

H(gn, g) ≤ lim sup
n→∞

H(gn, g)

≤ max{pp(g, Tg),Ω[pp(g, Tg) + pp(g, g)] + pp(g, g)}

= Ω[pp(g, Tg)]. (13)

Again, taking the upper limit as n → ∞ in (11) and using Lemma 2.10 and (13), we
deduce

ψ(Ω2[Ω−1[pp(g, Tg)]]) ≤ lim sup
n→∞

ψ(Ω2[pp(gn+1, T g)])

≤ lim sup
n→∞

ψ(Ω2[2pp(gn+1, T g)])

⩽ lim sup
n→∞

φ(H(gn, g))

⩽ φ(Ω[pp(g, Tg)]),

which implies that pp(g, Tg) = 0 and so g = Tg. ■
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By choosing φ(t) = ψ(t)−ϕ(t) in Theorems 3.2 and 3.3, we obtain the following result.

Corollary 3.4 [27] Let (G,⪯, pp) be an ordered pp-complete PPMS with super-additive
function Ω and T : G→ G be a non-decreasing mapping. Assume that there exist ψ ∈ Ψ
and ϕ ∈ Φ such that

ψ(Ω2(2pp(Tg1, T g2))) ⩽ ψ(H(g1, g2))− ϕ(H(g1, g2)),

for each comparable g1, g2 ∈ G, where

H(g1, g2) = max{pp(g1, g2), pp(g1, T g1)+pp(g2, T g2), pp(g1, T g2)−pp(g1, g1), pp(g2, T g1)}.

Suppose that also the following conditions hold:

(i) There exists g0 ∈ G such that g0 ⪯ Tg0;
(ii) T is continuous or (G,⪯, pp) is regular.

Then T has a fixed point.

Corollary 3.5 Let (G,⪯, pp) be an ordered pp-complete PPMS with super-additive
function Ω and T : G → G be a non-decreasing mapping. Assume that there exist
α, β, γ, δ ⩾ 0 with α+ β + γ + δ ∈ (0, 1), ψ ∈ Ψ and φ ∈ Φ such that

ψ(Ω2(2pp(Tg1, T g2))) ⩽ φ(αpp(g1, g2) + β[pp(g1, T g1) + pp(g2, T g2)]

+γ[pp(g1, T g2)− pp (g1, g1)] + δpp(g2, T g1)),

for each comparable g1, g2 ∈ G. Suppose that also the following conditions hold:

(i) There exists g0 ∈ G such that g0 ⪯ Tg0;
(ii) T is continuous or (G,⪯, pp) is regular.

Then T has a fixed point.

If we take ψ(t) = t and φ(t) = kt in Theorems 3.2 and 3.3, we obtain the following
result.

Corollary 3.6 Let (G,⪯, pp) be an ordered pp-complete PPMS with super-additive
function Ω and T : G → G be a non-decreasing mapping. Assume that there exists
k ∈ [0, 1) such that

Ω2(2pp(Tg1, T g2)) ⩽ kmax{pp(g1, g2), pp(g1, T g1) + pp(g2, T g2),

pp(g1, T g2)− pp(g1, g1), pp(g2, T g1)},

for each comparable g1, g2 ∈ G. Suppose that also the following conditions hold:

(i) There exists g0 ∈ G such that g0 ⪯ Tg0;
(ii) T is continuous or (G,⪯, pp) is regular.

Then T has a fixed point.

If we take pp(g1, g2) = 1+sinh(d(g1, g2)
2) in Corollary 3.6, where (G,⪯, d) is a complete

ordered metric space, we have the following result.

Corollary 3.7 Let (G,⪯, d) be a complete ordered metric space and T : G → G be a
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non-decreasing mapping. Assume that there exists k ∈ [0, 1) such that

sinh[2 sinh[4 + 4 sinh(d(Tg1, T g2)
2)]] ⩽ k[1 + sinh(d(g1, g2)

2)],

for each comparable g1, g2 ∈ G. Suppose that also the following conditions hold:

(i) There exists g0 ∈ G such that g0 ⪯ Tg0;
(ii) T is continuous or (G,⪯, d) is regular.

Then T has a fixed point.

Remark 4 In Theorems 3.2 and 3.3, it can be proved in a standard way that T has a
unique fixed point provided that all fixed points of T are comparable.

Example 3.8 Let G =
{
0, 13 ,

2
3 , 1,

4
3 ,

5
3 , 2

}
be equipped with the following partial order

⪯:

⪯:= {(0, 0), (1
3
,
1

3
), (

2

3
,
2

3
), (1, 1), (

4

3
,
4

3
), (

5

3
,
2

3
), (

5

3
,
5

3
), (2, 2)}.

Define pp : G×G→ [0,+∞) by

pp(g1, g2) =

{
0, if g1 = g2,

1 + sinh[(g1 + g2)
2], if g1 ̸= g2.

It is easy to see that (G, pp) is a pp-complete PPMS, with Ω(t) = sinh 2t (which is
super-additive).

Define T : G→ G by

T =

(
0
1
3

1
3
2
3

2
3
1
1
1

4
3
1

5
3
1
2
2

)
.

Obviously, T is non-decreasing and continuous.
Define ψ,φ : [0,+∞) → [0,+∞) by ψ(t) = t/2 and φ(t) = t/4. In order to see that T

is FΩ-contractive mapping for nontrivial cases, we only need to check the case g1 = 2/3
and g2 = 5/3 or g1 = 5/3 and g2 = 2/3. Then

ψ(Ω2(2pp(T
2

3
, T

5

3
))) = ψ(Ω2(0)) = 0

⩽ φ(max{pp(
2

3
,
5

3
), pp(

2

3
, T

2

3
) + pp(

5

3
, T

5

3
), pp(

2

3
, T

5

3
)− pp(

2

3
,
2

3
), pp(

5

3
, T

2

3
)})

= φ(max{pp(
2

3
,
5

3
), pp(

2

3
, 1) + pp(

5

3
, 1), pp(

2

3
, 1), pp(

5

3
, 1)})

= φ(pp(
2

3
, 1) + pp(

5

3
, 1))

= φ(1 + sinh(25/9) + 1 + sinh(64/9)) ≈ 155.69

Thus, all the hypotheses of Theorem 3.3 are satisfied and so T possesses a fixed point. In
fact, 1 and 2 are two fixed points of T . Note that the set ({1, 2},⪯) is not well ordered
(i.e., elements 1 and 2 are not comparable).
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4. An application

In this section, we display to view of existence of solutions for a Fredholm type integral
equations using our result. Consider the following Fredholm integral equation:

χ (r) = γ (r) +

∫ 1

0
D (r, s, χ (s)) ds, (14)

r, s ∈ I = [0, 1] , where γ : I → R and D : I × I × R → R. Let the space G = C (I,R)
consist of all real-valued functions which are continuous on I equipped with the partial
order

g1 ⪯ g2 ⇐⇒ g1 (r) ⩽ g2 (r) , r ∈ I.

For χ ∈ G, define

||χ|| = sup
r∈I

|χ (r) |.

Notice that || · || is a norm equivalent to the supremum norm and (G, || · ||) is a Banach
space. The metric induced by this norm is given by

d (g1, g2) = ||g1 − g2|| = sup
r∈I

|g1 (r)− g2 (r) |,

for all g1, g2 ∈ G. Now, let ξ : [0,+∞) → [0,+∞) be a strictly increasing continuous
function with r ⩽ ξ (r) and consider G endowed with the partial p-metric given by

ρ (g1, g2) = 1 + ξ(d (g1, g2)), for all g1, g2 ∈ G.

It is easy to see that (G, ρ) is complete and (G,⪯, ρ) is regular.
Define T : G→ G by

T (χ(r)) = γ(r) +

∫ 1

0
D(r, s, χ(s))ds, χ ∈ G, r ∈ I.

Clearly, a function g ∈ G is a solution of (14) if and only if it is a fixed point of T .
Now, we prove the following theorem to validate the existence of solution for the integral
equation (14).

Theorem 4.1 Suppose that the following assertions are satisfied:

(i) γ : I → R and D : I × I × R → R are continuous functions;
(ii) if g1 ⪯ g2, then

D (r, s, g1 (s)) ⩽ D (r, s, g2 (s)) , for all r, s ∈ I;

(iii) for all g1, g2 ∈ G with g1 ⪯ g2 and g1 ̸= g2, and for all r ∈ I,

ξ2(2 + 2ξ(

∫ 1

0
|D(r, s, g1(s))−D(r, s, g2(s))|ds)) ⩽ θ(|g1(s)− g2(s)|),
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where θ : [0,+∞) → [0,+∞) is a nondecreasing and right upper semi-continuous
function with θ (0) = 0 and θ (t) < t for all t > 0;

(iv) There exists a continuous function g0 : I → R such that

g0 (r) ⩽ γ (r) +

∫ 1

0
D (r, s, g0 (s)) ds, r ∈ I.

Proof. It follows from (ii) that the mapping T is non-decreasing w.r.t. ⪯.
Let g1, g2 ∈ G with g1 ⪯ g2 and Tg1 ̸= Tg2. Then, for all r ∈ I,

ξ2(2 + 2ξ(|Tg1(r)− Tg2(r)|))

≤ ξ2(2 + 2ξ(

∫ 1

0
|D(r, s, g1(s))−D(r, s, g2(s))|ds))

⩽ θ(|g1(s)− g2(s)|) ⩽ θ(d (g1, g2))

⩽ θ(H (g1, g2)),

where

H(g1, g2) = max{ρ(g1, g2), ρ(g1, T g1) + ρ (g2, T g2) , ρ(g1, T g2)− ρ (g1, g1) , ρ(g2, T g1)}.

Putting ψ(t) = t, φ(t) = θ(t) and Ω = ξ, we have

ψ(Ω2(2ρ(Tg1, T g2))) ⩽ φ(H (g1, g2))

for each g1, g2 ∈ G with g1 ⪯ g2. Thus, all the conditions of Theorem 3.3 are satisfied
and so the integral equation (14) possesses the required solution. ■
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