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Abstract. The aim of this paper is to introduce and solve the radical cubic functional equa-

tion f
(

3
√

x3 + y3
)
+ f

(
3
√

x3 − y3
)
= 2f(x). We also investigate some stability and hyper-

stability results for the considered equation in 2-Banach spaces.
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1. Introduction

Throughout this paper, we will denote the set of natural numbers by N, the set of real
numbers by R and R+ = [0,∞) the set of nonnegative real numbers. By Nm, m ∈ N, we
will denote the set of all natural numbers greater than or equal to m. The notion of linear
2-normed spaces was introduced by Gähler [20, 21] in the middle of 1960s. We need to
recall some basic facts concerning 2-normed spaces and some preliminary results.

Definition 1.1 LetX be a real linear space with dimX > 1 and ∥., .∥ : X×X −→ [0,∞)
be a function satisfying the following properties:

(1) ∥x, y∥ = 0 if and only if x and y are linearly dependent,
(2) ∥x, y∥ = ∥y, x∥,
(3) ∥λx, y∥ = |λ|∥x, y∥,
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(4) ∥x, y + z∥ ⩽ ∥x, y∥+ ∥x, z∥

for all x, y, z ∈ X and λ ∈ R. Then the function ∥., .∥ is called a 2-norm on X and the
pair (X, ∥., .∥) is called a linear 2-normed space. Sometimes the condition (4) called the
triangle inequality.

Example 1.2 For x = (x1, x2), y = (y1, y2) ∈ X = R2, the Euclidean 2-norm ∥x, y∥R2

is defined by ∥x, y∥R2 = |x1y2 − x2y1|.

Lemma 1.3 Let (X, ∥., .∥) be a 2-normed space. If x ∈ X and ∥x, y∥ = 0 for all y ∈ X,
then x = 0.

Definition 1.4 A sequence {xk} in a 2-normed space X is called a convergent sequence
if there is a x ∈ X such that lim

k→∞
∥xk − x, y∥ = 0 for all y ∈ X. If {xk} converges to

x, write xk −→ x as k −→ ∞ and call x the limit of {xk}. In this case, we also write
lim
k→∞

xk = x.

Definition 1.5 A sequence {xk} in a 2-normed space X is said to be a Cauchy sequence
with respect to the 2-norm if lim

k,l→∞
∥xk − xl, y∥ = 0. for all y ∈ X. If every Cauchy

sequence in X converges to some x ∈ X, then X is said to be complete with respect to
the 2-norm. Any complete 2-normed space is said to be a 2-Banach space.

Now, we state the following results as lemma (see [25] for the details).

Lemma 1.6 Let X be a 2-normed space. Then

(1)
∣∣∥x, z∥ − ∥y, z∥

∣∣ ⩽ ∥x− y, z∥ for all x, y, z ∈ X,
(2) if ∥x, z∥ = 0 for all z ∈ X, then x = 0,

(3) for a convergent sequence xn in X, lim
n−→∞

∥xn, z∥ =
∥∥∥ lim
n−→∞

xn, z
∥∥∥ for all z ∈ X.

The concept of stability for a functional equation arises when defining, in some way,
the class of approximate solutions of the given functional equation, one can ask whether
each mapping from this class can be somehow approximated by an exact solution of the
considered equation. Namely, when one replaces a functional equation by an inequality
which acts as a perturbation of the considered equation. In 1940, the first stability prob-
lem of functional equation was raised by Ulam [29]. This included the following question
concerning the stability of group homomorphisms.

Let (G1, ∗1) be a group and (G2, ∗2) be a metric group with a metric d(., .). Given ε > 0,
does there exists a δ > 0 such that if a mapping h : G1 → G2 satisfies the inequality
d
(
h(x ∗1 y), h(x) ∗2 h(y)

)
< δ for all x, y ∈ G1, then there exists a homomorphism

H : G1 → G2 with d
(
h(x), H(x)

)
< ε for all x ∈ G1? If the answer is affirmative, we say

that the equation of homomorphism h(x ∗1 y) = h(x) ∗2 H(y) is stable. Since then, this
question has attracted the attention of many researchers. In 1941, Hyers [22] gave a first
partial answer to Ulam’s question and introduced the stability result as follows.

Theorem 1.7 [22] Let E1 and E2 be two Banach spaces and f : E1 → E2 be a function
such that ∥f(x+y)−f(x)−f(y)∥ ⩽ δ for some δ > 0 and for all x, y ∈ E1. Then the limit
A(x) = lim

n→∞
2−nf(2nx) exists for each x ∈ E1 and A : E1 → E2 is the unique additive

function such that ∥f(x)−A(x)∥ ⩽ δ for all x ∈ E1. Moreover, if f(tx) is continuous in
t for each fixed x ∈ E1, then the function A is linear.

Later, Aoki [8] and Bourgin [9] considered the problem of stability with unbounded
Cauchy differences. Rassias [27] attempted to weaken the condition for the bound of
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the norm of Cauchy difference ∥f(x + y) − f(x) − f(y)∥ and proved a generalization of
Theorem 1.7 using a direct method (cf. Theorem 1.8).

Theorem 1.8 [27] Let E1 and E2 be two Banach spaces. If f : E1 → E2 satisfies the
inequality ∥f(x+y)−f(x)−f(y)∥ ⩽ θ

(
∥x∥p+∥y∥p

)
for some θ ⩾ 0, for some p ∈ R with

0 ⩽ p < 1, and for all x, y ∈ E1, then there exists a unique additive function A : E1 → E2

such that ∥f(x)−A(x)∥ ⩽ 2θ
2−2p ∥x∥p for each x ∈ E1. If, in addition, f(tx) is continuous

in t for each fixed x ∈ E1, then the function A is linear.

After then, Rassias [26, 28] motivated Theorem 1.8 as follows.

Theorem 1.9 [26, 28] Let E1 be a normed space, E2 be a Banach space and f : E1 → E2

be a function. If f satisfies the inequality

∥f(x+ y)− f(x)− f(y)∥ ⩽ θ
(
∥x∥p + ∥y∥p

)
(1)

for some θ ⩾ 0 and for some p ∈ R with p ̸= 1 and for all x, y ∈ E1 − {0E1
}, then there

exists a unique additive function A : E1 → E2 such that for each x ∈ E1 − {0E1
},

∥f(x)−A(x)∥ ⩽ 2θ

|2− 2p|
∥x∥p (2)

Note that Theorem 1.9 reduces to Theorem 1.7 when p = 0. For p = 1, the analogous
result is not valid. Also, Brzdȩk [10] showed that estimation (2) is optimal for p ⩾ 0
in the general case. Recently, Brzdȩk [11] showed that Theorem 1.9 can be significantly
improved; namely, in the case p < 0, each f : E1 → E2 satisfying (1) must actually be
additive, and the assumption of completeness of E2 is not necessary. It is regrettable that
this result does not remain valid if we restrict the domain of f (see the further detail
in [16]). But then again, several mathematicians showed that the fixed point method is
an another very efficient and convenient tool for proving the Hyers-Ulam stability for
a quite wide class of functional equations (see [13]). Brzdȩk et al. [15] proved the fixed
point theorem for a nonlinear operator in metric spaces and used this result to study the
Hyers-Ulam stability of some functional equations in non-Archimedean metric spaces. In
this work, they also obtained the fixed point result in arbitrary metric spaces as follows.

Theorem 1.10 [15] Let X be a nonempty set, (Y, d) be a complete metric space and Λ :
Y X → Y X be a non-decreasing operator satisfying the hypothesis lim

n→∞
Λδn = 0 for every

sequence {δn}n∈N in Y X with lim
n→∞

δn = 0. Suppose that T : Y X → Y X is an operator

satisfying the inequality d
(
T ξ(x), T µ(x)

)
⩽ Λ

(
∆(ξ, µ)

)
(x) for all x ∈ X and ξ, µ ∈ Y X ,

where ∆ : Y X × Y X → RX
+ is a mapping which is defined by ∆(ξ, µ)(x) := d

(
ξ(x), µ(x)

)
for all x ∈ X and ξ, µ ∈ Y X . If there exist functions ε : X → R+ and φ : X → Y such

that d
(
(T φ)(x), φ(x)

)
⩽ ε(x) and ε∗(x) :=

∑
n∈N0

(
Λnε

)
(x) < ∞ for all x ∈ X, then the

limit

lim
n→∞

(
(T nφ)

)
(x) (3)

exists for each x ∈ X. Moreover, the function ψ ∈ Y X defined by

ψ(x) := lim
n→∞

(
(T nφ)

)
(x) (4)
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is a fixed point of T for all x ∈ X with

d
(
φ(x), ψ(x)

)
⩽ ε∗(x). (5)

In 2013, Brzdȩk [12] gave the fixed point result by applying Theorem 1.10 as follows.

Theorem 1.11 [12] Let X be a nonempty set, (Y, d) be a complete metric space,
f1, ..., fr : X → X and L1, ..., Lr : X → R+ be given mappings. Suppose that
T : Y X → Y X and Λ : RX

+ → RX
+ are two operators satisfying the conditions

d
(
T ξ(x), T µ(x)

)
⩽

r∑
i=1

Li(x)d
(
ξ
(
fi(x)

)
, µ

(
fi(x)

))
and Λδ(x) :=

∑r
i=1 Li(x)δ

(
fi(x)

)
for all x ∈ X, ξ, µ ∈ Y X and δ ∈ RX

+ . If there

exist functions ε : X → R+ and φ : X → Y such that d
(
T φ(x), φ(x)

)
⩽ ε(x) and

ε∗(x) :=
∞∑
n=0

(
Λnε

)
(x) < ∞ for all x ∈ X, then the limit (3) exists for each x ∈ X.

Moreover, the function (4) is a fixed point of T with (5) for all x ∈ X.

Then by using this theorem, Brzdȩk [12] improved, extended and complemented several
earlier classical stability results concerning the additive Cauchy equation (in particular
Theorem 1.9). Over the last few years, many mathematicians have investigated various
generalizations, extensions and applications of the Hyers-Ulam stability of a number of
functional equations (see, for instance, [4–7, 13, 16] and references therein); in particular,
the stability problem of the radical functional equations in various spaces was proved in
[1–3, 18, 19, 23, 24]. An analogue of Theorem 1.11 in 2-Banach spaces was stated and
proved in [6].

Theorem 1.12 [6] Let X be a nonempty set,
(
Y, ∥·, ·∥

)
be a 2-Banach space, g : X → Y

be a surjective mapping and let f1, ..., fr : X → X and L1, ..., Lr : X → R+ be given
mappings. Suppose that T : Y X → Y X and Λ : RX×X

+ → RX×X
+ are two operators

satisfying the conditions∥∥T ξ(x)− T µ(x), g(z)
∥∥ ⩽

r∑
i=1

Li(x)
∥∥∥ξ(fi(x))− µ

(
fi(x)

)
, g(z)

∥∥∥
and

Λδ(x, z) :=

r∑
i=1

Li(x)δ
(
fi(x), z

)
(6)

for all x, z ∈ X, ξ, µ ∈ Y X and δ ∈ RX×X
+ . If there exist functions ε : X ×X → R+ and

φ : X → Y such that
∥∥∥T φ(x)−φ(x), g(z)∥∥∥ ⩽ ε(x, z) and ε∗(x, z) :=

∞∑
n=0

(
Λnε

)
(x, z) <∞

for all x, z ∈ X, then the limit lim
n→∞

(
(T nφ)

)
(x) exists for each x ∈ X. Moreover, the

function ψ : X → Y defined by ψ(x) := lim
n→∞

(
(T nφ)

)
(x) is a fixed point of T with∥∥φ(x)− ψ(x), g(z)

∥∥ ⩽ ε∗(x, z) for all x, z ∈ X.

In this paper, we achieve the general solutions of the following radical cubic functional
equation

f
(

3
√
x3 + y3

)
+ f

(
3
√
x3 − y3

)
= 2f(x) (7)
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and discuss the generalized Hyers-Ulam-Rassias stability problem in 2-Banach spaces by
using Theorem [6].

2. Solution of equation (7)

In this section, we give the general solution of functional equation (7). The proof of
the following theorem has been patterned on the reasoning in [17].

Theorem 2.1 Let Y be a linear space. A function f : R → Y satisfies the functional
equation (7) if and only if

f(x) = F (x3), x ∈ R, (8)

with some Jensen function F : R → Y .

Proof. Indeed, it is not hard to check without any problem that if f : R → Y satisfies
(8), then it is a solution to (7). On the other hand, if f : R → Y is a solution of (7), then
we write F0(x) = f( 3

√
x), for x ∈ R. From (7) we obtain that

F0(x+ y) + F0(x− y) = f( 3
√
x+ y) + f( 3

√
x− y) = 2f( 3

√
x) = 2F0(x)

for all x, y ∈ R. It is enough to observe that there is a Jensen function F : R → Y with
F (x) = F0(x) for all x ∈ R. This completes the proof. ■

3. Stability results of the radical cubic functional equation (7)

In the following two theorems, we use Theorem 1.12 to investigate the generalized
Hyers-Ulam stability of the functional equation (7) in 2-Banach spaces. Hereafter, we
assume that

(
Y, ∥·, ·∥

)
is a 2-Banach space.

Theorem 3.1 Let h1, h2 : R2 → R+ be two functions such that

U =
{
n ∈ N : αn = 2λ1(n

3)λ2(n
3) + λ1(2n

3 − 1)λ2(2n
3 − 1) < 1

}
̸= ϕ

be an infinite set, where λi(n) := inf
{
t ∈ R+ : hi(nx

3, z) ⩽ t hi(x
3, z), x, z ∈ R

}
for all

n ∈ N, where i = 1, 2. Assume that f : R → Y satisfies the inequality∥∥f ( 3
√
x3 + y3

)
+ f

(
3
√
x3 − y3

)
− 2f(x), g(z)

∥∥ ⩽ h1(x
3, z)h2(y

3, z) (9)

for all x, y, z ∈ R where g : X → Y be a surjective mapping. Then there exists a unique
function F : R → Y satisfies the equation (7) such that∥∥f(x)− F (x), g(z)

∥∥ ⩽ λ0h1(x
3, z)h2(x

3, z) (10)

for all x, z ∈ R, where λ0 = inf
n∈U

{
λ1(n3)λ2(2n3−1)

1−αn

}
.

Proof. Replacing x by mx and y by 3
√
m3 − 1x where x, y ∈ R and m ∈ N, in inequality

(9), we get∥∥f ( 3
√

(2m3 − 1)x3
)
− 2f(mx) + f(x), g(z)

∥∥ ⩽ h1(m
3x3, z)h2

(
(2m3 − 1)x3, z

)
(11)
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for all x, z ∈ R. For each m ∈ N, we define the operator Tm : Y R → Y R by

Tmξ(x) := 2ξ(mx)− ξ
(

3
√

(2m3 − 1)x3
)
, ξ ∈ Y R, x ∈ R.

Further, put

εm(x, z) := h1(m
3x3, z)h2

(
(2m3 − 1)x3, z

)
, x, z ∈ R, (12)

and observe that

εm(x, z) = h1(m
3x3, z)h2

(
(2m3 − 1)x3, z

)
⩽ λ1(m

3)λ2(2m
3 − 1)h1(x

3, z)h2(x
3, z), (13)

for all x, z ∈ R and allm ∈ N. Then (11) takes the form
∥∥f(x)−Tmf(x), g(z)

∥∥ ⩽ εm(x, z)

for all x, z ∈ R. Furthermore, for every x, z ∈ R, ξ, µ ∈ Y R, we obtain∥∥∥Tmξ(x)− Tmµ(x), g(z)
∥∥∥ =

∥∥∥2ξ(mx)− ξ
(

3
√
(2m3 − 1)x3

)
− 2µ(mx) + µ

(
3
√
(2m3 − 1)x3

)
, g(z)

∥∥∥
⩽ 2

∥∥∥(ξ − µ)(mx), g(z)
∥∥∥+

∥∥∥(ξ − µ)
(

3
√
(2m3 − 1)x3

)
, g(z)

∥∥∥.
This brings us to define the operator Λm : RR×R

+ → RR×R
+ by

Λmδ(x, z) := 2δ(mx, z) + δ
(

3
√

(2m3 − 1)x3, z
)
, δ ∈ RR×R

+ , x, z ∈ R.

For each m ∈ N, the above operator has the form described in (6) with f1(x) = mx,

f2(x) =
(

3
√

(2m3 − 1)x3
)
and L1(x) = 2, L2(x) = 1 for all x ∈ R. By induction, we will

show that for each x, z ∈ R, n ∈ N0, and m ∈ U we have

(
Λn
mεm

)
(x, z) ⩽ λ1(m

3)λ2(2m
3 − 1)αn

mh1(x
3, z)h2(x

3, z) (14)

where αm = 2λ1(m
3)λ2(m

3) + λ1(2m
3 − 1)λ2(2m

3 − 1). From (12) and (13), we obtain
that the inequality (14) holds for n = 0. Next, we will assume that (14) holds for n = k,
where k ∈ N. Then we have

(
Λk+1
m εm

)
(x, z)

= Λm

((
Λk
mεm

)
(x, z)

)
= 2

(
Λk
mεm

)
(mx, z) +

(
Λk
mεm

) (
3
√

(2m3 − 1)x3, z
)

⩽ 2λ1(m
3)λ2(2m

3 − 1)αk
mh1(m

3x3, z)h2(m
3x3, z)

+ λ1(m
3)λ2(2m

3 − 1)αk
mh1((2m

3 − 1)x3, z)h2((2m
3 − 1)x3, z)

⩽ λ1(m
3)λ2(2m

3 − 1)αk
m

(
2λ1(m

3)λ2(m
3) + λ1(2m

3 − 1)λ2(2m
3 − 1)

)
h1(x

3, z)h2(x
3, z)

= λ1(m
3)λ2(2m

3 − 1)αk+1
m h1(x

3, z)h2(x
3, z)

for all x, z ∈ R, m ∈ U . This shows that (14) holds for n = k + 1. Now we can conclude
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that the inequality (14) holds for all n ∈ N0. Hence, we obtain

ε∗m(x, z) =

∞∑
n=0

(
Λn
mεm

)
(x, z)

⩽
∞∑
n=0

λ1(m
3)λ2(2m

3 − 1)αn
mh1(x

3, z)h2(x
3, z)

=
λ1(m

3)λ2(2m
3 − 1)h1(x

3, z)h2(x
3, z)

1− αm
<∞

for all x, z ∈ R, m ∈ U . Therefore, according to Theorem 1.12 with φ = f and X = R
and using the surjectivity of g, we get that the limit Fm(x) := lim

n→∞

(
T n
mf

)
(x) exists for

each x ∈ R and m ∈ U , and

∥∥f(x)− Fm(x), g(z)
∥∥ ⩽ λ1(m

3)λ2(2m
3 − 1)

1− αm
h1(x

3, z)h2(x
3, z), x, z ∈ R, m ∈ U . (15)

To prove that Fm satisfies the functional equation (7), just prove the following inequality

∥∥T n
mf

(
3
√
x3 + y3

)
+ T n

mf
(

3
√
x3 − y3

)
− 2T n

mf(x), g(z)
∥∥ ⩽ αn

mh1(x
3, z)h2(y

3, z) (16)

for every x, y, z ∈ R, n ∈ N0, and m ∈ U . Since the case n = 0 is just (9), take k ∈ N and
assume that (16) holds for n = k and every x, y, z ∈ R, m ∈ U . Then, for each x, y, z ∈ R
and m ∈ U , we get∥∥∥T k+1

m f
(

3
√
x3 + y3

)
+ T k+1

m f
(

3
√
x3 − y3

)
− 2T k+1

m f(x), g(z)
∥∥∥

=
∥∥∥2T k

mf
(
m 3
√
x3 + y3

)
− T k

mf
(

3
√

(2m3 − 1)(x3 + y3)
)
+ 2T k

mf
(
m 3
√
x3 − y3

)
− T k

mf
(

3
√

(2m3 − 1)(x3 − y3)
)
− 4T k

mf(mx) + 2T k
mf

(
3
√

(2m3 − 1)x3
)
, g(z)

∥∥∥
⩽ 2

∥∥∥T k
mf

(
m 3
√
x3 + y3

)
+ T k

mf
(
m 3
√
x3 − y3

)
− 2T k

mf(mx), g(z)
∥∥∥

+
∥∥∥T k

mf
(

3
√

(2m3 − 1)(x3 + y3)
)
+ T k

mf
(

3
√

(2m3 − 1)(x3 − y3)
)

− 2T k
mf

(
3
√

(2m3 − 1)x3
)
, g(z)

∥∥∥
⩽ 2αk

mh1(m
3x3, z)h2(m

3y3, z) + αk
mh1

(
(2m3 − 1)x3, z

)
h2

(
(2m3 − 1)y3, z

)
⩽ αk

m

(
2λ1(m

3)λ2(m
3) + λ1(2m

3 − 1)λ2(2m
3 − 1)

)
h1(x

3, z)h2(y
3, z)

= αk+1
m h1(x

3, z)h2(y
3, z).

Thus, by induction, we have shown that (16) holds for every x, y, z ∈ R, n ∈ N0, and
m ∈ U . Letting n→ ∞ in (16), we obtain the equality

Fm

(
3
√
x3 + y3

)
+ Fm

(
3
√
x3 − y3

)
= 2Fm(x), x, y ∈ R,m ∈ U .
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This implies that Fm : R → Y , defined in this way, is a solution of the equation

F (x) = 2F (mx) + F
(

3
√

(2m3 − 1)x3
)
, x ∈ R,m ∈ U . (17)

Next, we will prove that each radical cubic function F : R → Y satisfying the inequality∥∥f(x)− F (x), g(z)
∥∥ ⩽ L h1(x

3, z)h2(x
3, z), x, z ∈ R (18)

with some L > 0 is equal to Fm for each m ∈ U . To this end, we fix m0 ∈ U and
F : R → Y satisfying (18). From (15), for each x ∈ R, we get∥∥F (x)− Fm0

(x), g(z)
∥∥ ⩽

∥∥F (x)− f(x), g(z)
∥∥+

∥∥f(x)− Fm0
, g(z)

∥∥
⩽ L h1(x

3, z)h2(x
3, z) + ε∗m0

(x, z)

⩽ L0 h1(x
3, z)h2(x

3, z)

∞∑
n=0

αn
m0
, (19)

where L0 := (1−αm0
)L+λ1(m

3
0)λ2(2m

3
0−1) > 0 and we exclude the case that h1(x

3, z) ≡
0 or h2(x

3, z) ≡ 0 which is trivial. Observe that F and Fm0
are solutions to equation

(17) for all m ∈ U . Next, we show that, for each j ∈ N0, we have

∥∥F (x)− Fm0
(x), g(z)

∥∥ ⩽ L0 h1(x
3, z)h2(x

3, z)

∞∑
n=j

αn
m0
, x, z ∈ R. (20)

The case j = 0 is exactly (19). We fix k ∈ N and assume that (20) holds for j = k. Then,
in view of (19), for each x, z ∈ R, we get∥∥F (x)− Fm0

(x), g(z)
∥∥

=
∥∥2F (m0x)− F

(
3

√
(2m3

0 − 1)x3
)
− 2Fm0

(m0x) + Fm0

(
3

√
(2m3

0 − 1)x3
)
, g(z)

∥∥
⩽ 2

∥∥F (m0x)− Fm0
(m0x), g(z)

∥∥+
∥∥F (

3

√
(2m3

0 − 1)x3
)
− Fm0

(
3

√
(2m3

0 − 1)x3
)
, g(z)

∥∥
⩽ 2L0 h1(m

3
0x

3, z)h2(m
3
0x

3, z)

∞∑
n=k

αn
m0

+ L0 h1
(
(2m3

0 − 1)x3, z
)
h2

(
(2m3

0 − 1)x3, z
) ∞∑
n=k

αn
m0

= L0

(
2h1(m

3
0x

3, z)h2(m
3
0x

3, z) + h1
(
(2m3

0 − 1)x3, z
)
h2

(
(2m3

0 − 1)x3, z
)) ∞∑

n=k

αn
m0

⩽ L0 αm0
h1(x

3, z)h2(x
3, z)

∞∑
n=k

αn
m0

= L0 h1(x
3, z)h2(x

3, z)

∞∑
n=k+1

αn
m0
.

This shows that (20) holds for j = k + 1. Now we can conclude that the inequality (20)



S. A. A. AL-Ali and Y. Elkettani / J. Linear. Topological. Algebra. 07(04) (2018) 281-292. 289

holds for all j ∈ N0. Now, letting j → ∞ in (20), we get

F = Fm0
. (21)

Thus, we have also proved that Fm = Fm0
for each m ∈ U , which (in view of (15)) yields

∥∥f(x)− Fm0
(x), g(z)

∥∥ ⩽ λ1(m
3)λ2(2m

3 − 1)

1− αm
h1(x

3, z)h2(x
3, z), x, z ∈ R, m ∈ U .

This implies (10) with F = Fm0
and (21) confirms the uniqueness of F . ■

The following theorem concerns the η-hyperstability of (7) in 2-Banach spaces. Namely,
we consider functions f : R → Y fulfilling (7) approximately, i.e., satisfying the inequality

∥∥f ( 3
√
x3 + y3

)
+ f

(
3
√
x3 − y3

)
− 2f(x), g(z)

∥∥ ⩽ η(x, y, z), x, y, z ∈ R, (22)

with η : R3 → R+ is a given mapping. Then we find a unique radical function F : R → Y
which is close to f . Then, under some additional assumptions on η, we prove that the
conditional functional equation (7) is η-hyperstable in the class of functions f : R → Y ,
i.e., each f : R → Y satisfying inequality (22), with such η, must fulfil equation (7).

Theorem 3.2 Let h1, h2 and U be as in Theorem 3.1. Assume that

lim
n→∞

λ1(n)λ2(n) = 0 (23)

Then every f : R → Y satisfying (9) is a solution of (7).

Proof. Suppose that f : R → Y satisfies (9). Then, by Theorem 3.1, there exists a
mapping F : R → Y satisfies (7) and ∥f(x) − F (x), g(z)∥ ⩽ λ0h1(x

3, z)h2(x
3, z) for

all x, z ∈ R, where λ0 = inf
n∈U

{
λ1(n3)λ2(2n3−1)

1−αn

}
with αn = 2λ1(n

3)λ2(n
3) + λ1(2n

3 −

1)λ2(2n
3− 1). Since, in view of (23), λ0 = 0. This means that f(x) = F (x) for all x ∈ R,

whence f
(

3
√
x3 + y3

)
+ f

(
3
√
x3 − y3

)
= 2f(x) for all x, y ∈ R, which implies that f

satisfies the functional equation (7) on R. ■

4. Some particular cases

According to above theorems, we derive some particular cases from our main results.

Corollary 4.1 Let h1, h2 : R2 → (0,∞) be as in Theorem 3.1 such that

lim
n→∞

inf sup
x,z∈R

h1
(
(2n3 − 1)x3, z

)
h2

(
(2n3 − 1)x3, z

)
+ 2h1(n

3x3, z)h2(n
3x3, z)

h1(x3, z)h2(x3, z)
= 0. (24)

Assume that f : R → Y satisfies (7). Then there exist a unique radical function F : R →
Y and a unique constant κ ∈ R+ with

∥∥f ( 3
√
x3 + y3

)
+ f

(
3
√
x3 − y3

)
− 2f(x), g(z)

∥∥ ⩽ κ h1(x
3, z)h2(x

3, z), x, z ∈ R.
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Proof. By the definition of λi(n) in Theorem 3.1, we observe that

2λ1(n
3)λ2(n

3) = 2 sup
x,z∈R

h1(n
2x2, z)h2(n

2x2, z)

h1(x2, z)h2(x2, z)

⩽ 2 sup
x,z∈R

h1
(
(2n3 − 1)x3, z

)
h2

(
(2n3 − 1)x3, z

)
+ 2h1(n

3x3, z)h2(n
3x3, z)

h1(x3, z)h2(x3, z)
(25)

and

λ1(2n
3 − 1)λ2(2n

3 − 1) = sup
x,z∈R

h1
(
(2n3 − 1)x3, z)

)
h2

(
(2n3 − 1)x3, z)

)
h1(x3, z)h2(x3, z)

⩽ sup
x,z∈R

h1
(
(2n3 − 1)x3, z

)
h2

(
(2n3 − 1)x3, z

)
+ h1(n

3x3, z)h2(n
3x3, z)

h1(x3, z)h2(x3, z)
(26)

Combining inequalities (25) and (26), we get

2λ1(n
3)λ2(n

3) + λ1(2n
3 − 1)λ2(2n

3 − 1)

⩽ 3 sup
x,z∈R

h1
(
(2n3 − 1)x3, z

)
h2

(
(2n3 − 1)x3, z

)
+ 2h1(n

3x3, z)h2(n
3x3, z)

h1(x3, z)h2(x3, z)
. (27)

Write

γn := sup
x,z∈R

h1
(
(2n3 − 1)x3, z

)
h2

(
(2n3 − 1)x3, z

)
+ 2h1(n

3x3, z)h2(n
3x3, z)

h1(x3, z)h2(x3, z)
.

From (24), there is a subsequence {γnk
} of a sequence {γn} such that lim

k→∞
γnk

= 0; that

is,

lim
k→∞

sup
x,z∈R

h1
(
(2n3k − 1)x3, z

)
h2

(
(2n3k − 1)x3, z

)
+ 2h1(n

3
kx

3, z)h2(n
3
kx

3, z)

h1(x3, z)h2(x3, z)
= 0. (28)

From (27) and (28), we find that

lim
k→∞

λ1(2n
3
k − 1)λ2(2n

3
k − 1) + 2λ1(n

3
k)λ2(n

3
k) = 0.

This implies

lim
k→∞

λ1(n
3
k)λ2(2n

3
k − 1)

1− λ1(2n3k − 1)λ2(2n3k − 1)− 2λ1(n3k)λ2(n
3
k)

= lim
k→∞

λ1(n
3
k)λ2(2n

3
k − 1) := κ

which means that λ0 defined in Theorem 3.1 is equal to κ. ■
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Corollary 4.2 Let θ ⩾ 0, s, t, r ∈ R such that s + t < 0. Suppose that f : R → Y
satisfies the inequality

∥∥f ( 3
√
x3 + y3

)
+f

(
3
√
x3 − y3

)
−2f(x), g(z)

∥∥ ⩽ θ|x|3s |y|3t |z|r, x, y, z ∈ R\{0}. (29)

Then f satisfies (7) on R\{0}.

Proof. The proof follows from Theorem 3.1 by defining h1, h2 : R2\{(0, 0)} → R+ by
h1(x

3, z) = θ1|x|3s|z|r1 and h2(y
3, z) = θ2|y|3t|z|r2 , with θ1, θ2 ∈ R+ and s, t, r1, r2 ∈ R

such that θ1θ2 = θ, r1 + r2 = r and s+ t < 0. For each n ∈ N, we have

λ1(n) = inf
{
t ∈ R+ : h1(nx

3, z) ⩽ t h1(x
3, z), x, z ∈ R

}
= inf

{
t ∈ R+ : θ1| 3

√
nx|3s|z|r1 ⩽ t θ1|x|3s|z|r1 , x, z ∈ R\{0}

}
= ns.

Also, we have λ2(n) = nt for all n ∈ N. Clearly, we can find n0 ∈ N such that

λ1(2n
3 − 1)λ2(2n

3 − 1) + 2λ1(n
3)λ2(n

3) = (2n3 − 1)s+t + 2(n3)s+t < 1, n ⩾ n0.

According to Theorem 3.1, there exists a unique radical function F : R\{0} → Y such
that

∥∥f(x)− F (x), g(z)
∥∥ ⩽ θλ0|x|3(s+t)|z|r for all x, z ∈ R\{0}, where

λ0 := inf
n⩾n0

{
λ1(n

3)λ2(2n
3 − 1)

1− λ1(2n3 − 1)λ2(2n3 − 1)− 2λ1(n3)λ2(n3)

}
.

On the other hand, since s+ t < 0, one of s, t must be negative. Assume that t < 0. Then
lim
n→∞

λ1(n)λ2(n) = lim
n→∞

ns+t = 0. Thus, by Theorem 3.2, we get the desired results. ■

The next corollary prove the hyperstability results for the inhomogeneous radical func-
tional equation.

Corollary 4.3 Let θ, s, t, r ∈ R such that θ ⩾ 0 and s+ t < 0. Assume that G : R2 → Y
and f : R → Y satisfy the inequality

∥∥f ( 3
√
x3 + y3

)
+ f

(
3
√
x3 − y3

)
− 2f(x)−G(x, y), g(z)

∥∥ ⩽ θ|x|3s |y|3t |z|r (30)

for x, y, z ∈ R\{0}. If the functional equation

f
(

3
√
x3 + y3

)
+ f

(
3
√
x3 − y3

)
= 2f(x) +G(x, y) (31)

for x, y ∈ R\{0} has a solution f0 : R → Y , then f is a solution to (31).

Proof. From (30) we get that the function K : R → Y defined by K := f − f0 satisfies
(29). Consequently, Corollary 4.3 implies that K is a solution to the radical functional
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equation (7). Therefore,

f
(

3
√
x3 + y3

)
+ f

(
3
√
x3 − y3

)
− 2f(x)−G(x, y) = K

(
3
√
x3 + y3

)
+ f0

(
3
√
x3 + y3

)
+K

(
3
√
x3 − y3

)
+ f0

(
3
√
x3 − y3

)
− 2K(x)− 2f0(x)−G(x, y) = 0

for all x, y ∈ R\{0}, which means f is a solution to (31). ■
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